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Abstract. We design and analyze optimal additive and multiplicative multilevel methods for solving H1 prob-
lems on graded grids obtained by bisection. We deal with economical local smoothers: after a global smoothing in
the finest mesh, local smoothing for each added node during the refinement needs to be performed only for three
vertices - the new vertex and its two parent vertices. We show that our methods lead to optimal complexity for any
dimensions and polynomial degree. The theory hinges on a new decomposition of bisection grids in any dimension,
which is of independent interest and yields a corresponding decomposition of spaces. We use the latter to bridge the
gap between graded and quasi-uniform grids, for which the multilevel theory is well-established.
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1. Introduction. Adaptive methods are now widely used in scientific and engineering
computation to optimize the relation between accuracy and computational labor (degrees of
freedom). Standard adaptive finite element methods (AFEM) based on local mesh refinement
can be written as loops of the form

SOLVE → ESTIMATE→ MARK → REFINE. (1.1)

The module ESTIMATE determines a posteriori error estimators; we refer to [58]. The mod-
ule MARK selects elements with largest error indicators and is critical for convergence and
optimality of AFEM. Neither of these two procedures plays a role in the present discus-
sion. The module REFINE refines all marked elements and perhaps a few more to keep mesh
conformity. Of all possible refinement strategies, we are interested in bisection, a popular,
elegant, and effective procedure for refinement in any dimension [48, 8, 32, 33, 55, 3, 49, 54].
Our goal is to design optimal multilevel solvers that constitute the core of procedure SOLVE,
and analyze them within the framework of highly graded meshes created by bisection, from
now on called bisection grids.

It is important to realize that having optimal solvers in SOLVE is crucial for the theory
and practice of AFEM. Convergence of adaptive loops (1.1) for dimension d > 1 started with
the seminal work of Dörfler [26]. This was followed by Morin, Nochetto and Siebert [40, 41],
who realized the role of data oscillation, and Mekchay and Nochetto [36], who proved a
contraction property for AFEM for general elliptic PDEs. More recently, Binev, Dahmen, and
DeVore [10] proved quasi-optimal cardinality for a modified algorithm including coarsening.
Stevenson [53] was able to remove coarsening that still needs an artificial inner loop. The
most standard AFEM has been later examined by Cascón, Kreuzer, Nochetto and Siebert
[18], who have proved a contraction property and quasi-optimal cardinality. We refer to
Nochetto, Siebert and Veeser [42] for an introduction to the theory of adaptive finite element
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methods. The gap to obtaining optimal complexity is precisely having optimal solvers and
storage for adaptive bisection grids - the topic of this paper.

We consider a nested family of finite element spaces obtained by local mesh refinement:

V0 ⊆ V1 ⊆ · · · ⊆ VJ = V.

A standard multilevel method contains a smoothing step on the spaces Vj , j = 0, . . . , J . For
graded grids obtained by AFEM, it is possible that Vj results from Vj−1 by just adding few,
say one, basis function. Thus smoothing on both Vj and Vj−1 leads to a lot of redundancy. If
we let N be the number of unknowns in the finest space V , then the complexity of smoothing
can be as bad as O(N2). To achieve optimal complexity O(N), the smoothing in each space
Vj must be restricted to the new unknowns and their neighbors. Such methods are referred
to as local multilevel methods [17, 4]. Performing the smoothing only on the newly added
nodes, the most extreme choice, gives rise to the hierarchical basis (HB) method [66, 6].

Since the literature on local multilevel methods is abundant, we restrict ourselves to de-
scribing the papers most relevant to graded meshes. Brandt [17] proposed the multilevel adap-
tive technique (MLAT) and further studied it in [4]. McCormick and collaborators [34, 35]
developed the fast adaptive composite grid (FAC) method, which requires exact solvers on
subdomains that are partitioned by uniform grids; hence mesh adaptivity is achieved via su-
perposition of tensor-product rectangular grids. Rivara [47] and Mitchell [37, 38] devel-
oped local multigrid methods on adaptive triangular grids obtained by longest edge bisection
and newest vertex bisection, respectively, for d = 2. Also for d = 2, Bank, Sherman and
Weiser [7] proposed the red-green refinement strategy, which was implemented in the well-
known piecewise linear triangular multigrid software package (PLTMG) of Bank [5]. For
the resulting locally refined grids, Bank, Dupont and Yserentant [6] developed HB multi-
grid, which is a variant of the HB preconditioner developed earlier by Yserentant [65]. They
proved that the hierarchical basis methods are nearly optimal (up to a logarithmic factor on
the number of elements) for d = 2, and suboptimal for d > 2. Bramble, Pasciak and Xu [15]
proposed the BPX preconditioner on both quasi-uniform grids and locally refined grids, and
showed that it is nearly optimal for any dimension d. Oswald [44] was able to remove the log-
arithmic factor, and thus proved optimal complexity of BPX preconditioner and established a
similar result on locally refined grids in [45]. Bramble and Pasciak [14] proved the optimal-
ity of multilevel algorithms including BPX preconditioner and V-cycle multigrid methods on
quasi-uniform and locally refined grids. Dahmen and Kunoth [24] proved optimal complexity
of BPX, for graded meshes created by red-green refinement for d = 2; see also Bornemann
and Yserentant [13] for a simpler approach using a K-functor. Griebel [27, 30] developed
multilevel methods on adaptive sparse grids. Xu [61] introduced a unified abstract frame-
work for the various multilevel methods based on the method of subspace corrections, which
is the approach we pursue in this paper. More recently, Wu and Chen [60] analyzed multigrid
methods using Gauss-Seidel type smoothers on bisection grids generated by newest vertex
bisection for d = 2. Finally, Aksoylu and Holst [2] extended the optimality results of [24] to
a practical, local red-green refinement procedure for d = 3 due to Bornemann, Erdmann, and
Kornhuber [11].

