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Abstract

We present a method for generating 2-D unstructured trianguneshes that undergo large deformations and
topological changes in aautomaticway. We employ a method for detecting when topological clearage imminent
via distance functions and shape skeletons. When a chargespave use a level set method to guide the change
of topology of the domain mesh. This is followed by an optiatian procedure, using a variational formulation of
active contours, that seeks to improve boundary mesh cmitfoto the zero level contour of the level set function.
Our method is advantageous for Arbitrary-Lagrangian-Eaiie(ALE) type methods and directly allows for using a
variational formulation of the physics being modeled amdusated, including the ability to account for important
geometric information in the model (such as for surfaceitendriven flow). Furthermore, the meshing procedure
is not required at every time-step and the level set updatalisneeded during a topological change. Hence, our
method does not significantlyfact computational cost.
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1. Introduction

1.1. Motivation

Free boundary problems arise in many areas of mathematigsigs, and engineering. Understanding free surface
dynamics is important for applications such as coating flff§s simulating water wave dynamics for computer
graphics [29], and surface tensjouarvature driven flows in micro-fluidic devices such as Helaw flow [15, 33,
90, 87]. Other examples involve fluid-structure interagsiosuch as polymer filaments in an active flow field [80],
interaction of a lipid bio-membrane with a surrounding fl[8@], and animal locomotion in a fluid medium [1].

However, in any application with a moving boundary, the defation of the domain is the main obstacle in
obtaining a tractable physical model. In addition, soméese applications exhibit topological changes (i.e. pimgh
or joining of disjoint parts of the interface) and prove eveare dificult to model. Examples of this are budding of
lipid bio-membranes [6], droplet pinching in an electrottiviy device [14, 89], and many other types of fluid flow
[24].

One of the dfficulties in modeling a topological change is in handling tispdrate length and time scales involved.
For example, a pinching droplet may have two macroscopiegieonnected through a thin microscopic neck that is
collapsing. And the time scale of the neck collapse may becunall compared to the time scale of the bulk droplet
motion. Furthermore, it is not clear how best to model the phiysics when a topological change is occurring. Some
asymptotic analysis of the behavior of the Navier-Stokasaéqns has been done for axisymmetric fluid pinching
[26, 27]. But one can argue that a continuum model is not aatecand a model which includes atomistic behavior is
more correct. In [43, 44] it was shown that adding a stocbastnponent to the Navier-Stokes equations viestve
in modeling the behavior of nano-fluids in a non-vacuousremmnent when compared to a molecular dynamics
simulation.

But some applicationdo not requirea detailed understanding of the local behavior around dagjeal change.

In the electro-wetting device it is enough to only acknowledhe fact that a droplet has pinched or joined. In
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this spirit, the remaining diculty is in developing a simulation tool that can go througiopological change in a
reasonable way, while properly “piecing” together the awnim model that governs the rest of the behavior.

In this paper, we develop a method for generating explictuectured triangular meshes in 2-D that conformto a
smooth closed curve and can be used with Arbitrary-Lageam@iulerian (ALE) methods. Furthermore, our method
allows for topological changes of the domain and can coetieforming automatically without user intervention.
Moreover, it has the potential for extension to 3-D tetrahetheshes (see Section 6.5). Our method is targeted at
variational problems where accurate knowledge of the barynid critical to obtaining a robust solution. For exam-
ple, problems involving higher order boundary informat{oe. surface tension flow, Willmore flow), optimization
problems that require computation of surface quantities g§hape optimization), and many fluid-structure intéoact
problems fall into this group. In particular, the finite elemt method is a common tool used to solve these types of
problems and we feel our method would be useful in these areas

1.2. Literature Overview

One popular method for capturing free surface motion is évellset method [59, 68], which advects a scalar
field function whose zero level set represents the interfaeeel set methods have the advantage of being completely
Eulerian and can automatically handle topological chandpesigh the physics underlying such changes is often not
well resolved. In particular, level set methods require alsamount of dffusion to allow for topological changes to
occur. This can cause problems with mass conservation guétes special handling [28, 73] or refinement [50]. An
alternative approach is to use the coupled level set-voloinfleid (CLS-VOF) method to ensure mass conservation
[78, 79, 84, 85]. Another issue of the level set method, favature driven flows, is they typically use an explicit
calculation of the interface curvature which can create enigal artifacts and noise. Other implicit surface methods
include the phase field method [95, 77], which usesftuse interface model (as opposed to a sharp or explicit
interface). Phase field methods have similar advantagedrambacks as the level set method.

Alternatively, one can use an explicit representation efititerface, such as an interface mesh or marker particles
to “track” the interface. These are called front-trackingthods [34, 83, 17, 2], some of which are designed to track
shock fronts in hyperbolic equations [47, 48, 91]. Furthera)there exist numerical PDE techniques that can take
advantage of the intrinsic representation of the interfdc5, 42]. However, the main disadvantage of these explici
surface representations is the computation@lodilty in handling large deformations of the mesh. In two disiens,
the mesh can be adjusted through local re-meshing [74] oh s@®othing [30], but can still be awkward. In three
dimensions, it is not clear what the best methods are foistidgia mesh as it deforms.

There are a variety of mesh generation methods. Some takpgtiamzation viewpoint [67, 54, 53] while others
[12, 13] use a variational form to minimize the interpolat&rror to do local re-meshing. Some methods use specific
tilings of 3-D space [82] or marching cubes [49] or triand[@8]. Still others make use of implicit functions to create
conforming meshes [56, 57, 55, 11, 61, 62, 92] as well as adaptethods to create meshes adapted to the local
feature size [38, 46]. Some of these methods also includé srasothing operations (see [19, 58, 71, 94] for more
smoothing methods).

Currently, there exist some methods for taking explicit hessthrough topological changes. Some use “surgery”
[21, 22, 16] to cut the mesh or use a pre-defined bridge [64]in Bhis is a viable option when the topological change
has a well-defined structure. But the general nature of tgpcdl changes is much more complicated, especially in
3-D. For example, a thinning neck of fluid could become veritdteged and pinch in the middle leading to a torus
like structure with one or many “handles”. In this case, i@ clear how to reconstruct the mesh without a guide or
indication of the new topological state of the domain.

Considering the tradefis between implicit surface methods and explicit lagrangi@shes, it is reasonable to
suggest a hybrid approach. This would combine the accuifabg @xplicit mesh methods with the ease of topological
transformation of the level set method. One version of thigiven by [5], which forms an explicit representation of
the boundary at each time step that is coupled with theil Estemethod and is advantageous for tracking of surface
characteristics, such as texture coordinates, for usendering fluid interfaces for computer graphics. But their
method does not generate an interior bulk mesh. Other r@levark includes [52], where they introduce the virtual
node algorithm as a way of tracking topological changes pfie triangular or tetrahedral meshes. However, their
method is not concerned with the correct local geometryesthey were mainly concerned with solving elasticity
equations, as opposed to surface tension driven flow.
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Figure 1: High level block diagram of a single time step witisgible re-meshing and topological changes. The curnaterier) domain boundary
r«= z?Qikm and mestv! have diferent indices because the mesh topology does not necgssaiige at each time-step (i.e. only mesh vertices

change). The physics (e.g. velocity field, pressure, pts.simulated with %, 771). Using a smooth update velocity, we obtain the domain shape
at the next time index. Note that the mesh topology does raoigds, though the vertex positions do change. If the elemealitigs are not bad and

a topological change is not imminent, then we proceed to¢letime step. Otherwise, we execute the re-mesh routinis.gemerates a new mesh
topology that geometrically conforms to the boundBfy’. Note thatl**! also changes if a topological change occurs. Finally, werpmiate

the solution variables from the old mesh topoldgy to the new topology1*! and proceed to the next time step. Section 3 further desctitze
re-mesh routine.

The method we develop takes inspiration from some of thesideéhe above references and combines them in
a novel way to generate meshes of arbitrary domains. Iniaddive introduce a shape optimization approach for
ensuring mesh conformity. We emphasize that our re-meshetgod does not need to be executed at every time step
of the simulation. The number of re-meshes only depends@odhtinuous deformation being approximated and the
number of topological changes.

