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Abstract

We present a method for generating 2-D unstructured triangular meshes that undergo large deformations and
topological changes in anautomaticway. We employ a method for detecting when topological changes are imminent
via distance functions and shape skeletons. When a change occurs, we use a level set method to guide the change
of topology of the domain mesh. This is followed by an optimization procedure, using a variational formulation of
active contours, that seeks to improve boundary mesh conformity to the zero level contour of the level set function.
Our method is advantageous for Arbitrary-Lagrangian-Eulerian (ALE) type methods and directly allows for using a
variational formulation of the physics being modeled and simulated, including the ability to account for important
geometric information in the model (such as for surface tension driven flow). Furthermore, the meshing procedure
is not required at every time-step and the level set update isonly needed during a topological change. Hence, our
method does not significantly affect computational cost.
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1. Introduction

1.1. Motivation

Free boundary problems arise in many areas of mathematics, physics, and engineering. Understanding free surface
dynamics is important for applications such as coating flows[7], simulating water wave dynamics for computer
graphics [29], and surface tension/curvature driven flows in micro-fluidic devices such as Hele-Shaw flow [15, 33,
90, 87]. Other examples involve fluid-structure interactions, such as polymer filaments in an active flow field [80],
interaction of a lipid bio-membrane with a surrounding fluid[97], and animal locomotion in a fluid medium [1].

However, in any application with a moving boundary, the deformation of the domain is the main obstacle in
obtaining a tractable physical model. In addition, some of these applications exhibit topological changes (i.e. pinching
or joining of disjoint parts of the interface) and prove evenmore difficult to model. Examples of this are budding of
lipid bio-membranes [6], droplet pinching in an electro-wetting device [14, 89], and many other types of fluid flow
[24].

One of the difficulties in modeling a topological change is in handling the disparate length and time scales involved.
For example, a pinching droplet may have two macroscopic pieces connected through a thin microscopic neck that is
collapsing. And the time scale of the neck collapse may be quite small compared to the time scale of the bulk droplet
motion. Furthermore, it is not clear how best to model the true physics when a topological change is occurring. Some
asymptotic analysis of the behavior of the Navier-Stokes equations has been done for axisymmetric fluid pinching
[26, 27]. But one can argue that a continuum model is not adequate and a model which includes atomistic behavior is
more correct. In [43, 44] it was shown that adding a stochastic component to the Navier-Stokes equations was effective
in modeling the behavior of nano-fluids in a non-vacuous environment when compared to a molecular dynamics
simulation.

But some applicationsdo not requirea detailed understanding of the local behavior around a topological change.
In the electro-wetting device it is enough to only acknowledge the fact that a droplet has pinched or joined. In

Preprint submitted to Journal of Computational Physics February 13, 2010



this spirit, the remaining difficulty is in developing a simulation tool that can go through atopological change in a
reasonable way, while properly “piecing” together the continuum model that governs the rest of the behavior.

In this paper, we develop a method for generating explicit unstructured triangular meshes in 2-D that conform to a
smooth closed curve and can be used with Arbitrary-Lagrangian-Eulerian (ALE) methods. Furthermore, our method
allows for topological changes of the domain and can continue deforming automatically without user intervention.
Moreover, it has the potential for extension to 3-D tetrahedral meshes (see Section 6.5). Our method is targeted at
variational problems where accurate knowledge of the boundary is critical to obtaining a robust solution. For exam-
ple, problems involving higher order boundary information(i.e. surface tension flow, Willmore flow), optimization
problems that require computation of surface quantities (i.e. shape optimization), and many fluid-structure interaction
problems fall into this group. In particular, the finite element method is a common tool used to solve these types of
problems and we feel our method would be useful in these areas.

1.2. Literature Overview

One popular method for capturing free surface motion is the level set method [59, 68], which advects a scalar
field function whose zero level set represents the interface. Level set methods have the advantage of being completely
Eulerian and can automatically handle topological changes, though the physics underlying such changes is often not
well resolved. In particular, level set methods require a small amount of diffusion to allow for topological changes to
occur. This can cause problems with mass conservation and requires special handling [28, 73] or refinement [50]. An
alternative approach is to use the coupled level set-volumeof fluid (CLS-VOF) method to ensure mass conservation
[78, 79, 84, 85]. Another issue of the level set method, for curvature driven flows, is they typically use an explicit
calculation of the interface curvature which can create numerical artifacts and noise. Other implicit surface methods
include the phase field method [95, 77], which uses a diffuse interface model (as opposed to a sharp or explicit
interface). Phase field methods have similar advantages anddrawbacks as the level set method.

Alternatively, one can use an explicit representation of the interface, such as an interface mesh or marker particles
to “track” the interface. These are called front-tracking methods [34, 83, 17, 2], some of which are designed to track
shock fronts in hyperbolic equations [47, 48, 91]. Furthermore, there exist numerical PDE techniques that can take
advantage of the intrinsic representation of the interface[4, 25, 42]. However, the main disadvantage of these explicit
surface representations is the computational difficulty in handling large deformations of the mesh. In two dimensions,
the mesh can be adjusted through local re-meshing [74] or mesh smoothing [30], but can still be awkward. In three
dimensions, it is not clear what the best methods are for adjusting a mesh as it deforms.

There are a variety of mesh generation methods. Some take an optimization viewpoint [67, 54, 53] while others
[12, 13] use a variational form to minimize the interpolation error to do local re-meshing. Some methods use specific
tilings of 3-D space [82] or marching cubes [49] or triangles[39]. Still others make use of implicit functions to create
conforming meshes [56, 57, 55, 11, 61, 62, 92] as well as adaptive methods to create meshes adapted to the local
feature size [38, 46]. Some of these methods also include mesh smoothing operations (see [19, 58, 71, 94] for more
smoothing methods).

Currently, there exist some methods for taking explicit meshes through topological changes. Some use “surgery”
[21, 22, 16] to cut the mesh or use a pre-defined bridge [64] in 3-D. This is a viable option when the topological change
has a well-defined structure. But the general nature of topological changes is much more complicated, especially in
3-D. For example, a thinning neck of fluid could become very flattened and pinch in the middle leading to a torus
like structure with one or many “handles”. In this case, it isnot clear how to reconstruct the mesh without a guide or
indication of the new topological state of the domain.

Considering the trade-offs between implicit surface methods and explicit lagrangianmeshes, it is reasonable to
suggest a hybrid approach. This would combine the accuracy of the explicit mesh methods with the ease of topological
transformation of the level set method. One version of this is given by [5], which forms an explicit representation of
the boundary at each time step that is coupled with their level set method and is advantageous for tracking of surface
characteristics, such as texture coordinates, for use in rendering fluid interfaces for computer graphics. But their
method does not generate an interior bulk mesh. Other relevant work includes [52], where they introduce the virtual
node algorithm as a way of tracking topological changes of explicit triangular or tetrahedral meshes. However, their
method is not concerned with the correct local geometry, since they were mainly concerned with solving elasticity
equations, as opposed to surface tension driven flow.
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Figure 1: High level block diagram of a single time step with possible re-meshing and topological changes. The current (interior) domain boundary
Γk ≡ ∂Ωk

int and meshT j have different indices because the mesh topology does not necessarily change at each time-step (i.e. only mesh vertices
change). The physics (e.g. velocity field, pressure, etc...) is simulated with (Γk,T j ). Using a smooth update velocity, we obtain the domain shape
at the next time index. Note that the mesh topology does not change, though the vertex positions do change. If the element qualities are not bad and
a topological change is not imminent, then we proceed to the next time step. Otherwise, we execute the re-mesh routine. This generates a new mesh
topology that geometrically conforms to the boundaryΓk+1. Note thatΓk+1 also changes if a topological change occurs. Finally, we interpolate
the solution variables from the old mesh topologyT j to the new topologyT j+1 and proceed to the next time step. Section 3 further describes the
re-mesh routine.

The method we develop takes inspiration from some of the ideas in the above references and combines them in
a novel way to generate meshes of arbitrary domains. In addition, we introduce a shape optimization approach for
ensuring mesh conformity. We emphasize that our re-meshingmethod does not need to be executed at every time step
of the simulation. The number of re-meshes only depends on the continuous deformation being approximated and the
number of topological changes.

1.3. Algorithm Overview

Our algorithm primarily consists of a special re-meshing routine that is embedded inside a time stepping loop.
We make extensive use of distance functions and shape skeletons to resolve the shape and topology of the domain
when generating a new mesh. We also use a shape optimization approach to ensure that the new mesh conforms to
the boundary of the domain. Topological changes are implemented by locally diffusing the distance function in the
neighborhood of the change.