We now summarize our four main contributions and place them in context.
• First we present a novel decomposition of bisection grids. Roughly speaking, for any

triangulation TN constructed from T0 by N bisections, we can write

TN = T0 + B, B = {b1, b2, · · · , bN} (1.2)

where B denotes an ordered sequence of N elementary bisections bi. Each bi is restricted
to a local region, the star of the newly created vertex, and the corresponding local grid
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is thus quasi-uniform. This decomposition induces a space decomposition {Vi}Ni=1 of the
underlying subspace of continuous piecewise linear functions over TN . Moreover, this
decomposition serves as a general bridge to transfer results from quasi-uniform grids to
graded bisection grids and has some intrinsic interest. For example, it is this geometric
structure of bisection grids that motivates the new efficient implementation of multilevel
methods developed by Chen and Zhang [22] for d = 2 and by Chen [19] for d = 3, which
avoids dealing with the tree structure of the mesh and hinges on coarsening from the finest
mesh TN to find (1.2). Such a grid decomposition may or may not coincide with the one
giving rise to TN via AFEM, but it does not matter.
We stress that the popularity of multilevel methods among practitioners is somehow ham-
pered by their complicated data structures to store and access the hierarchical grid structure.
Efficient multilevel algorithms developed in [22] and [19] require only minimal bookkeep-
ing (recording the two parent nodes for each new bisection node) and a simple data struc-
ture (only the finest grid must be stored instead of the whole refinement tree). They rely
on a clever coarsening algorithm for bisection grids and exhibit both optimal storage and
complexity. This paper provides a theoretical basis for these methods and establishes their
optimality.

• Second, we introduce and analyze economical local smoothers which reduce the complex-
ity of the resulting multilevel methods. In fact, besides a smoothing in the finest grid TN ,
the local smoothing (or local relaxation) associated with each bisection bi is just performed
for the newly created vertex and its two parent vertices. This implies that dimVi = 3,
whence the total complexity is proportional to the size of the linear system with a rela-
tively small constant.
From the algorithmic point of view, our algorithm is different from the traditional local
multigrid, which requires smoothing for the new vertex and all neighboring vertices (and
degrees of freedom for quadratic or higher order elements) but no additional smoothing in
the finest grid. In one iteration of V-cycle or BPX preconditioner, our algorithm requires
less operations than the traditional one. For example, for linear elements, treating the cost
of the smoothing on one node as a unit, our algorithm requires 4N operations while the
traditional one may need kN operations, where k is the number of neighboring nodes
surrounding a node. For bisection grids, the average of k is 5 for d = 2 and could be
as high as 10 for d = 3. Furthermore our algorithm is easier to implement, especially
for higher order elements. The smoothing on the finest grid can be easily realized using
Jacobi or Gauss-Seidel methods since the matrix is given while the multilevel smoothing
only involves linear elements and three points. Note that the new vertex and two parents
vertices are minimal information needed, in any geometric multigrid method, to construct
the restriction and prolongation operators.
Our three-point smoother, inspired by an idea of Stevenson [52] for wavelets, can be also
thought of as an economical way to stabilize the hierarchical basis (HB) methods for d > 2,
which otherwise are known to be suboptimal. Other stabilization attempts for the HB
methods can be found in [56, 57]. We stress that the smoothing in the finest grid, which
follows from the principle of auxiliary space method [62], plays an important role in the
stabilization.

• Third, we provide an analysis without the so-called nested refinement assumption:

ΩJ ⊆ ΩJ−1 ⊆ · · · ⊆ Ω0 = Ω, (1.3)

with each subdomain Ωj being made of all the new elements created at the j-th level which,
therefore, were not present earlier. This also implies that all elements contained in subdo-
main Ωj possess the same generation j and a comparable size. The grid corresponding to
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Ωj is thus quasi-uniform, and local multigrid methods can be analyzed using a truncated
L2-projection [15, 14].
A natural question then arises: how can we apply existing theories to bisection grids which
may not obey the nested refinement assumption (1.3)? For fully additive multilevel meth-
ods, e.g. the original BPX preconditioner, the ordering does not matter in the implementa-
tion and analysis and thus we can always assume (1.3) holds. For multiplicative methods
(e.g. V-cycle multigrid or additive multilevel method with multiplicative smoothers), fur-
ther work needs to be done to apply the existing theories.
One approach is to use the relation between the additive and the multiplicative method
[29, 16, 23]. Roughly speaking, if additive preconditioner leads to a uniformly bounded
condition number for the preconditioned system, then the multiplicative methods is con-
vergent with a rate depends at most on J the number of levels. For quasi-uniform grids,
J ≈ | log h| which is an acceptable factor in practice. For bisection grids, however, the
level J could be O(N) in the worst scenario and thus this estimate is not optimal.
When the tree structure of the local mesh refinement is available, one could reconstruct a
virtual local mesh refinement hierarchy by grouping all elements with the same generation
into one level such that the assumption (1.3) holds [12, 11, 31] and implement multigrid
algorithms on this virtual nested refinement. However, these levels increase dynamically
within AFEM and must be updated for every loop (1.1). Consequently, reconstructing
a virtual refinement hierarchy entails implementing suitable bookkeeping data structures
which might compromise optimal storage and thus optimality.
The new algorithms [19, 22], as well as [1], show that multilevel methods retain optimality
even when the nested refinement assumption (1.3) is violated or elements with disparate
sizes are grouped together into one refinement patch. This paper provides an alternative
approach to analyze these more flexible algorithms.