1.3. Algorithm Overview

Our algorithm primarily consists of a special re-meshingtiree that is embedded inside a time stepping loop.
We make extensive use of distance functions and shape @hel&t resolve the shape and topology of the domain
when generating a new mesh. We also use a shape optimizafiooaeh to ensure that the new mesh conforms to
the boundary of the domain. Topological changes are imphaadeby locally difusing the distance function in the
neighborhood of the change.

The main point of our algorithm is to provide a way for genieirgmeshes that can follow an arbitrarily complex
deformation and can continue through topological chamg#®ut having to specify the type of topological change,
or specify geometric details, or perform surgery on the mdsken if the physics of the topological change is well
understood, it is not necessarily clear what the mesh shmubdter the change. This is especially important in three-
dimensions. Therefore, this algorithm is an answer to thestion of how to compute and mesh through a topological
change, buhotto the question of modeling the physics of the change itself.

We highlight some aspects of the algorithm in the followiisg) IDetails of each item are given in the sections that
follow. Also, see the flowchart given in Figure 1 for a highéesummary.

e Time step adaptation. The size of the time-stpduring a simulation are controlled by the desired accuracy
and the amount of shear in the velocity field (see Section 2.2)

e \elocity extension. As the physical simulation of a movingnthin progresses, the velocity on the domain
boundary is extended to the entire mesh in a smooth way antifasapdating the domain (see Section 2.3).
This is done to prevent frequent re-meshing.
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Figure 2: Continuous domain and discrete mesh with symingltation. The interior domain €y, the shaded region Qey;, With two-phase
boundant := Qint N Qext. The outer (continuous) boundary is denofeg. The entire domain is defined &s:= Qint U Qeye. The discretization
of the continuous domain is represented as a set of intei@mgles7 ™ and exterior triangle§ X!, with a set of mutual edgeS representing the
discretization of the boundaiy. The entire triangulation is given b5 := 77" u 7. In our algorithm, we use the signed distance function
with respect td” and compute it over the entire triangulati@n[8]; this dependence is denoted b§7"). In this paper, we take to be positive
(negative) over the interior (exterior). The zero level glep corresponds exactly to the discrete representatidn lidcause the triangulation is
conforming.

e Mesh smoothing. We use standard techniques to improvergidtelements (see Section 2.4).

e Re-meshing via the distance function. We develop an adaptathod for generation of unstructured triangular
meshes that uses the distance function (with respect toditmaith boundary) and shape skeleton. We are able
to generate well-resolved and well shaped meshes by stimiglard processing of the distance function and
shape skeleton (see Section 3.2).

e Ensure mesh conformity. We use a shape optimization apptosansure that the generated mesh conforms to
the domain boundary (see Section 3.4).

e Detection of imminent topological changes. Anyistiently “thin” region in the mesh is considered a topolog-
ical change and can be found by simple processing of thendistiunction and shape skeleton. These regions
are used to help guide mesh adaptation in those areas teeearsturate resolution of the shape. See Section
4.1 for more discussion.

e Updating domain topology. This is achieved by locallffasing the distance function in the thin regions only
(see Section 4), followed by our shape optimization apgréa@nsure mesh conformity.

1.4. Notational Convention
We now introduce some notation that will be used throughses figure 2 and Table 1). LEbe the interface or
manifold between two distinct phases. We label the intgri@seQ;, and the exterior phage.y:. The whole domain
4



Table 1: Symbol Definitions

Symbol Definition Symbol Definition
Q entire continuous domain (both phases) Qint, Qext interior, exterior domain
r closed boundary := Qint N Qex cONtained im2 Cext external boundarVey, := 0Q
T a triangulation of gt gext | triangulation of interior, exterior phases
gold a previous triangulation o grinit an initial triangulation
1) distance function t& Yiop level set function after topological change
Vs vertices (in7°) that define shape skeleton Vihin subset of Vs that represent thin regions
& distance function to shape skeleton &thin distance function to thin regions
G a new triangulation (default) & set of edges contained ;i
G(E: 9) mesh conforms t¢p = 0} K curvature
Esmooth smoothing parameter (see Sec. 3.2.3) Kpy, Kpy FEM approximation of curvature
t time ot time step
Otmax maximum allowed time step X position coordinate
u vector velocity (u,v) u=(u,v)
Usmooth smooth velocity extension v outward normal vector
Xdisplace displacement function to deform mesh T positively oriented tangent vector
D(u) symmetrized gradient operator Oheck minimum neck thickness
&0 artificial diffusion parameter 0 cut-of function (localizes dtusion)
X surface parameterization Vr surface gradient operator
J(T) cost functional; see equation (10) \% vector perturbation of surface
6J(T,V) shape derivative in directiov @ optimal descent direction
I contin. piecewise linear interpolation operatqr a shape optimization step size
T set of points given by r* shape optimization iterate

is defined byQ := Qint U Qex With outer boundaryex:.

In general, we denote a fixed triangulation Bywith possible superscripts. For exampeM will denote a
triangulation ofQ;;. We denote distance functions by a Greek letter and spéwftriangulation that they are defined
on, e.g.¢(7). The symbolE will denote a set of edge segments (whose union is a closedaithrihat is shared by
two separate triangulations, for instance at the interfateeer7 ™ and7 . In other wordsg will be the discrete
representation of a two-phase interface. Lastly, weggletenote a generic triangulation that is not fixed, meaning
that@G is in the process of being modified (i.e. triangles are beddgdremoved, or adaptive refinement is currently
running). Moreover, given a set of edge segméhtentained ing, we letG(E : ¢(7)) denote the dependence®f
on the distance functiop, meaning thag has been deformed so titonforms to the zero level sgt = 0}. This is
important when we modify a generated mesh to conform to sareelevel set. If we just writg, this refers to the
mesh in the default, unmodified state.

2. Basic Concerns

We start by stating some basic ideas that are useful for attyads using ALE techniques.

2.1. Main Cause Of Mesh Distortion

Mesh distortion for a triangular mesh that is moving with aegi velocity field (which comes from the physics
being simulated) is directly due to gradients in the field.(ithe velocity field has some shear component). This
clearly happens when a topological change is underway. i$nsééttion, we derive a basic estimate that relates the
maximal time-step of a mesh update (while preventing megtraion) to the gradient of the velocity.
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Figure 3: A mesh triangle undergoing deformation. The vigldield over the triangle is labeledi(v) and is linear over the triangle. The values
of the x component of velocity are labeled anduy at the pointsp; and py, respectively (withu; > up). As p; and p, move in thex direction,
their relative distance decreases. The rate of decreamd@pn%. This gives an estimate of the largest time siethat can be taken beforg

andp;, cross-over, which it < 1/%. Any larger time-step will cause the triangle to be inverted

A diagram of a single triangle in some triangulation is giwefrigure 3. The 2-D velocity field is assumed to be
linear over the triangle and is denoted by= (u, V). For simplicity, we assume that= 0 and thau at the pointg;
and p; is denoted by, andu,, respectively, and we assume thiat> u,. The pointsp; and p, move with constant
velocity u; andu, because we are updating the triangle vertex positions bggakdiscrete time-step. We want to
estimate how large the time step must be for the ppirtb cross oveip,; this will invert the triangle. The relative
distance betweep; and p;, (after moving one step) is given bwax — 5t(ur — Uy), whereét is the time-step of the
mesh update. Hence, if the relative distance becomes hemjttis given by

1_w-w_
6t hmax  OX

A similar relation holds when looking for the time to crosseoof the pointgs; and p, with velocity (Q v),
1 ov
st oy
Naturally, a conservative estimate for the maximal timepghat will not cause the triangle to invert is

C-
t< — 1
o < (1)
for some positive constant9C, < 1 (we useC, := 0.1). Of course, the triangle may be very distorted after updat
Further consideration suggests that (1) should actually be

_ Vu+(Vu)’

st D(u) : — ()

< G
ID(U)I’
Note thatD(u) = 0 for any rigid motion [81], which does not cause mesh digiart The choice ofC, = 0.1 is

conservative, meaning that maki@g smaller would lead to unnecessarily small time steps (bgdarameter tuning
is needed here).