The main point of our algorithm is to provide a way for generating meshes that can follow an arbitrarily complex
deformation and can continue through topological changeswithout having to specify the type of topological change,
or specify geometric details, or perform surgery on the mesh. Even if the physics of the topological change is well
understood, it is not necessarily clear what the mesh shouldbe after the change. This is especially important in three-
dimensions. Therefore, this algorithm is an answer to the question of how to compute and mesh through a topological
change, butnot to the question of modeling the physics of the change itself.

We highlight some aspects of the algorithm in the following list. Details of each item are given in the sections that
follow. Also, see the flowchart given in Figure 1 for a high level summary.

• Time step adaptation. The size of the time-stepsδt during a simulation are controlled by the desired accuracy
and the amount of shear in the velocity field (see Section 2.2).

• Velocity extension. As the physical simulation of a moving domain progresses, the velocity on the domain
boundary is extended to the entire mesh in a smooth way and used for updating the domain (see Section 2.3).
This is done to prevent frequent re-meshing.
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Figure 2: Continuous domain and discrete mesh with symbolicnotation. The interior domain isΩint, the shaded region isΩext, with two-phase
boundaryΓ := Ωint ∩Ωext. The outer (continuous) boundary is denotedΓext. The entire domain is defined asΩ := Ωint ∪ Ωext. The discretization
of the continuous domain is represented as a set of interior trianglesT int and exterior trianglesT ext, with a set of mutual edgesE representing the
discretization of the boundaryΓ. The entire triangulation is given byT := T int ∪ T ext. In our algorithm, we use the signed distance functionφ

with respect toΓ and compute it over the entire triangulationT [8]; this dependence is denoted byφ(T ). In this paper, we takeφ to be positive
(negative) over the interior (exterior). The zero level setof φ corresponds exactly to the discrete representation ofΓ because the triangulation is
conforming.

• Mesh smoothing. We use standard techniques to improve distorted elements (see Section 2.4).

• Re-meshing via the distance function. We develop an adaptive method for generation of unstructured triangular
meshes that uses the distance function (with respect to the domain boundary) and shape skeleton. We are able
to generate well-resolved and well shaped meshes by straightforward processing of the distance function and
shape skeleton (see Section 3.2).

• Ensure mesh conformity. We use a shape optimization approach to ensure that the generated mesh conforms to
the domain boundary (see Section 3.4).

• Detection of imminent topological changes. Any sufficiently “thin” region in the mesh is considered a topolog-
ical change and can be found by simple processing of the distance function and shape skeleton. These regions
are used to help guide mesh adaptation in those areas to ensure accurate resolution of the shape. See Section
4.1 for more discussion.

• Updating domain topology. This is achieved by locally diffusing the distance function in the thin regions only
(see Section 4), followed by our shape optimization approach to ensure mesh conformity.

1.4. Notational Convention

We now introduce some notation that will be used throughout (see Figure 2 and Table 1). LetΓ be the interface or
manifold between two distinct phases. We label the interiorphaseΩint and the exterior phaseΩext. The whole domain
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Table 1: Symbol Definitions

Symbol Definition Symbol Definition

Ω entire continuous domain (both phases) Ωint,Ωext interior, exterior domain

Γ closed boundaryΓ := Ωint ∩ Ωext contained inΩ Γext external boundaryΓext := ∂Ω

T a triangulation ofΩ T int, T ext triangulation of interior, exterior phases

T old a previous triangulation ofΩ T init an initial triangulation

φ distance function toΓ ψtop level set function after topological change

VSk vertices (inT old) that define shape skeleton Vthin subset ofVSk that represent thin regions

ξ distance function to shape skeleton ξthin distance function to thin regions

G a new triangulation (default) E set of edges contained inG
G(E : φ) mesh conforms to{φ = 0} κ curvature

ǫsmooth smoothing parameter (see Sec. 3.2.3) κP0 , κP1 FEM approximation of curvature

t time δt time step

δtmax maximum allowed time step x position coordinate

u vector velocity (u, v) u = (u, v)

usmooth smooth velocity extension ν outward normal vector

xdisplace displacement function to deform mesh τ positively oriented tangent vector

D(u) symmetrized gradient operator dneck minimum neck thickness

ε0 artificial diffusion parameter θ cut-off function (localizes diffusion)

X surface parameterization ∇Γ surface gradient operator

J(Γ) cost functional; see equation (10) V vector perturbation of surface

δJ(Γ,V) shape derivative in directionV ϕ optimal descent direction

I contin. piecewise linear interpolation operator α shape optimization step size

Γ̃ set of points given byE Γk shape optimization iterate

is defined byΩ := Ωint ∪ Ωext with outer boundaryΓext.
In general, we denote a fixed triangulation byT with possible superscripts. For example,T int will denote a

triangulation ofΩint. We denote distance functions by a Greek letter and specify the triangulation that they are defined
on, e.g.φ(T ). The symbolE will denote a set of edge segments (whose union is a closed manifold) that is shared by
two separate triangulations, for instance at the interfacebetweenT int andT ext. In other words,E will be the discrete
representation of a two-phase interface. Lastly, we letG denote a generic triangulation that is not fixed, meaning
thatG is in the process of being modified (i.e. triangles are being added/removed, or adaptive refinement is currently
running). Moreover, given a set of edge segmentsE contained inG, we letG(E : φ(T )) denote the dependence ofG
on the distance functionφ, meaning thatG has been deformed so thatE conforms to the zero level set{φ = 0}. This is
important when we modify a generated mesh to conform to some zero level set. If we just writeG, this refers to the
mesh in the default, unmodified state.

2. Basic Concerns

We start by stating some basic ideas that are useful for any methods using ALE techniques.

2.1. Main Cause Of Mesh Distortion

Mesh distortion for a triangular mesh that is moving with a given velocity field (which comes from the physics
being simulated) is directly due to gradients in the field (i.e. the velocity field has some shear component). This
clearly happens when a topological change is underway. In this section, we derive a basic estimate that relates the
maximal time-step of a mesh update (while preventing mesh inversion) to the gradient of the velocity.
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Figure 3: A mesh triangle undergoing deformation. The velocity field over the triangle is labeled (u, v) and is linear over the triangle. The values
of the x component of velocity are labeledu1 andu2 at the pointsp1 and p2, respectively (withu1 > u2). As p1 andp2 move in thex direction,
their relative distance decreases. The rate of decrease depends on∂u

∂x . This gives an estimate of the largest time stepδt that can be taken beforep1

andp2 cross-over, which isδt < 1/ ∂u
∂x . Any larger time-step will cause the triangle to be inverted.

A diagram of a single triangle in some triangulation is givenin Figure 3. The 2-D velocity field is assumed to be
linear over the triangle and is denoted byu = (u, v). For simplicity, we assume thatv = 0 and thatu at the pointsp1

andp2 is denoted byu1 andu2, respectively, and we assume thatu1 > u2. The pointsp1 andp2 move with constant
velocity u1 andu2 because we are updating the triangle vertex positions by taking a discrete time-step. We want to
estimate how large the time step must be for the pointp1 to cross overp2; this will invert the triangle. The relative
distance betweenp1 and p2 (after moving one step) is given byhmax− δt(u1 − u2), whereδt is the time-step of the
mesh update. Hence, if the relative distance becomes zero, thenδt is given by

1
δt
=

u1 − u2

hmax
=
∂u
∂x
.

A similar relation holds when looking for the time to cross-over of the pointsp3 andp4 with velocity (0, v),

1
δt
=
∂v
∂y
.

Naturally, a conservative estimate for the maximal time-step that will not cause the triangle to invert is

δt <
Cτ

|∇u| , (1)

for some positive constant 0< Cτ ≤ 1 (we useCτ := 0.1). Of course, the triangle may be very distorted after updating.
Further consideration suggests that (1) should actually be

δt <
Cτ

|D(u)| , D(u) :=
∇u + (∇u)†

2
. (2)

Note thatD(u) = 0 for any rigid motion [81], which does not cause mesh distortion. The choice ofCτ = 0.1 is
conservative, meaning that makingCτ smaller would lead to unnecessarily small time steps (i.e. no parameter tuning
is needed here).

2.2. Time-Stepping

We adopt a simple method for adapting the time-step. First, the maximum time stepδtmax is set by the desired
accuracy. Then, based on (2), we choose the current time stepδt such that

δt := min

δtmax,
Cτ

max
T
|D(u)|

 , (3)
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whereu is a piecewise linear approximation (over the triangulation) of the true velocity. If the true velocity is a
Lipschitz function, the estimate (3) is essentially independent of the triangulation as long as the velocity field is well
resolved. Otherwise, it depends on the triangle’s diameter, shape regularity, and the nature of the singularity in the
derivative of the velocity. For example, suppose the true velocity has a

√
|x| type singularity. Then one can show that

δt .
√

diam(T), whereT is a triangle in the neighborhood of the singularity.