• Four, we provide a unified framework for analysis of multilevel methods on graded bi-
section grids, which is valid for any dimension d, any polynomial degree, and minimal
regularity. We should point out that Wu and Chen [60] have analyzed multigrid methods
for bisection grids and d = 2 without the nested refinement assumption (1.3). Their proof
of uniform convergence relies on the specific geometric structure of bisection grids for
d = 2, and its extension to d > 2 seems rather difficult. Our approach below is conceptu-
ally simpler than [60], applies to any dimension d as well as general smoothers, rather than
just Gauss-Seidel, and extends to BPX preconditioners. Our analysis, carried out in Section
2.4, hinges on three basic properties: the contraction property (2.6) of the local (inexact)
smoother, the stability bound (1.6) of the subspace decomposition, and the strengthened
Cauchy-Schwarz inequality (1.7). The proofs of (1.6) and (1.7) are the core of this pa-
per and are given in Section 4. They heavily rely on the decomposition of bisection grids
discussed earlier in Section 3.

In the rest of the introduction, we briefly present the model problem and outline our
approach. Let Ω ⊂ Rd, d ≥ 2 be a polyhedral domain, and consider the Dirichlet form

a(u, v) :=

∫
Ω

∇u · ∇v dx.

Given a (graded) triangulation T of Ω, we choose the finite element space V := {v ∈ H1
0 (Ω) :

v|τ ∈ Pm(τ), for all τ ∈ T }, where Pm(τ) is the space of polynomials on τ of degree ≤ m,
with m ≥ 1, and let u ∈ V be the finite element solution of the second order elliptic equation

(Au, v) := a(u, v) = 〈f, v〉 for all v ∈ V, (1.4)

where f ∈ H−1(Ω), A : V → V is the discrete Laplacian, and 〈·, ·〉 is the duality pair. For
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ease of exposition, we let Ω be partitioned exactly into a bisection grid T , which is shape
regular and conforming, and consider the Laplace operator.

Our analysis can be generalized to variable coefficients with small variations, in which
case the contraction factor will depend on the variations of the coefficients. For variable
coefficients, possibly with large jumps across interelement boundaries, we refer to [21]: using
local multigrid as a preconditioner of the conjugate gradient method yields a robust method
with respect to both the mesh size and the size of jump discontinuities of the coefficients.

We now briefly discuss our approach to multilevel methods. Let {φp}p∈Λ be the canon-
ical basis functions of the space V and let Vp = span{φp} with dimVp = 1 for p ∈ Λ; thus
V = span{φp}p∈Λ. Let Vi ⊂ V with dimVi = 3 be the space of piecewise linear functions
spanned by the newest vertex added by each elementary bisection bi and its two parents ver-
tices, for i = 1, · · · , N , and let V0 be the coarsest space of piecewise linear elements over
T0. We then have the space decomposition

V =
∑
p∈Λ

Vp +

N∑
i=0

Vi, (1.5)

for which we shall prove the following two key properties:
• Stable Decomposition: For any v ∈ V, there exist vp ∈ Vp, p ∈ Λ, and vi ∈ Vi, i =

0, · · · , N such that v =
∑
p∈Λ vp +

∑N
i=0 vi and

∑
p∈Λ

h−2
p ‖vp‖2 +

N∑
i=0

h−2
i ‖vi‖

2 . |v|21. (1.6)

• Strengthened Cauchy-Schwarz (SCS) Inequality: For any ui, vi ∈ Vi, i = 0, · · · , N , we
have

∣∣∣ N∑
i=0

N∑
j=i+1

a(ui, vj)
∣∣∣ . ( N∑

i=0

|ui|21

)1/2( N∑
i=1

|vi|21

)1/2

. (1.7)

Hereafter hp or hi represent local meshsizes corresponding to Vp or Vi, respectively. With the
help of (1.6) and (1.7), derived in Section 4, we are able to obtain optimal multilevel methods
including BPX preconditioner and V-cycle multigrid methods for solving the algebraic system
(1.4) over graded bisection grids. We prove convergence of these methods in Section 2.4.

We use standard Sobolev space notation: ‖ · ‖ denotes the L2-norm and | · |1 the H1-
semi-norm, which is a norm on H1

0 (Ω). We write x . y to indicate x ≤ Cy, with constant
C independent of problem size N and functions v ∈ V , as well as x h y to mean x . y and
y . x.

The rest of this paper is organized as follows. In Section 2, we review the subspace
correction method and provide abstract convergence analysis based on three assumptions:
(1.6), (1.7), and (2.6) below. In Section 3, we discuss bisection methods and present the
crucial decomposition of bisection grids. In Section 4, we first obtain a space decomposition
based on the decomposition of bisection grids and next prove (1.6) and (1.7). Finally, in
Section 5 we summarize optimal complexity results for both local BPX-preconditioner and
V-cycle multigrid, which are valid for inexact local solvers which induce the contraction (2.6).

2. The Method of Subspace Corrections. Discretization of partial differential equa-
tions often leads to linear algebraic equations of the form

Au = f, (2.1)
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where A ∈ RN×N is a sparse matrix and f ∈ RN . In this section, we give some general
and basic results that will be used in later sections to construct efficient multilevel iterative
methods (such as multigrid methods) for (2.1) resulting from finite element discretizations
of elliptic partial differential equations. The presentation in this section follows closely to
Xu [61] with simplified analysis.

2.1. Iterative Methods. A basic linear iterative method for Au = f can be written in
the following form

uk+1 = uk +B(f −Auk),

starting from an initial guess u0 ∈ V; B is called iterator. If A = (aij) ∈ RN×N is split
into diagonal, lower and upper triangular parts, namely A = D + L + U , then two classical
examples are the Jacobi method B = D−1 and the Gauss-Seidel method B = (D + L)−1.

The art of constructing efficient iterative methods lies on the design of B which captures
the essential information ofA−1 and its action is easily computable. In this context the notion
of “efficiency” entails two essential requirements:
• One iteration requires a computational effort proportional to the number of unknowns.
• The rate of convergence is well below 1 and independent of the number of unknowns.