2.2. Time-Stepping

We adopt a simple method for adapting the time-step. Fhistntaximum time steptmax is set by the desired
accuracy. Then, based on (2), we choose the current tim@tssejgh that

. C,
t:= tmax, ————— 3
) mln[é maxe mTaxlD(u)|]’ 3
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whereu is a piecewise linear approximation (over the triangulgtiof the true velocity. If the true velocity is a
Lipschitz function, the estimate (3) is essentially indggent of the triangulation as long as the velocity field islwel
resolved. Otherwise, it depends on the triangle’s diamstexpe regularity, and the nature of the singularity in the
derivative of the velocity. For example, suppose the truecity has av/|x| type singularity. Then one can show that
ot < +/diam(T), whereT is a triangle in the neighborhood of the singularity.

2.3. Smooth Velocity Extension

In lieu of Section 2.2, it is desirable to update the domaisimeith a velocity field that has minimal shear (i.e.
with |[Vu| minimal). A simple way to do this is by harmonic extensiont ugnoothbe a piecewise linear function over
the triangulatiory” which solves the standard weak formulation of the followwegtor Laplace equation

—AUsmooth= 0, Q,

Usm =u, F,
smooth (4)
(3U h
Smoot 0’ r “t

whereu is the true velocity field that comes from the physics of thebem. Solving the Laplacian guarantees that
[VUsmoot] Will be minimized in thel.? sense [31], thus subjecting the mesh triangles to mininsabrion. Moreover,
updating the shape witlsmooth keeps the same shape evolution. It is not necessary to uihdaieterior vertices of
the mesh of2 with the true velocity. Hence, we take advantage of thisdose by using a smooth extension of the
true velocity.

Of course, solving (4) will incur extra computational castaddition to simulating the physics. However, we
make the following points: (1) if an iterative solver is usids not necessary to demand high accuracy in the solution
becaus@ismoothplays no role in the physics; (2) if the mesh topology did r@rge from the previous time step, then
the previous solution of (4) can be used to “warm-start” teesitive solver; (3) it may be possible for the user to take
advantage of a canned solfmackage for (4). Multilevel solvers are known to be quifieceent on unstructured grids
[10, 93]. Moreover, our mesh generation method in SectioarBle trivially modified to generate a set of nested
meshes for use in a multigrid algorithm [3, 40, 41, 66].

2.4. Mesh Smoothing

Local mesh smoothing is a useful tool for improving an erigtmesh. Various techniques for improving a 2-D
triangulation exist, such as Laplace smoothing which ayesahe positions of mesh vertices based on its neighbors.
In addition, one can use an optimization method, such a®ih\izhich moves the vertices of the mesh in an attempt to
optimize the local quality metric of the triangulation [48)ne advantage of this method is that it is guaranteed not to
invert elements and produces well-shaped elements foritka gesh topology. Mesh smoothing is a supplementary
tool that we use to prevent frequent re-meshing.

3. Mesh Generation

This section describes our re-meshing algorithm. For saitylwe will consider problems where only an interior
phase is of interest, such as for fluid droplets in air. Thestieshing of the exterior is not particularly critical. Our
method can be easily generalized to the case of an arbitoanaih that contains two (or more) phases of interest (see
Section 6.3).

3.1. Approximating the Shape Skeleton

Suppose we have a domdnthat contains an interior closed manifdld Assume we have the signed distance
functiong (to I') defined on all of2 (recall Figure 2). The shape skeleton is the locus of poilitsreV¢ is discon-
tinuous [69, 75]. Knowing the shape skeleton gives valuaiftgmation about the geometry and topology as well as
potential locations of topological changes.

Finding the skeleton on a discrete grid is straightforwalgmaV¢ points in nearly opposite directions on either
side of the discontinuity. These points correspond diyeictiwhere a topological change may be imminent. Other
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points where changes ¥¢ are less abrupt are harder to detect, but less importantuioparposes. Hence, we
propose a method of estimating the location of part of th@slskeleton that only corresponds to abrupt changes in
V.

Suppose we have a triangulati@i'® (of Q) that conforms to the boundafy We denote the piecewise linear
signed distance function (i on7° by ¢(7°'9). We use the method in [8] to computéecause it has no restriction
on the triangulation. Note that the zero level sep (%) exactly represents because the mesh is conforming. Let
Vs be the set of vertices ifi® that locate discontinuities if¢ according to some toleranceVsy is found by
executing Algorithm 1.

Algorithm 1 Sweep Edges and Vertices of Mesh
1. Set tolerance SY such that @M < Sk < 1.0. Default value: Sk, = 0.5.
2: Initialize Vs¢ = 0.
3 #PART 1
4: for all edge<sE in 7 do
5. For eachE, compute:

EJ =

— V¢+ . & ~1 < <
Vol IVo-I’ t=BJ=t ®)
whereg¢, andg_ are evaluated on opposite sidegof
if EJ> Sk then
include the end points d& in Vsy.
end if
: end for
10: # PART 2
11: for all verticesvin 7 do
12:  For eachv, compute a local weighted averageVaf/|V¢| atv by

1 Vo
=N 72
i 2 T

wherew is the local “star” of triangles that shaveas a vertex.
13 if AVE > Sk then

© 2N

AVE :=1- , O<AVE <1, (6)

14: includev in Vsy.
15:  endif
16: end for

17: Remove all vertices fror¥/sy that lie on the manifold’.
18: return Vsy.

Roughly speaking, Part 1 of Algorithm 1 looks for large junipsv¢ across mesh edges and Part 2 identifies
vertices wheré&/¢ points towards or away from the vertex. In most cases, Patehough. However, consider the
case wheil is a circle, where the shape skeleton is just the center.gdbammesh vertex is perfectly aligned with the
circle’s center, then Part 1 would not detect it, but Part 2o

In subsequent sections, we wsandVs to create a new mesh that is adaptively refined so that it coivethe
topology and geometry d@f. We emphasize that the complete shape skeleton can be cateplji.e. lots of fingering
due to small undulations of the boundary. But we only neectittieeme parts of the skeleton to correctly resolve the
topology.

The choice of S = 0.5 was dictated by numerical experiments and appeared tddivety robust; recall that
we only need the abrupt changesvisi. Note: choosing Sk close to 1 is too restrictive and would only detect the
extremechanges irve.
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Figure 4: lllustration of adaptive refinement. The boldeatklcurve corresponds to the zero level set(@°'9). 1) Initial coarse mesh that covers
the interior manifoldl” with extra surrounding Hier region. 2) Resulting adaptively refined mesh that resollie topology of". 3) Zoom-in
of region that is close to a topological change. The denseemint in between the two circles is due to the presence dfitlyge skeleton (not
shown) and the thinness there; see Sections 3.2.2 and &%t refinement in narrow regions is useful for resolvingdlogical changes. 4)
Another zoom-in.

3.2. Generate Mesh

Before handling any topological changes, we must first ggrea new well-shaped mesh that conforms to the
current manifold’.

3.2.1. Initial Mesh

We start by creating an initial coarse mesh that contgjrisllowed by subsequent adaptive refinement to resolve
the geometry and topology @f. Define a domai2 to be a rectangular box with dimensions chosen such that it
containd” and that distl(, T'exy) > Cputer diam() (default value Cp ger := 0.3). The initial triangulation of2 (denoted
77t is taken to be a coarse cartesian like grid with a crissqgratiern (see Figure 4, upper left corner). The choice of
Cuutter = 0.3 is not particularly critical; it only needs to befluaiently large to prevent potentially large deformations
betweerl” andl gyt

3.2.2. Adaptive Refinement
Let ¢(7°) be the signed distance function (& on the old triangulatior . Also, let&(7°9) be the distance
function to the skeleton represented by the set of verticgs we can compute this by the same method we used
for ¢ [8]. Our refinement method is given in Algorithm 2. The idedadsadaptively refine the mesh until none of
the triangles intersectsoth the shape skeleton and the interface (see Figure 4, lowerdefer). It is guaranteed
to terminate as long as di§i(= 0},{¢ = 0}) > 0. This is the case as long BEsapproximates a smooth curve. The
9



meshg produced by this algorithm well resolves the topologyrofNote that we need to interpolateandé onto
the meshg in Algorithm 2. The choice 0€agapt= 2.0 is not critical and was found to work for a wide range of test

Algorithm 2 Adaptive Refinement

1: Initialize triangulationg := 77", SetCagaptto be a constant such thabO< Cagape< 2.0.
Default value Cagapt= 2.0.

