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We show that for arbitrary fixed conjugacy classes C1, . . . , Cl , l � 3, of loxodromic
isometries of the two-dimensional complex or quaternionic hyperbolic space there exist
isometries g1, . . . , gl , where each gi ∈ Ci , and whose product is the identity. The result
follows from the properness, up to conjugation, of the multiplication map on a pair of
conjugacy classes in rank 1 groups.

© 2009 Elsevier B.V. All rights reserved.

1. Statement of the result

There is a deep geometric structure underlying the problem of determining the possible eigenvalues of a product of
unitary matrices in prescribed conjugacy classes (cf. [1,2,4,5,9,7,8,13,17,20]). The analogous problem for complex Lie groups
was considered by Simpson in [19] and has a different character (see [14] for a survey). In this note we consider another
example of this question in the context of isometry groups of symmetric spaces of negative curvature.

Let F = R, C, or Q, the real, complex, or quaternionic fields, and let PU(2,1,F) denote the isometry group of the
two-dimensional hyperbolic space over F. We will prove the following

Theorem 1. Let C1, . . . , Cl, l � 3, be arbitrary conjugacy classes of loxodromic elements of PU(2,1,F). Then

(1) there exist g1, . . . , gl ∈ PU(2,1,F), gi ∈ Ci , such that g1 · · · gl = I; and
(2) the set {(g1, g2, g3): gi ∈ Ci, g1 g2 g3 = I} is compact modulo the diagonal action of conjugation by PU(2,1,F).

Notes:

• Compactness (2) does not generalize for products of more than three elements. In fact, Theorem 1(1) implies that
for four fixed loxodromic conjugacy classes there are elements gi in these classes with arbitrary loxodromic product
g1 g2 = (g3 g4)

−1.
• Theorem 1 also holds for products in PU(1,1,F), F = C,Q. Notice that PU(1,1,R) = R+ , and the result clearly does

not hold in this case. We do not know if the method presented here extends to prove part (1) for PU(n,1,F), n � 3.
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• When the classes Ci are not loxodromic one does not expect (1) to hold. Indeed, the structure seems to resemble the
case of products of unitary matrices. To illustrate this point, below we obtain restrictions of products of three unipotent
matrices. Products of elliptic elements have been studied in [16]. Products of loxodromic elements have also been
studied in [15] and [21].

• For SL(3,C), Simpson in [18] proves that for l (l � 3) regular semisimple (pairwise distinct eigenvalues) conjugacy
classes (1) is true. But, for three non-regular semisimple conjugacy classes, (1) fails except in the case of conjugacy
classes obtained from three reducible matrices (which preserve a common subspace of C3 of dimension 1). Fixing real
eigenvalues we obtain counter-examples for the theorem in the case of SL(3,R). On the other hand, observe that for
the real form SU(2,1) ∈ SL(2,C), every loxodromic element is regular semisimple. Theorem 1(2) also fails for SL(3,R)

(see [10] and comments in Section 2.2).

The proof of Theorem 1 rests on the following general result. Let X be a Riemannian symmetric space with strictly
negative curvature, Iso(X) its isometry group, and G the connected component of the identity in Iso(X). Let C(G) denote
the space of conjugacy classes of semisimple elements of G . A topology on C(G) is given as follows. Let G/G denote the
quotient of G acting on itself by conjugation, with the quotient topology. Then C(G) is the maximal Hausdorff quotient
of G/G . Hence, C(G) is a locally compact Hausdorff space whose points are in 1–1 correspondence with conjugacy classes
of semisimple elements of G . Furthermore, there is an induced continuous surjection π : G → C(G) that is invariant by the
action of conjugation on G . Effectively, this map identifies (non-closed) conjugacy classes of non-semisimple elements with
conjugacy classes of semisimple elements appearing in the closure. With this understood, we have the following

Theorem 2. Let C1 , C2 be conjugacy classes of semisimple elements of G, and let G act on C1 × C2 diagonally by conjugation. Then
multiplication (g1, g2) �→ g1 g2 descends to a map

p : {C1 × C2}/G −→ C(G)

that is proper.

Theorem 2 itself follows easily from the theory of group actions on R-trees. A consequence of the result, however, is that
the image of p is closed. The importance of this lies in the fact that if the elements {g1, g2} generate a subgroup that acts
irreducibly on X , then there is an open neighborhood of π(g1 g2) contained in the image of p. It follows that the image
of p consists of “chambers” bounded by “walls” corresponding to the image of pairs acting reducibly on X . In certain cases,
such as PU(2,1), this allows one to completely determine the image and leads to the proof of Theorem 1. We note that for
symmetric spaces of higher rank, Theorem 2 is no longer valid. Below we provide a simple counter-example.