The approximate inverse B, when it is SPD, can be used as a preconditioner for Con-
jugate Gradient (CG) method. The resulting method, known as preconditioned conjugate
gradient method (PCG), admits the following error estimate in terms of the condition number
κ(BA) = λmax(BA)/λmin(BA)

‖u− uk‖A
‖u− u0‖A

≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)k
(k ≥ 1);

B is called preconditioner. A good preconditioner should have the properties that the action
of B is easy to compute and that κ(BA) is significantly smaller than κ(A).

2.2. Space Decomposition and Method of Subspace Corrections. In the spirit of di-
vide and conquer, we decompose the space V =

∑J
i=0 Vi as the summation of subspaces

Vi ⊂ V; {Vi}Ji=0 is called a space decomposition of V . Since
∑J
i=0 Vi is not necessarily a

direct sum, decompositions of u ∈ V of the form u =
∑J
i=0 ui are in general not unique.

The original problem (2.1) can thus be split into sub-problems in each Vi with smaller size
which are relatively easier to solve.

Throughout this paper, we use the following operators, for i = 0, 1, . . . , J :
• Qi : V → Vi the projection in the inner product (·, ·);
• Ii : Vi → V the natural inclusion which is often called prolongation;
• Pi : V → Vi the projection in the inner product (·, ·)A = (A·, ·);
• Ai : Vi → Vi the restriction of A to the subspace Vi;
• Ri : Vi → Vi an approximation of A−1

i (often known as smoother);
• Ti : V → Vi Ti = RiQiA = RiAiPi.

It is easy to verify the relation QiA = AiPi and Qi = Iti with (Itiu, vi) := (u, Iivi). The
operator Iti is often called restriction. If Ri = A−1

i , then we have an exact local solver
and RiQiA = Pi. With slightly abused notation, we still use Ti to denote the restriction
Ti|Vi : Vi → Vi and T−1

i = (Ti|Vi)−1 : Vi → Vi.
For a given residual r ∈ V , we let ri = Qir = Iti r denote the restriction of the residual

to the subspace Vi and solve the residual equation Aiei = ri in Vi approximately

êi = Riri.
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Subspace corrections êi are assembled to yield a correction in the space V , thereby giving
rise to the so-called method of subspace corrections. There are two basic ways to assemble
subspace corrections.

Parallel Subspace Correction (PSC). This method performs the correction on each subspace
in parallel. In operator form, it reads

uk+1 = uk +B(f −Auk), (2.2)

where

B =

J∑
i=0

IiRiI
t
i . (2.3)

The subspace correction is êi = IiRiI
t
i (f − Auk), and the correction in V is ê =

∑J
i=0 êi.

The error equation reads

u− uk+1 =

[
I −

( J∑
i=0

IiRiI
t
i

)
A

]
(u− uk) =

(
I −

J∑
i=0

Ti

)
(u− uk);

Successive Subspace Correction (SSC). This method performs the correction in a successive
way. In operator form, it reads

v0 = uk, vi+1 = vi + IiRiI
t
i (f −Avi), i = 0, . . . , J, uk+1 = vJ+1, (2.4)

and the corresponding error equation is

u− uk+1 =

[
J∏
i=0

(I − IiRiItiA)

]
(u− uk) =

[
J∏
i=0

(I − Ti)

]
(u− uk);

in the notation
∏J
i=0 ai, we assume there is a built-in ordering from i = 0 to J , i.e.,

∏J
i=0 ai =

a0a1 . . . aJ . Therefore, PSC is an additive method whereas SSC is a multiplicative method.
As a trivial example, we consider the space decomposition RJ =

∑J
i=1 span{ei}. In

this case, if we use exact (one dimensional) subspace solvers, the resulting SSC is just the
Gauss-Seidel method and the PSC is just the Jacobi method. More complicated and effective
examples, including multigrid methods and multilevel preconditioners, will be discussed later
on.

2.3. Sharp Convergence Identities. The analysis of parallel subspace correction meth-
ods relies on the following identity which is well known in the literature [59, 61, 28, 64].

THEOREM 2.1 (Identity for PSC). If Ri is SPD on Vi for i = 0, . . . , J , then B defined
by (2.3) is also SPD on V . Furthermore

(B−1v, v) = inf∑J
i=0 vi=v

J∑
i=0

(R−1
i vi, vi). (2.5)

On the other hand, the analysis of Successive subspace correction methods hinges on an
identity of Xu and Zikatanov [64] to be described below. First we assume that each subspace
smoother Ri induces a convergent iteration, i.e. the error operator I − Ti is a contraction.
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(T) Contraction of Subspace Error Operator: There exists ρ < 1 such that

‖I − Ti‖Ai ≤ ρ for all i = 0, 1, · · · , J. (2.6)

We associate with Ti the adjoint operator T ∗i with respect to the inner product (·, ·)A. To
deal with general, possibly non-symmetric smoothers Ri, we introduce the symmetrization
of Ti

T i = Ti + T ∗i − T ∗i Ti, for i = 0, · · · , J. (2.7)

We use a simplified version of XZ identity given by Cho, Xu, and Zikatanov [23]; see
also [20].

THEOREM 2.2 (Identity of SSC). If assumption (T) is valid, then the following identity
holds ∥∥∥ J∏

i=0

(I − Ti)
∥∥∥2

A
= 1− 1

K
,

where

K = sup
‖v‖A=1

inf∑J
i=0 vi=v

J∑
k=0

(
T
−1

i (vi + T ∗i wi), vi + T ∗i wi

)
A
, (2.8)

with wi =
∑
j>i vj .

When we choose exact local solvers, i.e., Ri = A−1
i and consequently Ti = Pi for

i = 0, · · · , J , (T) holds with ρ = 0. Therefore we have a more concise formulation for such
choice [64].