2: loop

3. Initialize M = 0.

4. forall trianglesT in G do

5: Estimate triangle diameter: let be the length of the longest edgeTof
6: if Lt > CadaptmTinq) andLt > CadaptmTinf then

7 includeT in M.

8 end if

9: endfor
10. if M#0then
11 Execute the longest edge bisection routine [655onith the markingM.
12: else

13: Exit loop.

14:  end if

15: end loop

16: return G.

cases. ChoosinGadaptsmaller only leads to excessive refinement near the ineffa&rgo, for most applications,
Cadapt= 2.0 should be sfiicient.

3.2.3. Refine By Curvature

In order to ensure th@ resolves the geometry &f we further refine it using the curvature bfas a guide. To
facilitate this, we must estimate the curvaturd'obn the old mesl ¢, One method involves computing second
derivatives of the distance functign However, we computed as a piecewise linear function ovér'%, so second
derivatives would not make sense.

But we do have an explicit mesh for the manifdldwhich we can use directly. Letbe the piecewise constant
normal vector of the polygonal boundafyand x; be the position of a vertex df. Then we define a continuous
piecewise linear approximatidgnof the normal vector by solving the following variationabjptem for all continuous
piecewise linear vector functionsonT:

Esmoothj;VrI]-Vrv+j;q-vzjr\y.v, = Px) = |Zg:;| @

i.e. (7) is a smoothed?(I') projection with a re-normalization to ensure unit lengthith this, we can compute a
piecewise constant approximation of the curvatureaja= Vr - v = (4,¥) - T, whered, is the tangential derivative.
The smoothing parametesmoothis used to prevent over-estimating the curvature in the whsee the mesh is under
resolved. In our computations, we takgooth= 107°.

In Algorithm 3, we need to interpolate the manifold curvatonto nearby triangles. Therefore, for convenience,
we define a continuous piecewise linear approximatjgrof «p, by a standard.? projection, i.e. solve

= [ ®)

for all continuous piecewise linear function®nI'. This gives an estimate of the curvature at the verticds affe
then define an extensiagendof kp, to the entire triangulatiofi© by solving a scalar Laplace problem just like (4),
except the boundary data is given gy. For dliciency, one only needs to extend the curvature to a narroe bain
triangles in the neighborhood bf
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The purpose of Algorithm 3 is to ensure that all triangleseltol’ are small enough to resolve the curvature of
I'. This allows for better approximation dfin Section 3.4. The choice @ = 0.2 is conservative and works well
for our test cases. Settiridk to a smaller value just gives more refinement near the irdeffa

Algorithm 3 Refine For Curvature
1: Initialize triangulationg with result from Algorithm 2. Se€x to be a constant such thatd Cg < 0.3.
Default valueCg = 0.2.

2: loop

3. Initialize M = 0.

4. forall trianglesT in G do

5 Estimate triangle diameter: let be the length of the longest edgeTof
6: Estimate minimum radius of curvature ndarRqn(T) := 1/ mTaXKextend
7 if Lt > mTinqb andLy > CrRmin(T) then

8 includeT in M.

9 end if
10.  end for
11 if M #0then
12: Execute the longest edge bisection routine [650onith the markingM.
13:  else
14: Exit loop.
15:  end if
16: end loop
17: return G.

3.3. Select Candidate Manifold

Now that we have a new well-shaped meshwe must deform it so that it conforms to the zero level sei(@f°'“).
In other words, we wang to conform tol'. To do this, we must first select a candidate manifold thatrnbedded
in G as a closed set of edge segments. We do this by choosing & sfibsa&ngles inG to be the interior phase; the
embedded manifold is just the outer boundary of the intériangles. Finding a “good” selection of triangles to be in
the interior phase is non-trivial because the discreteraaifithe mesh will introduce an aliasingect. This section
describes how we handle this and takes inspiration from [¥4§ emphasize that this procedure is the only part of
our algorithm that does not extend to 3-D (see Section 6.5dore discussion).

The background reference megtcomes from adaptively refining, via longest edge bisectwninitial uniform
crisscross mesh (recall previous sections). As a reslttjalgles inG are self-similar isosceles right triangles; note
that no mesh smoothing has been used at this stage of thélagomhus, we will take advantage of this property.
Let 7™ be the set of triangles such that

T =T € G : ¢(T Y (r) = O}, 9)

i.e. we evaluate the signed distance at the baryceptarT and if it is non-negative, we say it belongs to the interior
phase. However, cutting the mesh like this can lead to agutae (initial) manifold shape because of aliasitfigets.
Thus, we defin& to be the boundary of ™ and proceed to modify the s&t™ by performing local operations based
on the shape dof.

First we check if any pairs of adjacent edgesSadhares the same triangle. If so, then that triangle will bezo
crushed when we enforce mesh conformity (see Section 3.4)awid this by adding (or removing) thé&fending
triangle to (or from) the sef™ and updating accordingly. However, this may not be enough.

The next part of our selection process takes advantage afrtbecross nature of the mesh. From this, it can
be seen that the angle between two adjacent edge segméits gither 48, 9¢°, 135, or 180. Hence, we loop
through each vertex @, check the angle there, and adj@ist! and& accordingly. We summarize these checks in the
following list (see Algorithm 4 for a full description).

11
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Figure 5: Description of adding and removing triangles famdidate manifold selection (only addition is shown heBe)d directed arrows show
the oriented manifold edge segments for the current setexfidm triangles7 ™. The diagram shows three cases where the candidate mainéfsld

a corner pointingnward (90° angle) due to our initial selection (Section 3.3) of intetitangles7™; this is an example of aliasing. Cases 1 and 2
are a problem because of the mesh conformity phase (seers8et), which will crush the shaded triangles when the nadahis made to conform

to the zero level set. Thus, we add the shaded triangles teeti¥e™ which makes the manifold more regular and avoids crushiaggtes. If

we ignore case 3, trianglél and T, will not be crushed during the mesh conformity phase, howtwere will be a moderate amount of mesh
distortion. So to improve the mesh quality, we do an edge smapinclude the new; triangle which makes the manifold boundary shape more
regular. When the corner is pointirgitward the process is the same except the triangles are removedtissetr ™ (instead of included). If
the corner angle is 45then only case 1 can occur.

1. If the angle is 45 then the two adjacent edge segments must share the samierexteinterior) triangle. In
this case, we simply add (or remove) the shared triangledon(fthe se? "™ and adjust.

2. If the angle is 99 then three dferent cases can arise. We adj@ist by following the method described in
Figure 5.

3. Ifthe angle is 1350r 180, then nothing needs to be done. The discrete manifold iadyrevell-shaped.

We consider the above method a single pass through the maslui7 ™. We then loop this entire procedure until
the set7 "™ no longer changes. Typically, only one pass is needed withdaitional pass to check for consistency.
Note that one can check the topology&directly and compare it to the topology of the boundgiip the old mesh
77°¢ to ensure they are the same.

Upon completion of Algorithm 4, the topology ¢f and& becomes fixed for the remainder of this section. Also,
recall our notation from Section 1.4 and note tat G(& : 0) denotes the default geometry of the megxsh.e. we
have not deformed the mesh to conform to anything, yet.