2.3. Smooth Velocity Extension

In lieu of Section 2.2, it is desirable to update the domain mesh with a velocity field that has minimal shear (i.e.
with |∇u|minimal). A simple way to do this is by harmonic extension. Let usmoothbe a piecewise linear function over
the triangulationT which solves the standard weak formulation of the followingvector Laplace equation

−∆usmooth= 0, Ω,

usmooth= u, Γ,

∂usmooth

∂ν
= 0, Γext.

(4)

whereu is the true velocity field that comes from the physics of the problem. Solving the Laplacian guarantees that
|∇usmooth| will be minimized in theL2 sense [31], thus subjecting the mesh triangles to minimal distortion. Moreover,
updating the shape withusmoothkeeps the same shape evolution. It is not necessary to updatethe interior vertices of
the mesh ofΩ with the true velocity. Hence, we take advantage of this freedom by using a smooth extension of the
true velocity.

Of course, solving (4) will incur extra computational cost in addition to simulating the physics. However, we
make the following points: (1) if an iterative solver is used, it is not necessary to demand high accuracy in the solution
becauseusmoothplays no role in the physics; (2) if the mesh topology did not change from the previous time step, then
the previous solution of (4) can be used to “warm-start” the iterative solver; (3) it may be possible for the user to take
advantage of a canned solver/package for (4). Multilevel solvers are known to be quite efficient on unstructured grids
[10, 93]. Moreover, our mesh generation method in Section 3 can be trivially modified to generate a set of nested
meshes for use in a multigrid algorithm [3, 40, 41, 66].

2.4. Mesh Smoothing

Local mesh smoothing is a useful tool for improving an existing mesh. Various techniques for improving a 2-D
triangulation exist, such as Laplace smoothing which averages the positions of mesh vertices based on its neighbors.
In addition, one can use an optimization method, such as in [30], which moves the vertices of the mesh in an attempt to
optimize the local quality metric of the triangulation [45]. One advantage of this method is that it is guaranteed not to
invert elements and produces well-shaped elements for the given mesh topology. Mesh smoothing is a supplementary
tool that we use to prevent frequent re-meshing.

3. Mesh Generation

This section describes our re-meshing algorithm. For simplicity, we will consider problems where only an interior
phase is of interest, such as for fluid droplets in air. Thus the meshing of the exterior is not particularly critical. Our
method can be easily generalized to the case of an arbitrary domain that contains two (or more) phases of interest (see
Section 6.3).

3.1. Approximating the Shape Skeleton

Suppose we have a domainΩ that contains an interior closed manifoldΓ. Assume we have the signed distance
functionφ (to Γ) defined on all ofΩ (recall Figure 2). The shape skeleton is the locus of points where∇φ is discon-
tinuous [69, 75]. Knowing the shape skeleton gives valuableinformation about the geometry and topology as well as
potential locations of topological changes.

Finding the skeleton on a discrete grid is straightforward when∇φ points in nearly opposite directions on either
side of the discontinuity. These points correspond directly to where a topological change may be imminent. Other
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points where changes in∇φ are less abrupt are harder to detect, but less important for our purposes. Hence, we
propose a method of estimating the location of part of the shape skeleton that only corresponds to abrupt changes in
∇φ.

Suppose we have a triangulationT old (of Ω) that conforms to the boundaryΓ. We denote the piecewise linear
signed distance function (toΓ) onT old byφ(T old). We use the method in [8] to computeφ because it has no restriction
on the triangulation. Note that the zero level set ofφ(T old) exactly representsΓ because the mesh is conforming. Let
VSk be the set of vertices inT old that locate discontinuities in∇φ according to some tolerance.VSk is found by
executing Algorithm 1.

Algorithm 1 Sweep Edges and Vertices of Mesh
1: Set tolerance Sktol such that 0.0 < Sktol < 1.0. Default value: Sktol = 0.5.
2: InitializeVSk = ∅.
3: # PART 1
4: for all edgesE in T do
5: For eachE, compute:

EJ := − ∇φ+|∇φ+|
· ∇φ−|∇φ−|

, −1 ≤ EJ≤ 1, (5)

whereφ+ andφ− are evaluated on opposite sides ofE.
6: if EJ> Sktol then
7: include the end points ofE inVSk.
8: end if
9: end for

10: # PART 2
11: for all verticesv in T do
12: For eachv, compute a local weighted average of∇φ/|∇φ| at v by

AVE := 1−
∣∣∣∣∣∣∣

1
|ω|
∑

T⊂ω
|T | ∇φ|∇φ|

∣∣∣∣
T

∣∣∣∣∣∣∣
, 0 ≤ AVE ≤ 1, (6)

whereω is the local “star” of triangles that sharev as a vertex.
13: if AVE > Sktol then
14: includev inVSk.
15: end if
16: end for
17: Remove all vertices fromVSk that lie on the manifoldΓ.
18: return VSk.

Roughly speaking, Part 1 of Algorithm 1 looks for large jumpsin ∇φ across mesh edges and Part 2 identifies
vertices where∇φ points towards or away from the vertex. In most cases, Part 1 is enough. However, consider the
case whenΓ is a circle, where the shape skeleton is just the center point. If a mesh vertex is perfectly aligned with the
circle’s center, then Part 1 would not detect it, but Part 2 would.

In subsequent sections, we useφ andVSk to create a new mesh that is adaptively refined so that it can resolve the
topology and geometry ofΓ. We emphasize that the complete shape skeleton can be complicated, i.e. lots of fingering
due to small undulations of the boundary. But we only need theextreme parts of the skeleton to correctly resolve the
topology.

The choice of Sktol = 0.5 was dictated by numerical experiments and appeared to be relatively robust; recall that
we only need the abrupt changes in∇φ. Note: choosing Sktol close to 1 is too restrictive and would only detect the
extremechanges in∇φ.
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Figure 4: Illustration of adaptive refinement. The bolded black curve corresponds to the zero level set ofφ(T old). 1) Initial coarse mesh that covers
the interior manifoldΓ with extra surrounding buffer region. 2) Resulting adaptively refined mesh that resolves the topology ofΓ. 3) Zoom-in
of region that is close to a topological change. The dense refinement in between the two circles is due to the presence of theshape skeleton (not
shown) and the thinness there; see Sections 3.2.2 and 4.1.2.Extra refinement in narrow regions is useful for resolving topological changes. 4)
Another zoom-in.

3.2. Generate Mesh

Before handling any topological changes, we must first generate a new well-shaped mesh that conforms to the
current manifoldΓ.

3.2.1. Initial Mesh
We start by creating an initial coarse mesh that containsΓ, followed by subsequent adaptive refinement to resolve

the geometry and topology ofΓ. Define a domainΩ to be a rectangular box with dimensions chosen such that it
containsΓ and that dist(Γ, Γext) > Cbuffer diam(Γ) (default value:Cbuffer := 0.3). The initial triangulation ofΩ (denoted
T init) is taken to be a coarse cartesian like grid with a crisscrosspattern (see Figure 4, upper left corner). The choice of
Cbuffer = 0.3 is not particularly critical; it only needs to be sufficiently large to prevent potentially large deformations
betweenΓ andΓext.

3.2.2. Adaptive Refinement
Let φ(T old) be the signed distance function (toΓ) on the old triangulationT old. Also, letξ(T old) be the distance

function to the skeleton represented by the set of verticesVSk; we can compute this by the same method we used
for φ [8]. Our refinement method is given in Algorithm 2. The idea isto adaptively refine the mesh until none of
the triangles intersectsboth the shape skeleton and the interface (see Figure 4, lower left corner). It is guaranteed
to terminate as long as dist({φ = 0}, {ξ = 0}) > 0. This is the case as long asΓ approximates a smooth curve. The

9



meshG produced by this algorithm well resolves the topology ofΓ. Note that we need to interpolateφ andξ onto
the meshG in Algorithm 2. The choice ofCadapt= 2.0 is not critical and was found to work for a wide range of test

Algorithm 2 Adaptive Refinement

1: Initialize triangulationG := T init . SetCadaptto be a constant such that 0.0 < Cadapt≤ 2.0.
Default value:Cadapt= 2.0.