COROLLARY 2.3 (Identity of SSC with exact solver). One has the following identity∥∥∥ J∏
i=0

(I − Pi)
∥∥∥2

A
= 1− 1

1 + c0
,

where

c0 = sup
‖v‖A=1

inf∑J
i=0 vi=v

J∑
i=0

∥∥∥Pi N∑
j=i+1

vj

∥∥∥2

A
. (2.9)

2.4. Convergence Analysis. We now present a convergence analysis based on three
assumptions: (T) on Ti and the two ones below on the space decomposition. The analysis
here is adapted from Xu [61] and simplified by using the XZ identity.

(A1) Stable Decomposition: For any v ∈ V , there exists a decomposition v =
∑J
i=0 vi, vi ∈

Vi, i = 0, . . . , J such that

J∑
i=0

‖vi‖2A ≤ K1‖v‖2A. (2.10)

(A2) Strengthened Cauchy Schwarz (SCS) Inequality: For any ui, vi ∈ Vi, i = 0, · · · , J∣∣∣∣∣∣
J∑
i=0

J∑
j=i+1

(ui, vj)A

∣∣∣∣∣∣ ≤ K2

(
J∑
i=0

‖ui‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

. (2.11)
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THEOREM 2.4 (Multilevel preconditioning). Let V =
∑J
i=0 Vi be a space decomposi-

tion satisfying assumptions (A1) and (A2), and let Ri be SPDs for i = 0, · · · , J such that

K−1
4 ‖ui‖2A ≤ (R−1

i ui, ui) ≤ K3‖ui‖2A. (2.12)

Then B defined by (2.3) is SPD and

κ(BA) ≤ (1 + 2K2)K1K3K4. (2.13)

Proof. Let v =
∑J
i=0 vi be a decomposition satisfying (2.10). It follows from the identity

(2.5), and the definitions (2.10) of K1 and (2.12) of K3, that

(B−1v, v) ≤
J∑
i=0

(R−1
i vi, vi) ≤ K3

J∑
i=0

‖vi‖2A ≤ K1K3‖v‖2A = K1K3(Av, v),

which implies

λmin(BA) ≥ (K1K3)−1. (2.14)

For any decomposition v =
∑J
i=0 vi , in view of (2.11) and (2.12), we have

(Av, v) ≤
J∑
i=0

(vi, vi)A + 2

∣∣∣∣∣∣
J∑
i=0

J∑
j=i+1

(vi, vj)A

∣∣∣∣∣∣
≤ (1 + 2K2)

J∑
i=0

‖vi‖2A ≤ (1 + 2K2)K4

J∑
i=0

(R−1
i vi, vi).

Taking the infimum and using again (2.5), we get

(Av, v) ≤ (1 + 2K2)K4 inf∑J
k=0 vi=v

J∑
i=0

(R−1
i vi, vi) = (1 + 2K2)K4(B−1v, v),

which implies

λmax(BA) ≤ (1 + 2K2)K4. (2.15)

The estimate (2.13) then follows from (2.14) and (2.15).
LEMMA 2.5 (Estimate of eigenvalues of T

−1

i ). If (T) holds, then T i is non-singular and

1 ≤ λmin(T
−1

i ) ≤ λmax(T
−1

i ) ≤ 1

1− ρ2
. (2.16)

Proof. The estimates follow easily by (2.6) and the definition of T i, which satisfies

I − T i = (I − T ∗i )(I − Ti) = (I − Ti)∗(I − Ti). (2.17)

We omit the details.
THEOREM 2.6 (Convergence of SSC). Let V =

∑J
i=0 Vi be a space decomposition

satisfying assumptions (A1) and (A2), and let the subspace smoothers Ti satisfy (T). We then
have ∥∥∥ J∏

i=0

(I − Ti)
∥∥∥2

A
≤ 1− 1− ρ2

2K1(1 + (1 + ρ)2K2
2 )
.
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Proof. We shall give an upper bound of the constant K in Theorem 2.2 by choosing a
stable decomposition v =

∑
i vi satisfying (2.10). By the inequality 2ab ≤ a2 + b2, we have

2(T
−1

i vi, T
∗
i wi)A ≤ (T

−1

i vi, vi)A + (T
−1

i T ∗i wi, T
∗
i wi)A, (2.18)

where wj =
∑
j>1 vj . Therefore we only need to estimate the two terms on the right hand

side of (2.18).
Using the eigenvalue estimate of T

−1

i in Lemma 2.5, together with (2.10), we arrive at

J∑
i=0

(T
−1

i vi, vi)A ≤
J∑
i=0

λmax(T
−1

i )‖vi‖2A ≤
K1

1− ρ2
‖v‖2A. (2.19)

To estimate the second term in (2.18), we use the SCS estimate (2.11) to get

J∑
i=0

(T
−1

i T ∗i wi, T
∗
i wi)A =

J∑
i=0

J∑
j=i+1

(TiT
−1

i T ∗i wi, vj)A

≤ K2

(
J∑
i=0

‖TiT
−1

i T ∗i wi‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

.

Since ‖Ti‖Ai = ‖T ∗i ‖Ai ≤ 1 + ρ and ‖T−1

i ‖Ai = λmax(T
−1

i ) ≤ 1
1−ρ2 , we deduce

‖TiT
−1

i T ∗i wi‖A ≤ ‖Ti‖Ai‖T
−1

i ‖Ai‖T ∗i ‖Ai‖wi‖A ≤
1 + ρ

1− ρ
‖wi‖A.

Now using the SCS estimate (2.11) again, we get

J∑
i=0

(wi, wi)A =

J∑
i=0

J∑
j=i+1

(wi, vj)A ≤ K2

(
J∑
i=0

‖wi‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

,

which leads to

J∑
i=0

‖wi‖2A ≤ K2
2

J∑
i=0

‖vi‖2A.