3.4. Active Contours for Mesh Conformity

For notational convenience, [Etbe the continuous manifold defined by the discrete n&s8learly,I” approx-
imates the original manifol&l but is “jagged” and will not necessarily conformifo Since we have the boundary
captured exactly as the zero level sep(f°%), we can adjusk by solving a minimization problem. This can be done
for higher dimension surfaces, which makes this approachctive. Thus, in the following discussion, we consider
a general surface (i.e. a 1-D curve or 2-D surface).

3.4.1. Shape Optimization Problem

For the moment, we abuse notation andl&e some arbitrary surface (not necessarily the manifoldiastjon).
We define an energy functional (dependent®io be minimized:

JI) = % fr @2 (10)
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Algorithm 4 Select Candidate Manifold

1: Interpolate the value af(77°) at the barycenter of all triangles g Initialize 7™ to be the set of triangles with
¢ > 0 at their barycenter. This induces a closed manifold ctingisf the set of edge segmei@shat is the outer
boundary of the triangleg™ contained ing.

2: while the set/ "™ was updatedo

3:  If any two adjacent edge segmentsfrshare the samexterior triangle Tey,, then weadd Tey to the setr ™.

We check all pairs of adjacent edge segments and ugd&tand&.

4:  If any two adjacent edge segmentsdrshare the samiaterior triangleTin;, then weremove Ty; from the set

77t We check all pairs of adjacent edge segments and ugdatands.

5. forall verticesvin & do

6: If two edge segments that shardnave an angle of 90or less, and the corner points toward the interior

phase, then execute the procedure described in Figure adddriangles t ). Update7 ™ and&.

7:  end for

8. forall verticesvin & do

9: If two edge segments that sharénave an angle of 90or less, and the corner points toward the exterior
phase, then execute the procedure described in Figure Sdimeve triangles frorr ™). Update7 ™™ and
&.

10:  end for

11: end while

12: return 77", &. & now has a fixed topology.

With this, we want to find a new surfa€é that minimizesJ:

" =arg mrinJ(l“). (12)
Clearly, the minimum solution is a surface that lies aloreyzbro level set ap.

3.4.2. Gradient Flow

We find the surface that minimizes the functional (10) by defjranL? gradient flow [23, 22]. This is a gradient
descent method that seeks to move the surface in a direbtivistguaranteed to minimize the cdstwe first give a
short proof for the shape derivative of boundary functisiia8, 76, 63].

Lemma 1 (Shape Derivative) Suppose f is a fixed smooth function®hand letT” be a smooth closed manifold of
dimension n- 1. LetV be a smooth vector field defined BA that induces a flow such that pointsn I' move with
the fieldV(x). Then, for the functional Q= fr f, we have that the shape derivative of Q in the directiois

SQ(T: V) = fr V-V + f[VeX - ViV, (12)

whereVr is the surface gradient operator dhandX is the identity map off.

Proof. We begin with a standard result from the shape derivatigeditire [18, 76, 63]
SQ;V) = f(v V- V) + fkv-V), (13)
r
which we will further manipulate. Using the fact that= —ArX (whereAr is the surface Laplacian), we have

6Q(; V) = f(v V)(v- V) = ArX - (fV),
! (14)
integrate by parts— = fv [vev]Vf + VX - Vi(fV).
r

13



SinceVrX = | —v®v (i.e. the projection onto the tangent space of the manifplave re-write (14) as
6Q; V) = J;v [v@v]Vf + f[VPX - VrV] + V - [VeX] Vi f
=J;V-[V®V]Vf+f[VrX-VrV]+V-[I—v®v]Vf (15)
= fer -V + f[VrX - VrV]

which gives the assertion. O

Therefore, by (12), the first variation with respect to shpgeurbations of the functiondl(10) is

sJ(;V) = fr oo -V + % fr #*VrX - VrV, (16)

whereV is a vector perturbation df. A more detailed derivation of (16) can be found in [86].
A simple gradient flow follows by first defining a vector veltycp on the surfac& by

fr -V =-8JT;V), (7)
for all perturbation&/ € C*(I'). We then define a flow by
d
G XG D=0 X(.0 =10, (18)
which means the surfadewill move with the velocityep.
3.4.3. Semi-Implicit Time Discretization

We solve the gradient flow problem by using a semi-implicitéidiscretization. This is done by settipdo ¢***
in (17) and using a backward Euler method for (18). Combimiith equation (16) gives

f¢k+1-v =— | ¢Vg-V - }f VXK VRV,
l"k rk 2 rk

xk+l — xk + a’¢k+l,

(19)

where the superscript is the iteration index arid the step size to use in updatify Rearranging gives the following
variational formulation: giveix* andg, find ¢*** € H(I') such that

j;k¢k+1-V+afrk %¢2Vrk¢k+1-vrkv=—L¢V¢-V—%L¢2Vrk-v, (20)

forallV € HY(I'). Note that we used the identi§x XK. ViV = Vi« V. Given the solutiop®*!, the new positiod*+!
is obtained by the discrete update in equation (19). Thisgs®is then iterated until the sequence of surfécgs
reaches a minimum of (10). This minimization process isejgéneral and can be applied to the discrete mandold

3.4.4. Finite Element Discretization

For computational purposes, we discreggé! andV in equation (20) with piecewise linear “hat” functions over
the polygonal boundary® at each iteration indek We then use a finite element implementation of equationt®0)
solve forgk*t1, where the integrals are computed o&rThe initial condition ™ := T is given by the closed manifold
of edge segments resulting from Algorithm 4.
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Figure 6: lllustration of ensuring mesh conformity. Thed® black curve corresponds to the discrete man&olRlots 1, 2, and 3 show fiierent
zoom-in levels of the mesg; (A) is before conformity and (B) is after. The dashed cumv&@ishows the zero level set 6{7°'9). In 3(B), the
discrete manifoldS clearly overlaps the dashed curve. In addition to the gradiew method in Section 3.4.2, we also perform a few sweeps of
standard mesh optimization (see Section 2.4). We denotesiiting conformed mesh (& : ¢(77°9)).

We also require interpolation ¢fandV¢ with normalization. Lef® be the continuous piecewise linear interpolant
defined or¥. Then we define the interpolation ¢f V¢ (with normalization) by

o HTO)

£ = mgamoor o
o VTR
PV = g ey

for all verticesx of the polygorT™®. Note that we interpolate the value@ndV¢ from the old mesk 9. Therefore,
for convenience in computing the integrals in (20), we usetierpolant (21).

The purpose of the normalization is to act as a pre-conditineny is far from being a distance function. When
¢ is a distance function, theiWg| = 1 and (21) reduces to standard linear interpolation. Otisernw may have
a small slope in some regions, which cdfeat the speed of convergence of our shape optimization rdethbis
normalization procedure avoids that. See Section 4.3 foerdiscussion.

We used a step size = 1.0 and checked convergence of our optimization method bwaﬁﬂg”]k(ﬁlh_m(rk).
Typically, about 10 to 30 iterations are needed to achié’\'f¢||,_m(rk) < 10715; the actual number depends on how well

the initial guesg™® := T approximate$'. Then we defin@ e, to be the converged shape.

3.4.5. Final Mesh Conformity Phase
In computing the final shapE.ew, We ignored the interior and exterior mesh vertices thatrantepart of the
manifold&. We use a similar technique as in Section 2.3 to smoothlyrdetbe remaining vertex positions into
place. LetD be the net displacement in movifigto I'ew. We then solve a vector Laplace problem on the mesh
15



G(&:0):

—AXgisplace= 0, €,

Xdisplace= D, F, (22)
axcgsplace ~ 0, Togt
4

whereXgisplaceiS @ displacement function for all points in the triangwatz. Now we define the new deformed mesh
G(E 1 $(7°9) by addingXgispiaceto all the vertex positions iG(E : 0). In our implementation, we divide the total
displacement into 5 incremental steps and use multipleesad¥ (22) to displace the vertices. This is necessary for
smoothly deforming the mesh (see Figure 6). In addition éostmoothed deformation, we also run a few sweeps of
standard mesh optimization (see Section 2.4) on the @&Sh ¢(7°'9)) while keeping the manifold vertices fixed.