2: loop
3: InitializeM = ∅.
4: for all trianglesT in G do
5: Estimate triangle diameter: letLT be the length of the longest edge ofT.
6: if LT ≥ Cadaptmin

T
φ andLT ≥ Cadaptmin

T
ξ then

7: includeT inM.
8: end if
9: end for

10: if M , ∅ then
11: Execute the longest edge bisection routine [65] onG with the markingM.
12: else
13: Exit loop.
14: end if
15: end loop
16: return G.

cases. ChoosingCadapt smaller only leads to excessive refinement near the interface Γ. Ergo, for most applications,
Cadapt= 2.0 should be sufficient.

3.2.3. Refine By Curvature
In order to ensure thatG resolves the geometry ofΓ, we further refine it using the curvature ofΓ as a guide. To

facilitate this, we must estimate the curvature ofΓ on the old meshT old. One method involves computing second
derivatives of the distance functionφ. However, we computedφ as a piecewise linear function overT old, so second
derivatives would not make sense.

But we do have an explicit mesh for the manifoldΓ, which we can use directly. Letν be the piecewise constant
normal vector of the polygonal boundaryΓ andxi be the position of a vertex ofΓ. Then we define a continuous
piecewise linear approximation̂ν of the normal vector by solving the following variational problem for all continuous
piecewise linear vector functionsv onΓ:

ǫsmooth

∫

Γ

∇Γη · ∇Γv +
∫

Γ

η · v =
∫

Γ

ν · v, ⇒ ν̂(xi) :=
η(xi)
|η(xi)|

(7)

i.e. (7) is a smoothedL2(Γ) projection with a re-normalization to ensure unit length.With this, we can compute a
piecewise constant approximation of the curvature viaκP0 := ∇Γ · ν̂ = (∂τν̂) · τ, where∂τ is the tangential derivative.
The smoothing parameterǫsmooth is used to prevent over-estimating the curvature in the casewhere the mesh is under
resolved. In our computations, we takeǫsmooth= 10−6.

In Algorithm 3, we need to interpolate the manifold curvature onto nearby triangles. Therefore, for convenience,
we define a continuous piecewise linear approximationκP1 of κP0 by a standardL2 projection, i.e. solve

∫

Γ

κP1µ =

∫

Γ

(∇Γ · ν̂)µ, (8)

for all continuous piecewise linear functionsµ onΓ. This gives an estimate of the curvature at the vertices ofΓ. We
then define an extensionκextendof κP1 to the entire triangulationT old by solving a scalar Laplace problem just like (4),
except the boundary data is given byκP1. For efficiency, one only needs to extend the curvature to a narrow band of
triangles in the neighborhood ofΓ.
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The purpose of Algorithm 3 is to ensure that all triangles close toΓ are small enough to resolve the curvature of
Γ. This allows for better approximation ofΓ in Section 3.4. The choice ofCR = 0.2 is conservative and works well
for our test cases. SettingCR to a smaller value just gives more refinement near the interfaceΓ.

Algorithm 3 Refine For Curvature
1: Initialize triangulationG with result from Algorithm 2. SetCR to be a constant such that 0.0 < CR ≤ 0.3.

Default value:CR = 0.2.
2: loop
3: InitializeM = ∅.
4: for all trianglesT in G do
5: Estimate triangle diameter: letLT be the length of the longest edge ofT.
6: Estimate minimum radius of curvature nearT: Rmin(T) := 1/max

T
κextend.

7: if LT ≥ min
T
φ andLT ≥ CRRmin(T) then

8: includeT inM.
9: end if

10: end for
11: if M , ∅ then
12: Execute the longest edge bisection routine [65] onG with the markingM.
13: else
14: Exit loop.
15: end if
16: end loop
17: return G.

3.3. Select Candidate Manifold

Now that we have a new well-shaped meshG, we must deform it so that it conforms to the zero level set ofφ(T old).
In other words, we wantG to conform toΓ. To do this, we must first select a candidate manifold that is embedded
in G as a closed set of edge segments. We do this by choosing a subset of triangles inG to be the interior phase; the
embedded manifold is just the outer boundary of the interiortriangles. Finding a “good” selection of triangles to be in
the interior phase is non-trivial because the discrete nature of the mesh will introduce an aliasing effect. This section
describes how we handle this and takes inspiration from [11]. We emphasize that this procedure is the only part of
our algorithm that does not extend to 3-D (see Section 6.5 forsome discussion).

The background reference meshG comes from adaptively refining, via longest edge bisection,an initial uniform
crisscross mesh (recall previous sections). As a result, all triangles inG are self-similar isosceles right triangles; note
that no mesh smoothing has been used at this stage of the algorithm. Thus, we will take advantage of this property.
LetT int be the set of triangles such that

T int := {T ∈ G : φ(T old)|xc(T) ≥ 0}, (9)

i.e. we evaluate the signed distance at the barycenterxc of T and if it is non-negative, we say it belongs to the interior
phase. However, cutting the mesh like this can lead to an irregular (initial) manifold shape because of aliasing effects.
Thus, we defineE to be the boundary ofT int and proceed to modify the setT int by performing local operations based
on the shape ofE.

First we check if any pairs of adjacent edges ofE shares the same triangle. If so, then that triangle will become
crushed when we enforce mesh conformity (see Section 3.4). We avoid this by adding (or removing) the offending
triangle to (or from) the setT int and updatingE accordingly. However, this may not be enough.

The next part of our selection process takes advantage of thecrisscross nature of the mesh. From this, it can
be seen that the angle between two adjacent edge segments inE is either 45◦, 90◦, 135◦, or 180◦. Hence, we loop
through each vertex ofE, check the angle there, and adjustT int andE accordingly. We summarize these checks in the
following list (see Algorithm 4 for a full description).
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Case 1 Case 2 Case 3

addT1 toT int addT1 andT2 toT int addT1 toT int

edge swap

interiorinteriorinterior exteriorexteriorexterior

T1T1T1 T2T2
T1T2

Figure 5: Description of adding and removing triangles for candidate manifold selection (only addition is shown here).Bold directed arrows show
the oriented manifold edge segments for the current set of interior trianglesT int. The diagram shows three cases where the candidate manifoldhas
a corner pointinginward (90◦ angle) due to our initial selection (Section 3.3) of interior trianglesT int; this is an example of aliasing. Cases 1 and 2
are a problem because of the mesh conformity phase (see Section 3.4), which will crush the shaded triangles when the manifold is made to conform
to the zero level set. Thus, we add the shaded triangles to thesetT int which makes the manifold more regular and avoids crushing triangles. If
we ignore case 3, trianglesT1 andT2 will not be crushed during the mesh conformity phase, however there will be a moderate amount of mesh
distortion. So to improve the mesh quality, we do an edge swapand include the newT1 triangle which makes the manifold boundary shape more
regular. When the corner is pointingoutward, the process is the same except the triangles are removed from the setT int (instead of included). If
the corner angle is 45◦, then only case 1 can occur.

1. If the angle is 45◦, then the two adjacent edge segments must share the same exterior (or interior) triangle. In
this case, we simply add (or remove) the shared triangle to (from) the setT int and adjustE.

2. If the angle is 90◦, then three different cases can arise. We adjustT int by following the method described in
Figure 5.

3. If the angle is 135◦ or 180◦, then nothing needs to be done. The discrete manifold is already well-shaped.

We consider the above method a single pass through the mesh toadjustT int. We then loop this entire procedure until
the setT int no longer changes. Typically, only one pass is needed with anadditional pass to check for consistency.
Note that one can check the topology ofE directly and compare it to the topology of the boundaryΓ in the old mesh
T old to ensure they are the same.

Upon completion of Algorithm 4, the topology ofG andE becomes fixed for the remainder of this section. Also,
recall our notation from Section 1.4 and note thatG = G(E : ∅) denotes the default geometry of the meshG, i.e. we
have not deformed the mesh to conform to anything, yet.

3.4. Active Contours for Mesh Conformity

For notational convenience, letΓ̃ be the continuous manifold defined by the discrete meshE. Clearly,Γ̃ approx-
imates the original manifoldΓ but is “jagged” and will not necessarily conform toΓ. Since we have the boundaryΓ
captured exactly as the zero level set ofφ(T old), we can adjust̃Γ by solving a minimization problem. This can be done
for higher dimension surfaces, which makes this approach attractive. Thus, in the following discussion, we consider
a general surface (i.e. a 1-D curve or 2-D surface).

3.4.1. Shape Optimization Problem
For the moment, we abuse notation and letΓ be some arbitrary surface (not necessarily the manifold in question).