Consequently,

J∑
i=0

(T
−1

i T ∗i wi, T
∗
i wi)A ≤ K2

2

1 + ρ

1− ρ

J∑
i=0

‖vi‖2A ≤ K1K
2
2

1 + ρ

1− ρ
‖v‖2A. (2.20)

Inserting (2.18), (2.19), and (2.18) into (2.8), we get the upper bound of K ≤ 2K1

(
1 + (1 +

ρ)2K2
)
/(1− ρ2). Finally, the desired contraction estimate follows from Theorem 2.2.

When we use exact local solvers Ri = A−1
i , we have a simpler proof and sharper esti-

mate.
COROLLARY 2.7. Let the space decomposition satisfy (A1) and (A2), and let Ri = A−1

i

for all i. Then ∥∥∥ J∏
i=0

(I − Pi)
∥∥∥2

A
≤ 1− 1

1 +K1K2
2

.

10



Proof. We apply (2.11) with ui = Pi
∑J
j=i+1 vj to obtain

J∑
i=0

‖ui‖2A =

J∑
i=0

(ui, Pi

J∑
j=i+1

vj)A =

J∑
i=0

J∑
j=i+1

(ui, vj)A

≤ K2

(
J∑
i=0

‖ui‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

.

Consequently, if v =
∑J
k=0 vk is a stable decomposition satisfying (2.10), we get

J∑
i=0

∥∥∥Pi J∑
j=i+1

vj

∥∥∥2

A
=

J∑
i=0

‖ui‖2A ≤ K2
2

J∑
i=0

‖vi‖2A ≤ K1K
2
2‖v‖2A,

which implies c0 ≤ K2
2K1. The desired result then follows from Corollary 2.3.

3. Bisection Methods. We now discuss bisection methods for simplicial grids for d ≥
2, following [53, 42], and present a novel decomposition of conforming meshes obtained by
bisection. We do not discuss the alternative refinement method, called regular refinement,
which divides one simplex into 2d children; see [7, 24] for d = 2 and [11, 1] for d = 3.

3.1. Bisection Rules. Given a simplex τ , we assign one of its edges as the refinement
edge of τ . Starting from an initial triangulation T0, a bisection method consists of the follow-
ing rules:

R1. Assign refinement edges for each element τ ∈ T0 (initial labeling);
R2. Divide a simplex into two simplices by joining the midpoint of its refinement edge with
its vertices other than those in the refinement edge (bisection);
R3. Assign refinement edges to the two children of a bisected simplex (labeling).

There are several bisection methods proposed for d ≥ 3 [8, 32, 33, 46, 3, 54], which
generalize the newest vertex bisection [37] and longest edge bisection [48] for d = 2. We now
give a mathematical description based on Kossaczky [32], Traxler [55], and Stevenson [54].
For each simplex τ , rules R1-3 associate a unique refinement edge e. The pair (τ, e) is called
labeled simplex, and (T ,L) := {(τ, e) : τ ∈ T } is called labeled triangulation. A d-simplex
τ is a set of d+ 1 ordered vertices {xi}di=0 and type t:

τ = {x0, x1, · · · , xd}, t ∈ {0, 1, · · · , d}.

We let e = x0xd be the refinement edge, and let x̄ = 1
2 (x0 + xd) be the midpoint of e. The

two children τ1, τ2 of τ are the simplices obtained by joining x̄ with the vertices of τ other
than x0, xd. Ordering the vertices of the children, or equivalently labeling them, is a crucial
process that includes R2-3. We consider the following rule R3:

τ1 := {x0, x̄, x1, . . . , xt︸ ︷︷ ︸
→

, xt+1, . . . , xd−1︸ ︷︷ ︸
→

}(t+1)mod d,

τ2 := {xd, x̄, x1, . . . , xt︸ ︷︷ ︸
→

, xd−1, . . . , xt+1︸ ︷︷ ︸
←

}(t+1)mod d,
(3.1)

with the convention that arrows point in the direction of increasing indices and {x1, . . . , x0} =
∅, {xd, . . . , xd−1} = ∅. For d = 2 rule R3 does not depend on the element type and we get
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for τ = {x0, x1, x2} the two children τ1 = {x0, x̄, x1}, τ2 = {x2, x̄, x1}. Moreover, the
refinement edge of the two children is opposite to the new vertex x̄, whence this procedure
coincides with the newest vertex bisection method. We refer to the survey [42, Section 4] for
a discussion for d ≥ 2, and stress that once rule R1 is settled, then the subsequent labeled
grids are uniquely defined.

For a labeled triangulation (T ,L), and τ ∈ T , a bisection bτ : {(τ, e)} → {(τ1, e1), (τ2, e2)}
is a map that encodes the above procedure. We next define the formal addition as follows:

T + bτ := (T ,L)\{(τ, e)} ∪ {(τ1, e1), (τ2, e2)}.

For an ordered sequence of bisections B = {bτ1 , bτ2 , · · · , bτN }, we define

T + B := ((T + bτ1) + bτ2) + · · ·+ bτN ,

whenever the addition is well defined (i.e. τi should exists in the previous labeled triangula-
tion). These additions are a convenient mathematical description of bisection on triangula-
tions.

Given an initial grid T0 of Ω and rules R1-3, we define the sets

G(T0) = {T : there exists a bisection sequence B such that T = T0 + B},
T(T0) = {T ∈ G(T0) : T is conforming}.

Therefore G(T0) contains all (possibly nonconforming) grids obtained from T0 using the
bisection method, which are uniquely defined once the rules R1-3 have been set, whereas
T(T0) is the subset of conforming grids.

It is essential for the discussion to define the sequence of uniformly refined meshes
{T k}∞k=0 by:

T k := T k−1 + {bτ : τ ∈ T k−1}, for k ≥ 1,

with T 0 := T0. This means that T k is obtained by bisecting all elements in T k−1 only once.
Note that T k ∈ G(T0) but not necessarily in T(T0).