There is no guarantee that the above method will not createtad triangles (mesh entanglement). Therefore,
we include a check for mesh inversion in our code. This neappbkned in the test cases we ran. In fact, one of the
main reasons for the manifold selection algorithm in SecH8c is to help prevent mesh entanglement.

If no topological changes are imminent, the mg& : ¢(7°%) is the final output of the overall algorithm and is
returned to the main simulation for the next time step.

4. Topological Changes

Only a relatively small amount of work remains to accountégological changes of the interior manifdld This
is achieved by dfusing the distance function in the local region of the togalal change. The details now follow.

4.1. Topological Change Detection

The detection of topological changes can be complicateseriglly, one must look for regions where “disjoint”
parts of the boundary ar@dose and collapsing togetheDetecting “closeness” is a common problem in computer
graphics and collision detection, where the closest poamsform or fast marching methods are used [9, 51]. The
determination of whether boundaries are collapsing depemdthe nature of the velocity field coming from the
physics. This can be especiallyfitult if the velocity field is becoming asymptotically slowarghe point of pinch-
off, as in a fluid droplet. Therefore, to avoid thigfdiulty, we assume the following hypothesis:

e If any region of the domain is gliciently “thin” (i.e. has a thickness less thdn.k a user specified tolerance),
then a topological change is assumed to be occurring. I otbiels,dnecx acts as a resolution scale.

4.1.1. Locating Thin Regions

Deciding if there are thin regions in the shapedo straightforward. We simply evalualg at all vertices in
“Vsk (shape skeleton). If any vertex in the skeleton has a disttrat is smaller thadnec/2, then it is flagged as a
“thin” vertex. We denote the set of thin vertices ®inin € Vsk. If Vinin = 0, then there are no imminent topological
changes. Otherwise, we continue with the rest of this sectio

4.1.2. Extra Refinement Near Thin Regions

We execute the change by solving a heat equation (discusgieelmext section), which means we need an accurate
solution near the thin regions. This requires the triangldke thin regions to be siiciently dense. We achieve this
by adding an additional refinement step to the method destiibSection 3. Algorithm 5 basically performs extra
local refinement near the thin regions and is slightly gra@ee Figure 4, lower left corner). This requires us to
compute the distance to the verticeslitin. Let&nin(77°9) denote this distance function, which is interpolated onto
the new mesl&; when we execute Algorithm 5.

If we ignore Algorithm 5, the rest of our method still workshé& extra refinement just gives better resolution of
the shape after the topological change. Our choic&,@fr, Annen @ndBinner is NOt very critical, but seemed to work
well for the test cases we tried.
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Algorithm 5 Extra Refinement of Thin Regions
1: SetAouter, Ainner, @aNdBinner to be constants such thatDAiner < Aouter < 1 and 0< Bjnper < 0.5.
Default valuesAouter = 0.4, Ainner = 0.1, andBijpner = 0.2.
2: Initialize triangulationg with result from Algorithm 3.

3: loop
4: Initialize M = 0.
5. forall trianglesT in G do
6: Estimate triangle diameter: let be the length of the longest edgeTof
7 # create an inner and outer region, such that the inner régioore refined.
8 if (n}infthin < dneck@ndLy > Agyteidnec) OR (rq_infthin < BinneGheck@NdLt > Ainnertneck) then
o includeT in M.
10: end if
11:  end for
12:  if M #0then
13: Execute the longest edge bisection routine [650onith the markingM.
14:  else
15: Exit loop.
16:  end if
17: end loop
18: return G.

Remark 1. The output of Algorithm 5 is the base mgahwe then proceed just as before with the manifold selection
method in Section 3.3 to fingl. And just as before, we create a deformed mggh : ¢(7°9)) that conforms to
the zero level set af beforethe topological change (recall Section 3.4). We g€ : ¢(7°%) in Section 4.2.3 for
re-computing the distance function and foffidsing the distance function to simulate a topological ctaarihis was
done to ensure an adequate meshrisgolvingthe topological change.

4.2. Obtain New Domain Topology
4.2.1. Level Set Method

An alternative to front-tracking of explicit boundariest use a level set method [59, 68]. In this case, the
boundaries are represented implicitly as the zero levalfssime scalar functios. The evolution of the boundaries
is captured by solving the following hyperbolic equation

o (X, t) + u(x) - V(x,t) = 0, for all x and allt > 0,

lﬁ(x’ 0) = *ﬂo(x),
whereu is the velocity field that moves the boundaries ands usually taken to be the distance function to the
two-phase boundary. The main advantage of level set methadlat they handle topological changes automatically.

There is no explicit decision needed to determine when adgjial change happens nleowit happens or how the
local geometry should look. It is this aspect that we wishat@tadvantage of in our method.

(23)

4.2.2. Viscosity Solution

Equation (23) is linear and well-posed as long as the vslacis smooth [96]. In order to have two boundaries
(i.e. curves defined by the zero level setgftouch in finite time, it is necessary to have a velocity fididttis not
Lipschitz [5] (this follows from standard uniqueness thexos for ODE’s). But in this case, the solvability of (23) is
guestionable, especially in the case of a topological chahg address this, we add a smattdsion term:

O + U~ Vi = oAy (24)

This guarantees that the equation is well-posedfierg we obtain the “viscosity” solution [31] of (23) whicHaws
for splitting and reconnection of implicitly defined boumigs.
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4.2.3. Computing New Topology Byjfiision
First we compute the signed distance functifg(& : #(7°%))) on the new mesh that was just created (recall
Remark 1 in Section 4.1.2). Then we get the new topology by locally diffusing¢, which we do in two steps.
First, we solve one time step of the following time-disciedat equation with small parametgrand some step size
ét, i.e. computey such that
Y — SteoAy = ¢, (25)

whereg is the initial condition. We omit the convective part thapaprs in (24) for the following reason. The term
u- Vy is only needed to capture the motion of the interface. Butiatdtage of our algorithm, the domain motion has
already been accounted for earlier in the time-steppindnate{see Figure 1). If we did include the convective part,
we would need to solve the full physics again, which would pboate our method. In fact, later we show that the
productsteg is independent aft (see (28)). The zero level set gfcaptures the topological change of the zero level
set ofg. This is an artificial step, but is in the spirit of viscositylgtions which allows colliding fronts (level sets) to
merge and reconnect.

Solving (25) globally difuses the level set, which is undesirable. We make tfiasion local by performing a
simple procedure. Lét: [0, ) — [0, 1] be a cut-éf function defined by:

1, 0 < s< dneck
0(s) =1 [cos(5524) + 1] /2, dheck < S < 30heck (26)
0, 3dneck < S,

Next we define a new level set function that is only locallfuied

Yrop(X) = O&hin(¥)¥ + [1 — 6(wnin(X))] ¢, for all xin Q. (27)

Equation (27) smoothly localizes thefision of the level set function. Thus, only regions of togital change are
affected.

The parametesy; must be chosen to guarantee that thin regions will conngaineh-df. A classical result on the
diffusion length [60] indicates thap should satisfyyotsy ~ O(dnec). Hence, we set the flusion parameter as

1 dr%eck dr%eck

— _neck . . o _Neck 28

276t 0% Tt (28)
The addition of the dfusion term is directly analogous to artificial viscosity tmeds used for solving hyperbolic
equations, which adds a small amount dfuiion on the order of the mesh size. In our computatiéir@ays no role
because of cancelation in (25), so weédtet 1 (in this section) andy = 0.7d2_,. The exact choice afy is not very

oY ] ) neck
critical, as long as (28) is satisfied.

4.2.4. Finite Element Discretization

We use a standard finite element approximation of (25) whiingpfor the new topology. Specifically; and¢
are represented as piecewise linear functions over thegtrlationG(& : ¢(77°)) which gives a standard well-posed
system that can be solved by many techniques.

A simple way to reduce computational cost is to only solve (@&ally by limiting the computational domain to a
neighborhood ofVnin. The solution procedure does not change, except a Neumadition is applied on the outer
boundary of the small computational domain. This is easilglemented if an iterative method is used to solve (25).