We define an energy functional (dependent onΓ) to be minimized:

J(Γ) =
1
2

∫

Γ

φ2. (10)
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Algorithm 4 Select Candidate Manifold

1: Interpolate the value ofφ(T old) at the barycenter of all triangles inG. InitializeT int to be the set of triangles with
φ ≥ 0 at their barycenter. This induces a closed manifold consisting of the set of edge segmentsE that is the outer
boundary of the trianglesT int contained inG.

2: while the setT int was updateddo
3: If any two adjacent edge segments inE share the sameexterior triangleText, then weadd Text to the setT int.

We check all pairs of adjacent edge segments and updateT int andE.
4: If any two adjacent edge segments inE share the sameinterior triangleTint, then weremove Tint from the set

T int. We check all pairs of adjacent edge segments and updateT int andE.
5: for all verticesv in E do
6: If two edge segments that sharev have an angle of 90◦ or less, and the corner points toward the interior

phase, then execute the procedure described in Figure 5 (i.e. add triangles toT int). UpdateT int andE.
7: end for
8: for all verticesv in E do
9: If two edge segments that sharev have an angle of 90◦ or less, and the corner points toward the exterior

phase, then execute the procedure described in Figure 5 (i.e. remove triangles fromT int). UpdateT int and
E.

10: end for
11: end while
12: return T int, E. E now has a fixed topology.

With this, we want to find a new surfaceΓ∗ that minimizesJ:

Γ∗ = arg min
Γ

J(Γ). (11)

Clearly, the minimum solution is a surface that lies along the zero level set ofφ.

3.4.2. Gradient Flow
We find the surface that minimizes the functional (10) by defining anL2 gradient flow [23, 22]. This is a gradient

descent method that seeks to move the surface in a direction that is guaranteed to minimize the costJ. We first give a
short proof for the shape derivative of boundary functionals [18, 76, 63].

Lemma 1 (Shape Derivative). Suppose f is a fixed smooth function onR
n and letΓ be a smooth closed manifold of

dimension n− 1. Let V be a smooth vector field defined onR
n that induces a flow such that pointsx in Γ move with

the fieldV(x). Then, for the functional Q:=
∫
Γ

f , we have that the shape derivative of Q in the directionV is

δQ(Γ; V) :=
∫

Γ

∇ f · V + f [∇ΓX · ∇ΓV], (12)

where∇Γ is the surface gradient operator onΓ andX is the identity map onΓ.

Proof. We begin with a standard result from the shape derivative literature [18, 76, 63]

δQ(Γ; V) :=
∫

Γ

(V · ν)(ν · ∇ f ) + f (κν · V), (13)

which we will further manipulate. Using the fact thatκν = −∆ΓX (where∆Γ is the surface Laplacian), we have

δQ(Γ; V) =
∫

Γ

(V · ν)(ν · ∇ f ) − ∆ΓX · ( f V),

integrate by parts→ =
∫

Γ

V · [ν ⊗ ν]∇ f + ∇ΓX · ∇Γ( f V).
(14)
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Since∇ΓX = I − ν ⊗ ν (i.e. the projection onto the tangent space of the manifoldΓ), we re-write (14) as

δQ(Γ; V) =
∫

Γ

V · [ν ⊗ ν]∇ f + f [∇ΓX · ∇ΓV] + V · [∇ΓX]∇Γ f

=

∫

Γ

V · [ν ⊗ ν]∇ f + f [∇ΓX · ∇ΓV] + V · [I − ν ⊗ ν]∇ f

=

∫

Γ

∇ f · V + f [∇ΓX · ∇ΓV]

(15)

which gives the assertion.

Therefore, by (12), the first variation with respect to shapeperturbations of the functionalJ (10) is

δJ(Γ; V) =
∫

Γ

φ∇φ · V + 1
2

∫

Γ

φ2∇ΓX · ∇ΓV, (16)

whereV is a vector perturbation ofΓ. A more detailed derivation of (16) can be found in [86].
A simple gradient flow follows by first defining a vector velocity ϕ on the surfaceΓ by

∫

Γ

ϕ · V = −δJ(Γ; V), (17)

for all perturbationsV ∈ C∞(Γ). We then define a flow by

d
dt

X(·, t) = ϕ(·), X(·, t) = Γ(t), (18)

which means the surfaceΓ will move with the velocityϕ.

3.4.3. Semi-Implicit Time Discretization
We solve the gradient flow problem by using a semi-implicit time-discretization. This is done by settingϕ to ϕk+1

in (17) and using a backward Euler method for (18). Combiningwith equation (16) gives
∫

Γk
ϕ

k+1 · V = −
∫

Γk
φ∇φ · V − 1

2

∫

Γk
φ2∇ΓkXk+1 · ∇ΓkV,

Xk+1 = Xk + αϕk+1,

(19)

where the superscript is the iteration index andα is the step size to use in updatingΓk. Rearranging gives the following
variational formulation: givenXk andφ, findϕk+1 ∈ H1(Γ) such that

∫

Γk
ϕ

k+1 · V + α
∫

Γk

1
2
φ2∇Γkϕ

k+1 · ∇ΓkV = −
∫

Γk
φ∇φ · V − 1

2

∫

Γk
φ2∇Γk · V, (20)

for all V ∈ H1(Γ). Note that we used the identity∇ΓkXk ·∇ΓkV = ∇Γk ·V. Given the solutionϕk+1, the new positionΓk+1

is obtained by the discrete update in equation (19). This process is then iterated until the sequence of surfaces{Γk}
reaches a minimum of (10). This minimization process is quite general and can be applied to the discrete manifoldE.

3.4.4. Finite Element Discretization
For computational purposes, we discretizeϕk+1 andV in equation (20) with piecewise linear “hat” functions over

the polygonal boundaryΓk at each iteration indexk. We then use a finite element implementation of equation (20)to
solve forϕk+1, where the integrals are computed overΓk. The initial conditionΓ0 := Γ̃ is given by the closed manifold
of edge segmentsE resulting from Algorithm 4.
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Figure 6: Illustration of ensuring mesh conformity. The bolded black curve corresponds to the discrete manifoldE. Plots 1, 2, and 3 show different
zoom-in levels of the meshG; (A) is before conformity and (B) is after. The dashed curve in 3 shows the zero level set ofφ(T old). In 3(B), the
discrete manifoldE clearly overlaps the dashed curve. In addition to the gradient flow method in Section 3.4.2, we also perform a few sweeps of
standard mesh optimization (see Section 2.4). We denote theresulting conformed mesh byG(E : φ(T old)).

We also require interpolation ofφ and∇φwith normalization. LetIk be the continuous piecewise linear interpolant
defined onΓk. Then we define the interpolation ofφ, ∇φ (with normalization) by

Ikφ(x) =
φ(T old)(x)
|∇φ(T old)(x)|

,

Ik∇φ(x) =
∇φ(T old)(x)
|∇φ(T old)(x)|

,

(21)

for all verticesx of the polygonΓk. Note that we interpolate the value ofφ and∇φ from the old meshT old. Therefore,
for convenience in computing the integrals in (20), we use the interpolant (21).

The purpose of the normalization is to act as a pre-conditioner whenφ is far from being a distance function. When
φ is a distance function, then|∇φ| = 1 and (21) reduces to standard linear interpolation. Otherwise, φ may have
a small slope in some regions, which can affect the speed of convergence of our shape optimization method. This
normalization procedure avoids that. See Section 4.3 for more discussion.

We used a step sizeα = 1.0 and checked convergence of our optimization method by evaluating‖Ikφ‖L∞(Γk).
Typically, about 10 to 30 iterations are needed to achieve‖Ikφ‖L∞(Γk) < 10−15; the actual number depends on how well
the initial guessΓ0 := Γ̃ approximatesΓ. Then we defineΓnew to be the converged shape.

3.4.5. Final Mesh Conformity Phase
In computing the final shapeΓnew, we ignored the interior and exterior mesh vertices that arenot part of the

manifoldE. We use a similar technique as in Section 2.3 to smoothly deform the remaining vertex positions into
place. LetD be the net displacement in moving̃Γ to Γnew. We then solve a vector Laplace problem on the mesh
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G(E : ∅):

−∆xdisplace= 0, Ω,

xdisplace= D, Γ̃,

∂xdisplace

∂ν
= 0, Γext,

(22)

wherexdisplaceis a displacement function for all points in the triangulationG. Now we define the new deformed mesh
G(E : φ(T old)) by addingxdisplaceto all the vertex positions inG(E : ∅). In our implementation, we divide the total
displacement into 5 incremental steps and use multiple solves of (22) to displace the vertices. This is necessary for
smoothly deforming the mesh (see Figure 6). In addition to the smoothed deformation, we also run a few sweeps of
standard mesh optimization (see Section 2.4) on the meshG(E : φ(T old)) while keeping the manifold vertices fixed.