We thus consider bisection methods which satisfy the following two assumptions:

(B1) Shape Regularity: G(T0) is shape regular.
(B2) Conformity of Uniform Refinement: T k ∈ T(T0), i.e. T k is conforming, for all
k ≥ 0.

With the specific rule (3.1), due to [32, 55, 54], we see that the type t increases by 1 and
the vertex ordering changes with t, which in turn implies that after d recurrent bisections of
a simplex τ all its edges are bisected. This leads to a fixed number of similarity classes of
elements, depending only on T0, and thus B1 holds for any d. We refer to [42] for a thorough
discussion.

We recall that for d = 2, rule (3.1) reduces to the newest vertex bisection, in which case
Sewell [51] showed that all the descendants of a triangle in T0 fall into four similarity classes
and hence (B1) holds. Note that (B2) may not hold for an arbitrary rule R1, namely the re-
finement edge for elements in the initial triangulation cannot be selected freely. Mitchell [37]
came up with a rule R1 for which (B2) holds. He proved the existence of such initial labeling
scheme (so-called compatible initial labeling), and Biedl, Bose, Demaine, and Lubiw [9]
gave an optimal O(N) algorithm to find a compatible initial labeling for a triangulation with
N elements. In summary, for d = 2, newest vertex bisection with compatible initial labeling
is a bisection method which satisfies (B1) and (B2).
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Enforcing (B2) for d > 2 requires also a labeling of the initial mesh T0, for which there
is no constructive procedure. The algorithms proposed by Kossaczký [32] for d = 3 and
Stevenson [54] for d ≥ 3 enforce such initial labeling upon further refining every element
of the initial triangulation, which deteriorates the shape regularity. Although (B2) imposes a
severe restriction on the initial labeling, we emphasize that it is also used to prove the optimal
cardinality of adaptive finite element methods [53, 18, 42]. Finding conditions weaker than
(B2) is a challenging open problem.

3.2. Compatible Bisections. We denote byN (T ) the set of vertices of the triangulation
T and by E(T ) the set of all edges of T . By convention, all simplices are closed sets. For a
vertex x ∈ N (T ) or an edge e ∈ E(T ), we define the first ring (or the star) of x or e to be

Rx = {τ ∈ T |x ∈ τ}, Re = {τ ∈ T | e ⊂ τ},

and the local patch of x or e as ωx = ∪τ∈Rxτ, and ωe = ∪τ∈Reτ. Note that ωx and ωe are
subsets of Ω, whileRx andRe are subsets of T which can be thought of as triangulations of
ωx and ωe, respectively. We indicate with #S the cardinality of a set S.

Given a labeled triangulation (T ,L), an edge e ∈ E(T ) is called a compatible edge if e
is the refinement edge of τ for all τ ∈ Re. For a compatible edge e, the ring Re is called a
compatible ring, and the patch ωe is called a compatible patch. Let x be the midpoint of a
compatible edge e and Rx be the ring of x in T + {bτ : τ ∈ Re}. A compatible bisection is
a mapping be : Re → Rx. We then define the addition

T + be := T + {bτ : τ ∈ Re} = T \Re ∪Rx.

Note that if T is conforming, then T +be is conforming for a compatible bisection be, whence
compatible bisections preserve conformity of triangulations and are thus a fundamental con-
cept both in theory and practice. For a compatible bisection sequence B = {bi}Ji=0, the
addition T0 + B is defined recursively Ti = Ti−1 + bi for 1 ≤ i ≤ J .

e
be

p e
be

p

FIGURE 1. Two compatible bisections. Left: interior edge; right:

boundary edge. The vertex near the dot is the newest vertex, the edge

with boldface is the refinement edge, and the dash-line represents the

bisection.

1

FIG. 3.1. Two compatible bisections for d = 2. Left: interior edge; right: boundary edge. The edge with
boldface is the compatible refinement edge, and the dash-line represents the bisection.

(a) A compatible patch ωe with common edge e (b) Patch ωp after a compatible bisection bp

FIG. 3.2. A compatible bisection for d = 3: the edge e (in bold) is the refinement edge of all elements in the
patch ωe. Connecting the midpoint p of e to the other vertices bisects each element of the compatible ringRe and
keeps the mesh conforming without spreading refinement outside ωe. This is an atomic operation.
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In two dimensions, a compatible bisection be has only two possible configurations; see
Fig. 3.1. The first one corresponds to bisecting an interior compatible edge, in which case
the patch ωe is a quadrilateral. The second case corresponds to bisecting a boundary edge,
which is always compatible, and ωe is a triangle. In three dimensions, the configuration of
compatible bisections depends on the initial labeling; see Fig. 3.2 for a simple case.

The bisection of paired triangles was first introduced by Mitchell for dimension d =
2 [37, 38]. The idea was generalized by Kossaczký [32] to d = 3, and Maubach [33] and
Stevenson [54] to d ≥ 2. In the aforementioned references, efficient recursive completion
procedures of bisection methods are introduced based on compatible bisections. We use
them to characterize the conforming mesh obtained by bisection methods.

3.3. Decomposition of Bisection Grids. We now present a decomposition of meshes in
T(T0) using compatible bisections, which will be instrumental later.

THEOREM 3.1 (Decomposition of bisection grids). Let T0 be a conforming triangula-
tion. Suppose the bisection method satisfies assumption (B2), i.e., for all k ≥ 0 all uniform
refinements T k of T0 are conforming. Then for any T ∈ T(T0), there exists a compatible
bisection sequence B = {b1, b2, · · · , bN} with N = #N (T )−#N (T0) such that

T = T0 + B. (3.2)

(a) Initial grid T0 (b) T3 (c) T8

(d) T13 (e) T19 (f) Fine grid T = T19

FIG. 3.3. Decomposition of a bisection grid for d = 2: Each frame displays a mesh Ti+k = Ti +

{bi+1, · · · , bi+k} obtained from Ti by a sequence of compatible bisections {bj}i+k
j=i+1 using the longest edge.