4.3. Rerun Mesh Conformity Phase

We must conform the original, adaptively refined megaio the new zero level set afio, (SE€ €quation (27)),
which is defined on the previously deformed mexis : ¢(7°9)) (recall Remark 1). We do this by first selecting a
new candidate manifol&p by running Algorithm 4 except witlgop rather tharp(77°9). This is then followed by
the method described in Section 3.4 for ensuring mesh cunitfpii.e. this generates the megiSiop : ¥iop) Which is
the final output of our algorithm.

We now discuss the reason for the pre-conditioning step 1. (Because the level set update (25) is a time-
discrete heat equation, it acts to smooth the initial datkdamive it towards a constant value (when Neumann boundary
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conditions are used). This causias, to be relatively flat in the region of topological change camgal to the initial
condition which was a distance function. Ergo, thandV¢ terms that appear in (20) would give weak forcing for
moving the manifold. Therefore, without the normalization(21), the active contour algorithm would take many
more iterations to converge.

5. Numerical Experiments

We present three simulations to demonstrate the methodilbeddén Section 1.3. The first simulation contains
no physics and consists of a mesh that is moving with a plresttrrelocity field. The second simulation comes from
an application known as electro-wetting [14, 15, 89], whicmsists of a Hele-Shaw cell [72, 36] with the ability to
modify surface tensionfiects through electric fields. These devices are capablditifrgpand merging droplets and
have potential applications for “lab-on-a-chip” devic82[37]. The third simulation demonstrates reconnection of
droplets in a Hele-Shaw cell due solely to surface tensiore{actro-forcing).

Remark 2. In all experiments, the mesh quality [45] was maintainedhimithe following criteria. The worst quality
value for any triangle must be less than 2.5 and no more tharbé& triangles can have a quality above 2.0. Note
that the quality metric in [45] is scale invariant and is defhso that an equilateral triangle has quality 1.0, and any
other triangle shape has a higher value (worse quality).

If this criteria is violated, then we perform 4 sweeps of mastimization [30] in an attempt to satisfy the criteria.
If the criteria is still violated, then we re-mesh via our meageneration algorithm (Section 3). Recall the block
diagram in Figure 1.

5.1. Rotating Vortices
In this simulation, we prescribe a velocity fiald= (u, v) of the form

u(x,y) = sin(2rx) cos(2ry),
V(X,y) = — cos(2rx) sin(2ry),

which is a two-by-two array of counter-rotating vorticesgdahe divergence af is zero. The initial domain shape is a
circle inside a unit square, shown in Figure 7; the initiasimeras generated by the commercial package “MeshGen”.
The vertices of the boundary move with the given velocitydfighd the rest of the vertices move by extending the
vector velocity on the boundary using a Laplace solve (seatémn (4)). The mesh undergoes severe deformation
due to the counter-rotating vortices, though the vectotd@psolve does limit the amount of mesh distortion. As the
domain becomes thin in the middle, and reaches a minimurkrbss ofd.eck = 5 x 1073, the topological change
routine is executed (in addition to our general re-meshiggrahm).

In Figure 8, we show a closeup of the pinching region depictdelgure 7. Of course, the dynamics of the flow
after the pinch do not change since the velocity field is piled.

The extreme deformation shown by this example demonstitagesbility of our method to compensate for mesh
distortion and detect thin regions. The optimization of thesh boundary is also satisfactory. In Figure 9, we show
triangle quality statistics as the domain deforms in timke Targe jumps in the curves correspond to re-meshing the
domain. The smaller jumps happen when the mesh vertex@osiire optimized (see Section 2.4) to improve quality
(i.e. no changes in mesh topology).

5.2. EWOD Driven Droplets

5.2.1. Summary of Model

Next, we use a simulation of an Electro-Wetting On Dielec{iEWOD) device to drive the motion of a water
droplet to a topological change (droplet pinching). Theiceeonsists of two parallel plates very close together with
a water droplet squashed in between with air surroundingeibce the problem isfiectively 2-D Hele-Shaw flow
with surface tension. A 3x3 array of square electrodes isegliéd in the bottom plate, which are used for applying
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Figure 7: Initial circular domain (first frame) and subsetfugeformation with topological change. Only the interioesh is shown. Outer box is
a unit square. Eventually, the domain becomes very thindrcémter and a topological change is executed.
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Figure 8: Zoom-in of the pinching region in Figure déc = 5 x 1073). All of the triangles that were in the pinching region beeopart of the
exterior triangulation (not shown). Multiple topologicethanges happen because of the thinness of the filament. INttthe axis limits are not

the same in all frames.
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Figure 9: Plots of triangle qualities versus simulationgi(Bection 5.1). Triangle qualities (of the entire mesh)enmputed using the formulas
given in [45]. Here, we plot the mean, standard deviation, warst case triangle quality at each time-step of the sitimaThe quality measure
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voltages that can change th@eztive surface tension locally [70]. This allows for thelipto force a circular droplet
to pinch-df. The governing equations are given by

0 .
ﬁla—l: +Bu+Vp=0,inQ,

V-u=0,inQ, (29)

p-(k+E)=0, onT,

wherep; andB; are non-dimensional parameterss the curvature of, andE is a given forcing function that comes
from the electric field. HereQ is the interior domain anH is the manifold between the interior and exterior phases.
Note the presence of the inertial tefiu/ot. The interface equation of motion is given by

ox = u(x,t), forall xinT. (30)
For more details about the model and numerical method, 688 88, 90].

5.2.2. Wait Period For Topological Changes

For the droplet flow experiments, we define a “wait” periodtfgpological changes to happen. In fluid pinching, it
is likely that a thin “spike” will be present after the pincifithas occurred. Which means that our method of detecting
topological changes could trigger another change immelgiafter because of the thin region near the sharp corner.
In fact, this may cause a sequence of topological changésdhd'eat” the spike away. This is undesirable in some
cases, because the natural dynamics may resolve the spikallyawithout any extra topological changes occurring.

Therefore, in these experiments, we define a wait periddhgf := 1023, If a topological change is executed, then
for the nexfTy,,it Seconds (non-dimensional), topological changes are losted to occur. General re-meshing is still
allowed. We do this so that the natural dynamics of the flowtware a chance to smooth out the domain.

5.2.3. A Pinching Droplet

Figure 10 shows a droplet overlaying a 3x3 grid of squaretrddes. The voltage is actuated on the left and right
electrodes which causes the droplet to be pulled apart. tiaky the droplet develops a thin neck which pinches
off at two separate regions when the thickness drops belgw = 5 x 10°4. This type of pinching singularity in
Hele-Shaw flow was shown in [72, 36, 35].

Immediately after the pinchff) the time-scale becomes extremely small. This is due toatfyeIcurvature that
is present at the end points of the elongated satellite dropls the flow progresses, the satellite droplet takes on
a “dumbbell” shape. This is reasonable given that the vBid&ld is mostly concentrated at the end points and is
negligible everywhere else. Essentially, the end regimastake the stationary part of the droplet. See Figure 11.

A closeup of the satellite droplet evolution is shown in Fegil2 and 13. The bulging ends of the droplet slam
into each other which causes the droplet to elongate in titiecakdirection and stretch into another dumbbell shape.
This happens because of the inertial term in (29). The dt@pletinues to oscillate with decreasing amplitude until
it relaxes to a circular shape (Figure 13). Despite the eareeformation, our algorithm is able to capture this
evolution. Figure 14 shows triangle quality statisticslesdomain deforms in time.

5.2.4. Joining of Droplets by Surface Tension

In this last experiment, we use the EWOD simulation withawt electrical forcing (i.eE = 0). Hence, the flow
is purely due to surface tension. This example shows how @tihod handles connecting or joining droplets. Figure
15 shows two droplets, one circular and the other elongatddbant, that eventually coalesce. The bent droplet
relaxes and develops an “air” gap with the smaller drop. To®mnection takes place when the gap drops below
dneck = 2 x 1073, As the droplet relaxes, the large curvature regions gebsined out.