There is no guarantee that the above method will not create inverted triangles (mesh entanglement). Therefore,
we include a check for mesh inversion in our code. This never happened in the test cases we ran. In fact, one of the
main reasons for the manifold selection algorithm in Section 3.3 is to help prevent mesh entanglement.

If no topological changes are imminent, the meshG(E : φ(T old)) is the final output of the overall algorithm and is
returned to the main simulation for the next time step.

4. Topological Changes

Only a relatively small amount of work remains to account fortopological changes of the interior manifoldΓ. This
is achieved by diffusing the distance function in the local region of the topological change. The details now follow.

4.1. Topological Change Detection

The detection of topological changes can be complicated. Essentially, one must look for regions where “disjoint”
parts of the boundary areclose and collapsing together. Detecting “closeness” is a common problem in computer
graphics and collision detection, where the closest point transform or fast marching methods are used [9, 51]. The
determination of whether boundaries are collapsing depends on the nature of the velocity field coming from the
physics. This can be especially difficult if the velocity field is becoming asymptotically slow near the point of pinch-
off, as in a fluid droplet. Therefore, to avoid this difficulty, we assume the following hypothesis:

• If any region of the domain is sufficiently “thin” (i.e. has a thickness less thandneck, a user specified tolerance),
then a topological change is assumed to be occurring. In other words,dneck acts as a resolution scale.

4.1.1. Locating Thin Regions
Deciding if there are thin regions in the shape ofΓ is straightforward. We simply evaluate|φ| at all vertices in

VSk (shape skeleton). If any vertex in the skeleton has a distance that is smaller thandneck/2, then it is flagged as a
“thin” vertex. We denote the set of thin vertices byVthin ⊂ VSk. If Vthin = ∅, then there are no imminent topological
changes. Otherwise, we continue with the rest of this section.

4.1.2. Extra Refinement Near Thin Regions
We execute the change by solving a heat equation (discussed in the next section), which means we need an accurate

solution near the thin regions. This requires the trianglesin the thin regions to be sufficiently dense. We achieve this
by adding an additional refinement step to the method described in Section 3. Algorithm 5 basically performs extra
local refinement near the thin regions and is slightly graded(see Figure 4, lower left corner). This requires us to
compute the distance to the vertices inVthin. Let ξthin(T old) denote this distance function, which is interpolated onto
the new meshG when we execute Algorithm 5.

If we ignore Algorithm 5, the rest of our method still works. The extra refinement just gives better resolution of
the shape after the topological change. Our choice ofAouter, Ainner, andBinner is not very critical, but seemed to work
well for the test cases we tried.
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Algorithm 5 Extra Refinement of Thin Regions
1: SetAouter, Ainner, andBinner to be constants such that 0< Ainner ≤ Aouter≤ 1 and 0< Binner ≤ 0.5.

Default values:Aouter= 0.4, Ainner = 0.1, andBinner = 0.2.
2: Initialize triangulationG with result from Algorithm 3.
3: loop
4: InitializeM = ∅.
5: for all trianglesT in G do
6: Estimate triangle diameter: letLT be the length of the longest edge ofT.
7: # create an inner and outer region, such that the inner regionis more refined.
8: if (min

T
ξthin ≤ dneck andLT ≥ Aouterdneck) OR (min

T
ξthin ≤ Binnerdneck andLT ≥ Ainnerdneck) then

9: includeT inM.
10: end if
11: end for
12: if M , ∅ then
13: Execute the longest edge bisection routine [65] onG with the markingM.
14: else
15: Exit loop.
16: end if
17: end loop
18: return G.

Remark 1. The output of Algorithm 5 is the base meshG. We then proceed just as before with the manifold selection
method in Section 3.3 to findE. And just as before, we create a deformed meshG(E : φ(T old)) that conforms to
the zero level set ofφ beforethe topological change (recall Section 3.4). We useG(E : φ(T old)) in Section 4.2.3 for
re-computing the distance function and for diffusing the distance function to simulate a topological change. This was
done to ensure an adequate mesh forresolvingthe topological change.

4.2. Obtain New Domain Topology

4.2.1. Level Set Method
An alternative to front-tracking of explicit boundaries isto use a level set method [59, 68]. In this case, the

boundaries are represented implicitly as the zero level setof some scalar functionψ. The evolution of the boundaries
is captured by solving the following hyperbolic equation

∂tψ(x, t) + u(x) · ∇ψ(x, t) = 0, for all x and allt > 0,

ψ(x, 0) = ψ0(x),
(23)

whereu is the velocity field that moves the boundaries andψ0 is usually taken to be the distance function to the
two-phase boundary. The main advantage of level set methodsis that they handle topological changes automatically.
There is no explicit decision needed to determine when a topological change happens norhow it happens or how the
local geometry should look. It is this aspect that we wish to take advantage of in our method.

4.2.2. Viscosity Solution
Equation (23) is linear and well-posed as long as the velocity u is smooth [96]. In order to have two boundaries

(i.e. curves defined by the zero level set ofψ) touch in finite time, it is necessary to have a velocity field that is not
Lipschitz [5] (this follows from standard uniqueness theorems for ODE’s). But in this case, the solvability of (23) is
questionable, especially in the case of a topological change. To address this, we add a small diffusion term:

∂tψ + u · ∇ψ = ε0∆ψ. (24)

This guarantees that the equation is well-posed. In effect, we obtain the “viscosity” solution [31] of (23) which allows
for splitting and reconnection of implicitly defined boundaries.
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4.2.3. Computing New Topology By Diffusion
First we compute the signed distance functionφ(G(E : φ(T old))) on the new mesh that was just created (recall

Remark 1 in Section 4.1.2). Then we get the new topology ofΓ by locally diffusingφ, which we do in two steps.
First, we solve one time step of the following time-discreteheat equation with small parameterε0 and some step size
δt, i.e. computeψ such that

ψ − δtε0∆ψ = φ, (25)

whereφ is the initial condition. We omit the convective part that appears in (24) for the following reason. The term
u · ∇ψ is only needed to capture the motion of the interface. But at this stage of our algorithm, the domain motion has
already been accounted for earlier in the time-stepping method (see Figure 1). If we did include the convective part,
we would need to solve the full physics again, which would complicate our method. In fact, later we show that the
productδtε0 is independent ofδt (see (28)). The zero level set ofψ captures the topological change of the zero level
set ofφ. This is an artificial step, but is in the spirit of viscosity solutions which allows colliding fronts (level sets) to
merge and reconnect.

Solving (25) globally diffuses the level set, which is undesirable. We make the diffusion local by performing a
simple procedure. Letθ : [0,∞)→ [0, 1] be a cut-off function defined by:

θ(s) =



1, 0 ≤ s≤ dneck,[
cos
(
π
2

s−dneck
dneck

)
+ 1
]
/2, dneck< s< 3dneck.

0, 3dneck≤ s,
(26)

Next we define a new level set function that is only locally diffused

ψtop(x) = θ(ξthin(x))ψ + [1 − θ(ξthin(x))]φ, for all x in Ω. (27)

Equation (27) smoothly localizes the diffusion of the level set function. Thus, only regions of topological change are
affected.

The parameterε0 must be chosen to guarantee that thin regions will connect orpinch-off. A classical result on the
diffusion length [60] indicates thatε0 should satisfy

√
δtε0 ≈ O(dneck). Hence, we set the diffusion parameter as

1
2

d2
neck

δt
≤ ε0 ≤

d2
neck

δt
, (28)

The addition of the diffusion term is directly analogous to artificial viscosity methods used for solving hyperbolic
equations, which adds a small amount of diffusion on the order of the mesh size. In our computations,δt plays no role
because of cancelation in (25), so we setδt = 1 (in this section) andε0 = 0.7d2

neck. The exact choice ofε0 is not very
critical, as long as (28) is satisfied.

4.2.4. Finite Element Discretization
We use a standard finite element approximation of (25) when solving for the new topology. Specifically,ψ andφ

are represented as piecewise linear functions over the triangulationG(E : φ(T old)) which gives a standard well-posed
system that can be solved by many techniques.

A simple way to reduce computational cost is to only solve (25) locally by limiting the computational domain to a
neighborhood ofVthin. The solution procedure does not change, except a Neumann condition is applied on the outer
boundary of the small computational domain. This is easily implemented if an iterative method is used to solve (25).