2. Products in rank 1 groups

2.1. Proof of Theorem 2

We start with the example of R-trees. For an isometry g of an R-tree (T ,dT ), let

|g|T = inf
x∈T

dT (x, gx)

denote the translation length of g . Isometries of trees are always semisimple, i.e.

min(g) = {
x ∈ T : dT (x, gx) = |g|T

} �= ∅.

If |g|T = 0, then g is elliptic and has at least one fixed point. If |g|T �= 0, g is hyperbolic and has a unique axis Ag =
min(g) � R. The following is well known (cf. [18, pp. 89–90]).

Lemma 1. Suppose g,h ∈ Iso(T ) satisfy min(g) ∩ min(h) = ∅. Then the isometry gh is hyperbolic.

Now let G ⊂ Iso(X) be as in Section 1.

Proposition 1. (Cf. [3, Theorem 3.9].) Let Γ be a finitely presented group and ρ j :Γ → G a sequence of non-elementary representations
(i.e. no fixed points at infinity). Then after passing to a subsequence one of the following holds:

(1) there exist g j ∈ G such that g jρ j(γ )g−1
j converges in G for all γ ∈ Γ ; or

(2) there exist ε j ↓ 0 and a non-trivial action (i.e. no global fixed points) of Γ on an R-tree T such that ε j |ρ j(γ )|X → |γ |T for all
γ ∈ Γ .

These two results combine to give

Proposition 2. Let {g j}, {h j} be a pair of sequences of semisimple isometries in G. Assume there is B > 0 such that |g j|X � B and
|h j|X � B for all j. Then one of the following must hold:
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(1) there is a subsequence { jk} and fk ∈ G such that fk g jk f −1
k and fkh jk f −1

k converge in G; or
(2) the sequence of translation lengths {|g jh j |X } is unbounded.

Proof. Suppose first that g j and h j are loxodromic with axes Ag j and Ah j having a common fixed point on the sphere
at infinity of X . Acting by diagonal conjugation on (g j,h j) we may assume the axis Ag j = A0 is fixed. Then conjugate by
elements fixing A0 so that Ah j converges (up to a subsequence). The same argument applies to elliptic elements.

It therefore suffices to consider the case where the groups generated by (g j,h j) are non-elementary for all j. According
to Proposition 1, if (1) is not satisfied then there exist ε j ↓ 0, an R-tree T , and a non-trivial action of a free group Γ = 〈g,h〉
such that ε j |g j|X → |g|T , ε j |h j |X → |h|T . Since |g j|X and |h j|X are bounded, g and h must be elliptic. If |g jh j |X were
bounded, then it would follow that gh was elliptic. By Lemma 1 there would be a global fixed point of T , contradicting the
non-triviality of the action. �

Theorems 2 and 1(2) follow immediately from Proposition 2.

2.2. Higher rank

Here we give some explanation for why the assumption of strict negative curvature is necessary for the result above.
Degenerations of representations will no longer necessarily give actions on trees as in Proposition 1. The following example
shows that Proposition 2 also cannot hold.

Let H = Iso(En), where En is n-dimensional Euclidean space. Hence, H is a semidirect product of the orthogonal group
O(n) and the group of translations Rn . We write an element h ∈ H as h = (g, t) where g ∈ O(n) and t ∈ Rn . Fix (g0, t0),
(h0, s0) ∈ H in conjugacy classes [(g0, t0)] and [(h0, s0)]. Assume also that I − g0, I − h0, and I − g0h0 are all invertible.

Notice that A j = (g0, t0 + (g0 − I)t j) ∈ [(g0, t0)] for any translation t j ∈ Rn , and similarly B j = (h0, s0 + (h0 − I)s j) ∈
[(h0, s0)]. The product is

A j B j = C j = (
g0h0, t0 + (g0 − I)t j + g0

(
s0 + (h0 − I)s j

))
.

Choose ‖s j‖ → ∞, and let t j be determined by the equation

(g0 − I)t j + g0(h0 − I)s j = 0. (1)

This is possible since g0 − I is invertible. Note that ‖t j‖ → ∞ also, because h0 − I is invertible. With these choices, C j are
therefore constants. In particular, the class [C j] is fixed.