After the reconnection, the time-scale becomes very srealiise of the large curvature near the cusp like regions.
Similarly to the previous case, the instantaneous flow iklilpcalized near the region of reconnection and negl&ibl
everywhere else. A zoome-in of this flow is given in Figures b8 47. In both figures, we get a “mushroom” like
shape as the high curvature region smooths out. This istEbethe same ffect observed in the dumbbell shape of
Figure 11. Figure 18 shows triangle quality statistics asdibmain deforms in time.
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Figure 10: EWOD driven droplet motion; only the interior rhés shown. Plot box has units of 1 x 0.5. The droplet startsdmaular shape and
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elongated satellite droplet. The time-scale of relaxatibthe satellite droplet is very fast (see Figure 11).
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Figure 11: Zoom-in of satellite droplet relaxation. Plobwas units of 0.24 x 0.1. The droplet begins elongated andlyapollapses together.
The “dumbbell” shape arises because the velocity at the isrelgremely large, while the velocity in the central regisralmost zero. Thus the
end pieces of fluid overtake the more quiescent region, wdacises the shape to “bunch up” at the ends. Evolution catimuFigure 12.
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Figure 12: Zoom-in of satellite droplet relaxation; comgal from Figure 11. Plot box has units of 0.08 x 0.08. Evotutiontinues in Figure 13.
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method to handle the extreme deformations exhibited bylégieal changes.
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Figure 14: Plots of triangle qualities versus simulationeti(Section 5.2.3). Same format as in Figure 9.

6. Conclusions

We have presented a method for mesh generation of 2-D domadtesgoing large deformations and topological
changes. The method uses a level set formulation to indieatethe topology changes, and is only used during the
time-step of the topological change. In addition, an activetour method using a shape optimization technique is
used to improve boundary mesh conformity to the zero levetaa of the level set function. Topological changes
happen when narrow regions of the domain become thinnetttigamser specified tolerandgack.

6.1. Mass Preservation During Topological Changes

Our method for allowing topological changes is essentiallgvel set method with a small amount offdsion
added. Hence, mass may not be conserved during a pinchiegammection event. The amount of mass loss or gain
is directly controlled by the user specified toleradggy, S0 can be tuned if desired. Moreover, the loss or gain only
happens during a topological event. The rest of the time nwethod is just front-tracking. Preserving mass at all
times is a desirable property and the subject of future work.

6.2. How to Start the Algorithm

One issue with our method is that it requires a global insitkcutside mesh that conforms to the initial boundary.
This can be inconvenientif only a polygonal representatidthe boundary is available. We basically need a reference
mesh in order to compute the distance function to the boynalaich is then used in our mesh generation algorithm.

One solution would be the following. Start with a coarse mefice mesh and adaptively refine all triangles that
intersect the manifold, and continue until some minimunidfesasize is reached. Next, the distance function could
be computed in a narrow band around the boundary then exddrydine method in [8]. This would give a distance
function whose zero level set approximates the boundanyjittirmthe desired feature size. One could then use this
distance function in our active contour routine for geniaga conforming mesh. Unfortunately, this would most
likely be more expensive than the method we describe in #pepif the minimum feature size is very small in order
to account for some regions of high curvature. But this warity be done once and could be considered as a form
of pre-processing. In the case where the initial manifolchiswn as the level set of some function, then one can take
advantage of this directly.

26



v
Q N e »E‘
CORRERRRA
v, SRR
K LR AR
A5 JAvaY, A RSN
B S
SRR TAATAY SN Y
RRSRRRRN PRERSISN SEEESS
R RERERIR SER
KRR RO S22
RO AN SIS
DA PORECOA P
KN AV AT VAVAVLra A
00860 2%, VAVAZAT A%
SRR SNK \Bogaaa)
Vara XY
X O 0T
SR Ny BT
N NSO OSBRI KX
NSRRI DN XX
SERRRRREDAS ORRRER N
9
SRRRON] SRR
K D%
474 <]

t=0.0000

t=0.1686 t=0.1699

t=0.1742 t=0.1985 t=0.4695

Figure 15: Droplet motion by surface tension; only the iistemesh is shown. Plot box has units of 1 x 1. As the left dropteéends, it comes
closer to the stationary drop on the right. Eventually, theptbts connect when the spacing between them drops hlgw= 2 x 10°3. This
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time-scale of relaxation is very fast (see Figures 16 and 17)
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Figure 16: Zoom-in of sharp reconnection region relaxitog). Plot box has units of 0.2 x 0.2.
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Figure 18: Plots of triangle qualities versus simulationeti(Section 5.2.4). Same format as in Figure 9.

6.3. Handling Exterior and Interior Phases

We focused on the case where the exterior phase was not empdnence the mesh of the exterior (particularly
of I'exr) Was not important. Examples where it is important are: fléwas bubbles through a liquid phase inside a
closed box, multiple materials that deform in a problem akgtity, etc... Handling these cases is a straightforward
extension of what we have described. If the enclosing “bdehpted ,ox) is rectangular, then one can easily modify
the initial triangulatior7 ™ to be the box (i.el'ex = I'hox, recall Section 3.2.1). Otherwise, one must first cover the
enclosing container with a rectangular shaped initial n{esth a suficiently large surrounding liter region).

Then we generate a megtthat resolves the two-phase manifdléndthe enclosing shafdg,.x. Next, candidate
manifolds must be found that approximdteandI'yox. Finally, during the mesh conformity phase, the mesh is
deformed so as to conform to bdtrandI',ox Simultaneously.

In fact, this can be generalized further to include any nunabenternal boundaries that may or may not be
interacting. If they do interact, then care must be takerefinthg what a topological change is and how they occur.

6.4. Remove Wait Period

The need for a wait period@l,;; in Section 5.2.2 is due to the way that we characterize a ¢gjcdl change, i.e.
we only view thinness as an indicator. This can be overcomve ihclude some other information, such as the nature
of the flow field in a thin region. Likewise, processing theshakeleton better may help identify the correct regions
of topological change [69, 75]. This will be a point of futuwerk.

6.5. Generalize to 3-D

Our method mostly generalizes to 3-D. Our shape skeletorpatation can be directly extended to tetrahedral
meshes in 3-D or one could possibly use the variational aggbran [69, 75] to approximate a smoothed skeleton. In
general, our philosophy is that PDE baaedliational methods can be quitgective for discrete mesh generation. But
a mesh, no matter how refined it is, is an inherently discteteire and any algorithm for mesh generation must deal
with that, which our candidate manifold selection does Geetion 3.3). However, this method does not generalize
to 3-D. On the other hand, we think the method in [11] could depded to our needs for 3-D tetrahedral meshes.

Estimating the curvature in 3-D will require a slightlyfidirent method than computing- - v, because that only
gives the total curvature. Instead, we will need to estinvate(i.e. the second fundamental form [20]). The largest
eigenvalue of the 3x3 matriXrv corresponds to the largest principle curvature of the sarénd can be used for
refining by curvature in Algorithm 3. Estimating-v can be done by a similar method as given in (8) of Section 3.2.3
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More improvements could be made, including having a metb@dlapt the mesh boundary (in some sense) when
doing the shape optimizatit@moothing step. One criteria could be to maximize the shegaarity of the boundary
mesh (while smoothing), which is especially important feing our method in 3-D.

6.6. Meshing Domains With Corners

Lastly, we mention the possibility of extending our methodheandle manifolds with corners (in 2-D). If the
corners are specified, then one can add another stage famgnsonformity that occurs before the main phase given
in Section 3.4. The initial stage would deform the mesh so diparopriately chosen points in the maniféldare
made to conform to the corner points. This can be done by ctingpdistance functions to each individual corner.
Next, note that the corner points would automatically piartithe 1-D manifold into disjoint connected segments.
Thus, the active contour phase would consist of optimiziaghendividual segment so as to conform to the whole
shape. The final mesh conformity phase described in Sectbh ®ould remain the same.

However, corners can be complicated in 3-D [67] and wouldiiregmultiple phases to handle the corner tip,
followed by the corner edges, and finally the remaining pegasf smooth surface. Of course, the shape regularity of
the mesh will be limited by the angle of the corners.
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