4.3. Rerun Mesh Conformity Phase

We must conform the original, adaptively refined meshG to the new zero level set ofψtop (see equation (27)),
which is defined on the previously deformed meshG(E : φ(T old)) (recall Remark 1). We do this by first selecting a
new candidate manifoldEtop by running Algorithm 4 except withψtop rather thanφ(T old). This is then followed by
the method described in Section 3.4 for ensuring mesh conformity, i.e. this generates the meshG(Etop : ψtop) which is
the final output of our algorithm.

We now discuss the reason for the pre-conditioning step in (21). Because the level set update (25) is a time-
discrete heat equation, it acts to smooth the initial data and drive it towards a constant value (when Neumann boundary
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conditions are used). This causesψtop to be relatively flat in the region of topological change compared to the initial
condition which was a distance function. Ergo, theφ and∇φ terms that appear in (20) would give weak forcing for
moving the manifold. Therefore, without the normalizationin (21), the active contour algorithm would take many
more iterations to converge.

5. Numerical Experiments

We present three simulations to demonstrate the method described in Section 1.3. The first simulation contains
no physics and consists of a mesh that is moving with a prescribed velocity field. The second simulation comes from
an application known as electro-wetting [14, 15, 89], whichconsists of a Hele-Shaw cell [72, 36] with the ability to
modify surface tension effects through electric fields. These devices are capable of splitting and merging droplets and
have potential applications for “lab-on-a-chip” devices [32, 37]. The third simulation demonstrates reconnection of
droplets in a Hele-Shaw cell due solely to surface tension (no electro-forcing).

Remark 2. In all experiments, the mesh quality [45] was maintained within the following criteria. The worst quality
value for any triangle must be less than 2.5 and no more than 5%of all triangles can have a quality above 2.0. Note
that the quality metric in [45] is scale invariant and is defined so that an equilateral triangle has quality 1.0, and any
other triangle shape has a higher value (worse quality).

If this criteria is violated, then we perform 4 sweeps of meshoptimization [30] in an attempt to satisfy the criteria.
If the criteria is still violated, then we re-mesh via our mesh generation algorithm (Section 3). Recall the block
diagram in Figure 1.

5.1. Rotating Vortices

In this simulation, we prescribe a velocity fieldu = (u, v) of the form

u(x, y) = sin(2πx) cos(2πy),

v(x, y) = − cos(2πx) sin(2πy),

which is a two-by-two array of counter-rotating vortices, and the divergence ofu is zero. The initial domain shape is a
circle inside a unit square, shown in Figure 7; the initial mesh was generated by the commercial package “MeshGen”.
The vertices of the boundary move with the given velocity field and the rest of the vertices move by extending the
vector velocity on the boundary using a Laplace solve (see equation (4)). The mesh undergoes severe deformation
due to the counter-rotating vortices, though the vector Laplace solve does limit the amount of mesh distortion. As the
domain becomes thin in the middle, and reaches a minimum thickness ofdneck = 5 × 10−3, the topological change
routine is executed (in addition to our general re-meshing algorithm).

In Figure 8, we show a closeup of the pinching region depictedin Figure 7. Of course, the dynamics of the flow
after the pinch do not change since the velocity field is prescribed.

The extreme deformation shown by this example demonstratesthe ability of our method to compensate for mesh
distortion and detect thin regions. The optimization of themesh boundary is also satisfactory. In Figure 9, we show
triangle quality statistics as the domain deforms in time. The large jumps in the curves correspond to re-meshing the
domain. The smaller jumps happen when the mesh vertex positions are optimized (see Section 2.4) to improve quality
(i.e. no changes in mesh topology).

5.2. EWOD Driven Droplets

5.2.1. Summary of Model
Next, we use a simulation of an Electro-Wetting On Dielectric (EWOD) device to drive the motion of a water

droplet to a topological change (droplet pinching). The device consists of two parallel plates very close together with
a water droplet squashed in between with air surrounding it,hence the problem is effectively 2-D Hele-Shaw flow
with surface tension. A 3x3 array of square electrodes is embedded in the bottom plate, which are used for applying
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t=0.802t=0.713t=0.685

t=0.682t=0.68t=0.515

t=0.395t=0.195t=0

Figure 7: Initial circular domain (first frame) and subsequent deformation with topological change. Only the interior mesh is shown. Outer box is
a unit square. Eventually, the domain becomes very thin in the center and a topological change is executed.
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Figure 8: Zoom-in of the pinching region in Figure 7 (dneck = 5× 10−3). All of the triangles that were in the pinching region become part of the
exterior triangulation (not shown). Multiple topologicalchanges happen because of the thinness of the filament. Note that the axis limits are not
the same in all frames.
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Figure 9: Plots of triangle qualities versus simulation time (Section 5.1). Triangle qualities (of the entire mesh) were computed using the formulas
given in [45]. Here, we plot the mean, standard deviation, and worst case triangle quality at each time-step of the simulation. The quality measure
ranges from 1.0 to∞, where 1.0 is the best and corresponds to an equilateral triangle. Note that the isosceles right triangles that make up the
generated meshes before ensuring mesh conformity have a quality measure of approximately 1.1547.
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voltages that can change the effective surface tension locally [70]. This allows for the ability to force a circular droplet
to pinch-off. The governing equations are given by

β1
∂u
∂t
+ β2u + ∇p = 0, in Ω,

∇ · u = 0, in Ω,

p− (κ + E) = 0, onΓ,

(29)

whereβ1 andβ2 are non-dimensional parameters,κ is the curvature ofΓ, andE is a given forcing function that comes
from the electric field. Here,Ω is the interior domain andΓ is the manifold between the interior and exterior phases.
Note the presence of the inertial term∂u/∂t. The interface equation of motion is given by

∂tx = u(x, t), for all x in Γ. (30)

For more details about the model and numerical method, see [87, 89, 88, 90].

5.2.2. Wait Period For Topological Changes
For the droplet flow experiments, we define a “wait” period fortopological changes to happen. In fluid pinching, it

is likely that a thin “spike” will be present after the pinch-off has occurred. Which means that our method of detecting
topological changes could trigger another change immediately after because of the thin region near the sharp corner.
In fact, this may cause a sequence of topological changes that can “eat” the spike away. This is undesirable in some
cases, because the natural dynamics may resolve the spike naturally without any extra topological changes occurring.

Therefore, in these experiments, we define a wait period ofTwait := 10−3. If a topological change is executed, then
for the nextTwait seconds (non-dimensional), topological changes are not allowed to occur. General re-meshing is still
allowed. We do this so that the natural dynamics of the flow canhave a chance to smooth out the domain.

5.2.3. A Pinching Droplet
Figure 10 shows a droplet overlaying a 3x3 grid of square electrodes. The voltage is actuated on the left and right

electrodes which causes the droplet to be pulled apart. Eventually, the droplet develops a thin neck which pinches
off at two separate regions when the thickness drops belowdneck = 5 × 10−4. This type of pinching singularity in
Hele-Shaw flow was shown in [72, 36, 35].

Immediately after the pinch-off, the time-scale becomes extremely small. This is due to the large curvature that
is present at the end points of the elongated satellite droplet. As the flow progresses, the satellite droplet takes on
a “dumbbell” shape. This is reasonable given that the velocity field is mostly concentrated at the end points and is
negligible everywhere else. Essentially, the end regions overtake the stationary part of the droplet. See Figure 11.

A closeup of the satellite droplet evolution is shown in Figures 12 and 13. The bulging ends of the droplet slam
into each other which causes the droplet to elongate in the vertical direction and stretch into another dumbbell shape.
This happens because of the inertial term in (29). The droplet continues to oscillate with decreasing amplitude until
it relaxes to a circular shape (Figure 13). Despite the extreme deformation, our algorithm is able to capture this
evolution. Figure 14 shows triangle quality statistics as the domain deforms in time.

5.2.4. Joining of Droplets by Surface Tension
In this last experiment, we use the EWOD simulation without any electrical forcing (i.e.E = 0). Hence, the flow

is purely due to surface tension. This example shows how our method handles connecting or joining droplets. Figure
15 shows two droplets, one circular and the other elongated and bent, that eventually coalesce. The bent droplet
relaxes and develops an “air” gap with the smaller drop. The reconnection takes place when the gap drops below
dneck= 2× 10−3. As the droplet relaxes, the large curvature regions get smoothed out.