Now, it suffices to show that the pair[
(A j, B j)

] ∈ [
(g0, t0)

] × [
(h0, s0)

]
/H

diverges. Let D j = (k j, r j) ∈ H , and calculate:

D−1
j A j D j = (

k−1
j g0k j,k−1

j

(
t0 + (g0 − I)t j + (g0 − I)r j

))
,

D−1
j B j D j = (

k−1
j h0k j,k−1

j

(
s0 + (

g−1
0 − I

)
t j + (h0 − I)r j

))
.

Suppose that the sequence {D−1
j A j D j} is bounded. Then (g0 − I)(t j + r j) are bounded. Since g0 − I is invertible, we conclude

that t j + r j is bounded. Now, if we suppose that D−1
j B j D j is also bounded, we find that (g−1

0 − h0)t j is bounded, which
implies in turn that (I − g0h0)t j is bounded. Finally, the hypothesis that I − g0h0 is invertible shows that ‖t j‖ is bounded,
which is a contradiction.

By way of explanation, note that the A j , B j are elliptic. The distance between their fixed points is of the order ‖t j − s j‖.
By (1) we have

t j − s j = (g0 − I)−1(I − g0h0)s j −→ ∞,

so this distance is unbounded. However, C j is also elliptic. We conclude that Proposition 2 cannot be valid in this case.
Observe that the hypothesis that the matrices I − h0, I − g0 and I − g0h0 are invertible can only be satisfied for even n.

In odd dimensions we can obtain a reducible example using the above construction on a codimension one subset of Rn .
In the example above H is non-reductive. This is not essential. It follows from Goldman [10, Section 4], for example, that

compactness also fails for products of regular semisimple conjugacy classes in SL(3,R).

3. The hyperbolic spaces HHHn(FFF)

3.1. Definitions

Let F be one of the fields R,C,Q. We denote by I the identity matrix whose rank is unspecified but will be clear from
the context. Consider the vector space V (n,1)(F) (with scalars acting on the right) with the F-Hermitian form of type (n,1)

〈z, w〉 = w∗ J z
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where w∗ denotes conjugation followed by transposition of the column vector w . We will use the following particular
Hermitian forms:

J p =
[0 0 1

0 I 0
1 0 0

]
, Je =

[
I 0
0 −1

]
, Jl =

[ I 0 0
0 0 1
0 1 0

]
.

The first is useful to describe parabolic elements, the second for semisimple elliptic elements, and the third for loxodromic
elements.

Define the group

U(n,1,F) = {
g ∈ GL(n + 1,F)

∣∣ 〈gz, g w〉 = 〈z, w〉}
whose center Z(n,1,F) consists of ±I if F = R,Q and U(1)I if F = C. The hyperbolic space Hn(F) is the projectivization
(on the right) of the space of negative vectors V− = {z | 〈z, z〉 < 0}. We have Hn(F) = U(n,1,F)/U(1,F) × U(n,F) and the
action of PU(n,1,F) = U(n,1,F)/Z(n,1,F) on Hn(F) is transitive and effective. In the following it will sometimes be useful
to pass to U(n,1,F).

3.2. Conjugacy classes of semisimple elements

Conjugacy classes in U(n,1,F) are described in [6]. Recall first that elliptic elements have a fixed point in Hn(F), lox-
odromic elements have precisely two fixed points on the boundary at infinity, and parabolic elements have a single fixed
point on the boundary at infinity. A unipotent element is an element whose eigenvalues equal to 1. In particular, a unipotent
element is parabolic but not all parabolic elements are unipotent.

Proposition 3. (Cf. [6, Section 3].) The conjugacy classes of semisimple elements of U(n,1,F) are precisely

(1) the elliptic elements, described as U(1,F)×C(n,F) where C(n,F) is the space of conjugacy classes of the F-unitary group U(n,F),
(2) the loxodromic elements, described as (1,∞) × U(1,F) × C(n − 1,F).

Note that the set of elliptic elements forms a compact subset of C(U(n,1,F)), whereas the subset of loxodromic elements
is unbounded. Also, in the statement above the inclusion C(n − 1,F) ↪→ C(n,F) identifies the boundary of the space of
loxodromic elements {1} × U(1,F) × C(n − 1,F), with classes of elliptic elements with fixed points “on the boundary” of
hyperbolic space.

The simplest example is PU(1,1). The space of conjugacy classes C(PU(1,1)) is a pointed circle S1 union an interval
[1,∞), identified such that S1 ∩ [1,∞) = 1. The circle corresponds to rotations (elliptic elements) to which one attaches
the identity, and the interval corresponds to the hyperbolic elements, to which one also adds the identity. To illustrate
Theorem 2 in this case, consider the standard action of PU(1,1) on the unit disk in C. If one fixes two conjugacy classes of
elliptic elements C1 = [g1], C2 = [g2], then without loss of generality we may suppose that g1 is a rotation fixing the origin
and g2 is a rotation with fixed point on the real line. Notice that to show that the multiplication

{C1 × C2}/PU(1,1) −→ C
(
PU(1,1)

)
is proper, it is equivalent to show that if the fixed point of g2 tends toward the boundary of the disk and the translation
length of g1 g2 tends to infinity. This can be easily seen, either by a direct calculation of the trace, or geometrically by
decomposing the two rotations into three reflections. Conjugacy classes of hyperbolic or mixed elements is treated similarly.

Using the Hermitian form Je , any elliptic element is conjugate to a matrix of the form[
U 0
0 λ

]
,

with U ∈ U(n,F) and λ ∈ U(1,F). Using the Hermitian form Jl , any loxodromic element is conjugate to a matrix of the form[
λU 0
0 λH

]
,

with U ∈ U(n − 1,F), λ ∈ U(1,F) and

H =
[

r 0
0 1/r

]
,

with r > 1.
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3.3. Proof of Theorem 1

We say that the pair (g1, g2) with g1, g2 ∈ U(n,1,F) is reducible if the subgroup generated by these two elements has
a proper invariant subspace of Fn+1 and we call it irreducible otherwise. Theorem 1 is a consequence of the following result.
Note that it suffices to prove the case l = 3.

Proposition 4. For U(n,1,F), n = 1,2, and F = C,Q, the image in the space of conjugacy classes of the product of two loxodromic
conjugacy classes contains the entire set of loxodromic elements.

Proof. We will prove the case n = 2, since n = 1 is elementary. The image of the product is closed by Theorem 2. It is also
open near the image of irreducible pairs (g1, g2) (see for instance Proposition 4.2 [8] or Proposition 2.5 in [16]). This follows
by a simple computation showing that the product map to the conjugacy classes has maximal rank at irreducible pairs. It
therefore suffices to show that complement of the image of reducible pairs is connected. We follow the same calculation
with the form Jl as [16]. Consider loxodromic elements [g1] and [g2] of the form

g1 �
[ A1 0 0

0 λ1r1 0
0 0 λ1r−1

1

]
, g2 �

[ A2 0 0
0 λ2r2 0
0 0 λ2r−1

2

]

where A1 and A2 are in fixed conjugacy classes C1 and C2 of U(1,F).
If the group generated by {g1, g2} is reducible (with non-elliptic product), then without loss of generality we can write

g1 =
[ A1 0 0

0 λ1r1 0
0 0 λ1r−1

1

]
, g2 =

[ A2 0 0
0 λ2a λ2b
0 λ2c λ2d

]
.

The product g1 g2 is

g1 g2 =
[

A1 A2 0
0 λ1λ2 H

]

where H ∈ SL(2,R) is a product of two matrices in SL(2,R) with translation lengths r1 and r2. Clearly, the image of these
reducible pairs with loxodromic product coincides with

(1,∞) × {λ1λ2} × {A1 A2} ⊂ (1,∞) × U(1,F) × U(1,F).

Hence, the complement of the image of the set of reducible pairs in the loxodromic conjugacy classes is connected because
the complement of a point in U (1,F) (which is, respectively, a 0-sphere, a 1-sphere and a 2-sphere for R, C and Q) is
connected. Since the image of the irreducible pairs is open and closed, we conclude that the intersection of the image of
irreducible pairs with the loxodromic conjugacy classes coincides with the cylinder with base U(1,F) × U(1,F). �
Remark 1. The cases SO0(1,1,R) � PU(1,1,R) and SO0(2,1,R) � PU(2,1,R) � PU(1,1,C) are very easy. The same proof
gives the well-known result that the product of two loxodromic classes in SO0(3,1,R) � PSL(2,C) contain the entire
loxodromic part of the space of conjugacy classes (see [12] for a recent account). Similarly, we note that since SO0(4,1,R) �
PU(1,1,Q), the same argument allows one to conclude the analogous result for SO0(4,1,R).