After the reconnection, the time-scale becomes very small because of the large curvature near the cusp like regions.
Similarly to the previous case, the instantaneous flow is highly localized near the region of reconnection and negligible
everywhere else. A zoom-in of this flow is given in Figures 16 and 17. In both figures, we get a “mushroom” like
shape as the high curvature region smooths out. This is essentially the same effect observed in the dumbbell shape of
Figure 11. Figure 18 shows triangle quality statistics as the domain deforms in time.
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t=0.302t=0.293t=0.292

t=0.280t=0.235t=0.175

t=0.115t=0.056t=0.000

Figure 10: EWOD driven droplet motion; only the interior mesh is shown. Plot box has units of 1 x 0.5. The droplet starts in acircular shape and
is pulled apart because the left and right electrodes are turned on. Eventually, the droplet pinches in two places (symmetrically) resulting in an
elongated satellite droplet. The time-scale of relaxationof the satellite droplet is very fast (see Figure 11).

t=0.29349t=0.29342t=0.29333

t=0.29304t=0.29280t=0.29255

t=0.29217t=0.29193t=0.27973

Figure 11: Zoom-in of satellite droplet relaxation. Plot box has units of 0.24 x 0.1. The droplet begins elongated and rapidly collapses together.
The “dumbbell” shape arises because the velocity at the endsis extremely large, while the velocity in the central regionis almost zero. Thus the
end pieces of fluid overtake the more quiescent region, whichcauses the shape to “bunch up” at the ends. Evolution continues in Figure 12.
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Figure 12: Zoom-in of satellite droplet relaxation; continued from Figure 11. Plot box has units of 0.08 x 0.08. Evolution continues in Figure 13.
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Figure 13: Zoom-in of satellite droplet relaxation; continued from Figure 12. Plot box has units of 0.08 x 0.08. The droplet comes to rest at a
position that is not symmetric (i.e. not at (0.5, 0.5)). This is because the PDE solution inside the satellite droplet requires more resolution. The
velocity field is very large (initially) at the ends of the satellite drop, is near zero in the center, and rapidly changes in a small region. Thus, ahighly
refined mesh, in the interior of the droplet, is needed to resolve the dynamics. However, our main point here is to demonstrate the ability of our
method to handle the extreme deformations exhibited by topological changes.
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Figure 14: Plots of triangle qualities versus simulation time (Section 5.2.3). Same format as in Figure 9.

6. Conclusions

We have presented a method for mesh generation of 2-D domainsundergoing large deformations and topological
changes. The method uses a level set formulation to indicatehow the topology changes, and is only used during the
time-step of the topological change. In addition, an activecontour method using a shape optimization technique is
used to improve boundary mesh conformity to the zero level contour of the level set function. Topological changes
happen when narrow regions of the domain become thinner thanthe user specified tolerancedneck.

6.1. Mass Preservation During Topological Changes

Our method for allowing topological changes is essentiallya level set method with a small amount of diffusion
added. Hence, mass may not be conserved during a pinching or reconnection event. The amount of mass loss or gain
is directly controlled by the user specified tolerancedneck, so can be tuned if desired. Moreover, the loss or gain only
happens during a topological event. The rest of the time, ourmethod is just front-tracking. Preserving mass at all
times is a desirable property and the subject of future work.

6.2. How to Start the Algorithm

One issue with our method is that it requires a global inside and outside mesh that conforms to the initial boundary.
This can be inconvenient if only a polygonal representationof the boundary is available. We basically need a reference
mesh in order to compute the distance function to the boundary which is then used in our mesh generation algorithm.

One solution would be the following. Start with a coarse reference mesh and adaptively refine all triangles that
intersect the manifold, and continue until some minimum feature size is reached. Next, the distance function could
be computed in a narrow band around the boundary then extended by the method in [8]. This would give a distance
function whose zero level set approximates the boundary to within the desired feature size. One could then use this
distance function in our active contour routine for generating a conforming mesh. Unfortunately, this would most
likely be more expensive than the method we describe in this paper if the minimum feature size is very small in order
to account for some regions of high curvature. But this wouldonly be done once and could be considered as a form
of pre-processing. In the case where the initial manifold isknown as the level set of some function, then one can take
advantage of this directly.
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t=0.4695t=0.1985t=0.1742

t=0.1699t=0.1689t=0.1686

t=0.1170t=0.0570t=0.0000

Figure 15: Droplet motion by surface tension; only the interior mesh is shown. Plot box has units of 1 x 1. As the left droplet unbends, it comes
closer to the stationary drop on the right. Eventually, the droplets connect when the spacing between them drops belowdneck = 2 × 10−3. This
creates two high curvature regions (symmetric with respectto the midline of the plot box) on the top and bottom of the reconnection region. The
time-scale of relaxation is very fast (see Figures 16 and 17).
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t=0.19053t=0.18003t=0.17525

t=0.17322t=0.17083t=0.16991

t=0.16921t=0.16890t=0.16857

Figure 16: Zoom-in of sharp reconnection region relaxing (top). Plot box has units of 0.2 x 0.2.
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t=0.19053t=0.18003t=0.17525

t=0.17322t=0.17083t=0.16991

t=0.16921t=0.16890t=0.16857

Figure 17: Zoom-in of sharp reconnection region relaxing (bottom). Plot box has units of 0.2 x 0.2.
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Figure 18: Plots of triangle qualities versus simulation time (Section 5.2.4). Same format as in Figure 9.

6.3. Handling Exterior and Interior Phases

We focused on the case where the exterior phase was not important, hence the mesh of the exterior (particularly
of Γext) was not important. Examples where it is important are: flow of gas bubbles through a liquid phase inside a
closed box, multiple materials that deform in a problem of elasticity, etc... Handling these cases is a straightforward
extension of what we have described. If the enclosing “box” (denotedΓbox) is rectangular, then one can easily modify
the initial triangulationT init to be the box (i.e.Γext = Γbox, recall Section 3.2.1). Otherwise, one must first cover the
enclosing container with a rectangular shaped initial mesh(with a sufficiently large surrounding buffer region).

Then we generate a meshG that resolves the two-phase manifoldΓ andthe enclosing shapeΓbox. Next, candidate
manifolds must be found that approximateΓ and Γbox. Finally, during the mesh conformity phase, the mesh is
deformed so as to conform to bothΓ andΓbox simultaneously.

In fact, this can be generalized further to include any number of internal boundaries that may or may not be
interacting. If they do interact, then care must be taken in defining what a topological change is and how they occur.

6.4. Remove Wait Period

The need for a wait periodTwait in Section 5.2.2 is due to the way that we characterize a topological change, i.e.
we only view thinness as an indicator. This can be overcome ifwe include some other information, such as the nature
of the flow field in a thin region. Likewise, processing the shape skeleton better may help identify the correct regions
of topological change [69, 75]. This will be a point of futurework.

6.5. Generalize to 3-D

Our method mostly generalizes to 3-D. Our shape skeleton computation can be directly extended to tetrahedral
meshes in 3-D or one could possibly use the variational approach in [69, 75] to approximate a smoothed skeleton. In
general, our philosophy is that PDE based/variational methods can be quite effective for discrete mesh generation. But
a mesh, no matter how refined it is, is an inherently discrete structure and any algorithm for mesh generation must deal
with that, which our candidate manifold selection does (seeSection 3.3). However, this method does not generalize
to 3-D. On the other hand, we think the method in [11] could be adapted to our needs for 3-D tetrahedral meshes.

Estimating the curvature in 3-D will require a slightly different method than computing∇Γ · ν, because that only
gives the total curvature. Instead, we will need to estimate∇Γν (i.e. the second fundamental form [20]). The largest
eigenvalue of the 3x3 matrix∇Γν corresponds to the largest principle curvature of the surface and can be used for
refining by curvature in Algorithm 3. Estimating∇Γν can be done by a similar method as given in (8) of Section 3.2.3.
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More improvements could be made, including having a method to adapt the mesh boundary (in some sense) when
doing the shape optimization/smoothing step. One criteria could be to maximize the shape regularity of the boundary
mesh (while smoothing), which is especially important for using our method in 3-D.

6.6. Meshing Domains With Corners

Lastly, we mention the possibility of extending our method to handle manifolds with corners (in 2-D). If the
corners are specified, then one can add another stage for ensuring conformity that occurs before the main phase given
in Section 3.4. The initial stage would deform the mesh so that appropriately chosen points in the manifoldE are
made to conform to the corner points. This can be done by computing distance functions to each individual corner.
Next, note that the corner points would automatically partition the 1-D manifold into disjoint connected segments.
Thus, the active contour phase would consist of optimizing each individual segment so as to conform to the whole
shape. The final mesh conformity phase described in Section 3.4.5 would remain the same.

However, corners can be complicated in 3-D [67] and would require multiple phases to handle the corner tip,
followed by the corner edges, and finally the remaining patches of smooth surface. Of course, the shape regularity of
the mesh will be limited by the angle of the corners.
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[21] Gunay Doǧan. Topological changes and adaptivity for curve evolution.in preparation.
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