3.4. Unipotent parabolic elements

There is a single conjugacy class of unipotent parabolic elements in U(n,1,R) for n � 2 (there are none for n = 1). We
therefore assume for the rest of this section that F = C or Q. In these cases, there is a single conjugacy class of unipotent
parabolic elements in U(1,1,F), so we also will suppose n � 2.

To describe the parabolic elements we use the Hermitian form J p . Fix a distinguished point on the boundary of Hn(F)

q∞ =

⎡
⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎦ .

Unipotent elements fixing q∞ are (for z = (z1, . . . , zn−1))[1 −z̄ (−|z|2 + t)/2
0 I zT

]

0 0 1
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with z ∈ Fn−1 and t ∈ I, and where we denote by I the purely imaginary elements of F. The coordinates (z, t) may be
interpreted as coordinates on a nilpotent group (Fn−1 � I) and the above matrix corresponds to a translation in the group,
i.e.

(z, t) ∗ (z0, t0) = (
z + z0, t + t0 + 2�(

z∗
0z

))
where � denotes the imaginary part. Now there exist two conjugacy classes of unipotent parabolic elements in U(n,1,F):

Proposition 5. ([6, Section 3]) Use the notation z = (z1, . . . , zn−1), 1 = (1,0, . . . ,0) ∈ Fn−1 . The conjugacy classes of unipotent
parabolic elements in U(n,1,F), F = C,Q and n � 2 are:

• (R-parabolic) the class represented by[1 −1 −1/2
0 I 1T

0 0 1

]
,

• (C-parabolic) the class represented by[1 0 i/2
0 I 0
0 0 1

]
.

Remark 2. In the case F = C, this dichotomy corresponds to unipotent parabolic elements preserving a totally geodesic
subspace of complex hyperbolic space that is either Lagrangian or complex.

Proposition 6. Let gi , i = 1,2,3, be three unipotent elements of U(n,1,F) such that g1 g2 g3 = I. Then the number of C-parabolic
unipotents among {gi} is 0, 1, or 3.

Proof. To analyze a product of parabolic elements g1, g2, consider the following two cases:

(1) the gi have the same fixed point at infinity, or
(2) the gi have distinct fixed points at infinity.

In the first case, the product g1 g2 also fixes a point at infinity. Write

g1 g2 =
[1 −z̄1 (−|z1|2 + t1)/2

0 I z1
0 0 1

][1 −z̄2 (−|z2|2 + t2)/2
0 I z2
0 0 1

]
.

Note that the product is either the identity or unipotent. One sees that the product of two R-parabolic elements can
either be R-parabolic or C-parabolic, whereas the product of two C-parabolic elements is always either C-parabolic or the
identity. Indeed, the product of two unipotent C-parabolic elements is

g1 g2 =
[1 0 t1/2

0 I 0
0 0 1

][1 0 t2/2
0 I 0
0 0 1

]
=

[1 0 (t1 + t2)/2
0 I 0
0 0 1

]
.

In the second case, we may suppose that the fixed point of g1 is ∞, and the fixed point of g2 is 0 = (0, . . . ,1) ∈ Fn−1.
Without loss of generality we may write (where g2 is obtained from the matrix above after conjugating by Je)

g1 g2 =
[1 −z̄1 (−|z1|2 + t1)/2

0 I z1
0 0 1

]⎡
⎣ 1 0 0

z2 I 0
(−|z2|2 + ti)/2 −z̄2 1

⎤
⎦ .

Lemma 2. If the product of two unipotent C-parabolic elements is unipotent, it must be C-parabolic.

Proof. We have already considered the case of a common fixed point. Suppose the fixed point are distinct. Then the special
case of unipotents gives

g1 g2 =
[1 −z̄1 (−|z1|2 + t1)/2

0 I z1
0 0 1

]⎡
⎣ 1 0 0

z2 I 0
(−|z2|2 + t2)/2 −z̄2 1

⎤
⎦ .

If the two elements are C-parabolic, z1 = z2 = 0, and one therefore obtains a parabolic as the product if and only if either t1
or t2 vanish. In other words, one of the two elements is the identity. �

Proposition 6 follows immediately from Lemma 2. �
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Remark 3. In the case F = C, n = 2, one may give a precise expression for the product of C-parabolic elements. Indeed, in
this case z1 = z2 = 0 and so

Tr(g1 g2) = 3 + t1t2/4.

By [11, Theorem 6.2.4], the isometry g2 g1 is hyperbolic if t1t2 < 0 or t1t2 > 16, and elliptic if 0 < t1t2 < 16.
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