The order of bisections is irrelevant within each frame, but matters otherwise.

We prove this result later in this section. We now use the example in Figure 3.3 to
illustrate the decomposition of a bisection grid. In Figure 3.3 (a), we display the initial trian-
gulation T0 which uses the longest edge as the refinement edge for each triangle. We display
the fine grid T ∈ T(T0) in Figure 3.3 (f). In Figure 3.3 (b)-(e), we give several intermediate
triangulations during the refinement process: each triangulation is obtained by performing
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several compatible bisections on the previous one. Each compatible patch is indicated by a
gray region and the new vertices introduced by bisections are marked by black dots.

To prove Theorem 3.1, we introduce the generation of elements and vertices. The gener-
ation of each element in the initial grid T0 is defined to be 0, and the generation of an element
τ ∈ G(T0) is 1 plus that of the father. Therefore, gτ coincides with the number of bisections
needed to create τ from T0, and the uniformly refined mesh T k can be characterized as the
triangulation in G(T0) with all its elements of the same generation k. Vice versa, an element
τ with generation k can exist in T j only for j = k.

Let N(T0) = ∪{N (T ) : T ∈ G(T0)} denote the set of all possible vertices. For
any vertex p ∈ N(T0), the generation gp of p is defined as the minimal integer k such that
p ∈ N (T k).

The following properties about the generation of elements or vertices for uniformly re-
fined meshes T k are a consequence of the definition above:

τ ∈ T k if and only if gτ = k; (3.3)

p ∈ N (T k) if and only if gp ≤ k; (3.4)

for τ ∈ T k, max
q∈N (τ)

gq = k = gτ , (3.5)

where N (τ) is the set of vertices of τ ∈ T k.
LEMMA 3.2 (Maximal generation). Let T0 be a conforming triangulation. Let the bi-

section method satisfy assumption (B2). For any T ∈ T(T0), let p ∈ N (T ) be a vertex with
maximal generation in the sense that gp = maxq∈N (T ) gq . Then, all elements inRp have the
same generation gp, namely,

gτ = gp for all τ ∈ Rp, (3.6)

Rp = Rk,p, (3.7)

where k = gp andRk,p is the first ring of p in the uniformly refined mesh T k.
Proof. We prove (3.6) by showing gp ≤ gτ and gτ ≤ gp. Since T is conforming, p is a

vertex of each element τ ∈ Rp. This implies that p ∈ N (T gτ ) and thus gτ ≥ gp by (3.4).
On the other hand, from (3.5), we have

gτ = max
q∈N (τ)

gq ≤ max
q∈N (T )

gq = gp, for all τ ∈ Rp.

Now we prove (3.7). By (3.3),Rk,p is made of all elements with generation k containing
p. By (3.6), we conclude Rp ⊆ Rk,p. The fact that p cannot belong to the domain Ω\ωp,
because of the topology of ωp, impliesRk,p\Rp = ∅. This proves (3.7).

Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the result by induction onN = #N (T )−#N (T0). Nothing
needs to be proved for N = 0. Assume that (3.2) holds for N .

Let T ∈ T(T0) with #N (T ) − #N (T0) = N + 1. Let p ∈ N (T ) be a vertex with
maximal generation, i.e., gp = maxq∈N (T ) gq . Then by Lemma 3.2, we know that Rp =

Rk,p for k = gp. Now by assumption (B2),Rk,p is created by a compatible bisection, say

be : Re → Rk,p,

with e ∈ E(T k−1). Since the compatible bisection giving rise to p is unique within G(T0),
it must thus be be. This means that if we undo the bisection operation, then we still have
a conforming mesh T ′, or equivalently T = T ′ + be. We can now apply the induction
assumption to T ′ ∈ T(T0) with #N (T ′)−#N (T0) = N to finish the proof. �

15



3.4. Generation of Compatible Bisections. For a compatible bisection bi ∈ B, we use
the same subscript i to denote related quantities such as:

• ei: the refinement edge;
• pi: the midpoint of ei;
• ω̃i = ωpi ∪ ωpli ∪ ωpri ;
• Ti = T0 + {b1, · · · , bi};

• ωi: the patch of pi i.e. ωpi ;
• pli , pri : two end points of ei;
• hi: the local mesh size of ωi;
• Ri: the first ring of pi in Ti.

We understand h ∈ L∞(Ω) as a piecewise constant mesh-size function, i.e., hτ =
diam(τ) in each simplex τ ∈ T .

LEMMA 3.3 (Compatibility and generation). If bi ∈ B is a compatible bisection, then
all elements ofRi have the same generation gi.

Proof. Let pi ∈ N (Ti) be the vertex associated with bi. Let Ti be the coarsest uniformly
refined mesh containing pi, so k = gpi . In view of assumption (B2), pi arises from uniform
refinement of T k−1. Since the bisection giving rise to pi is unique within F(T0), we realize
that all elements inRei are bisected and have generation k− 1 because they belong to T k−1.
This implies that all elements ofRpi have generation k, as asserted.

This lemma enables us to introduce the concept of generation of compatible bisections.
For a compatible bisection bi : Rei → Rpi , we define gi = g(τ), τ ∈ Rpi . Throughout this
paper we always assume h(τ) h 1 for τ ∈ T0. We thus have the following important relation
between generation and mesh size

hi h γ gi , with γ =
(1

2

)1/d

∈ (0, 1). (3.8)

Besides this relation, we give now two more important properties on the generation of
compatible bisections. The first property says that different bisections with the same genera-
tion have weakly disjoint local patches.

LEMMA 3.4 (Nonoverlapping patches). Let TN ∈ T(T0) be TN = T0 + B, where B is a
compatible bisection sequence B = {b1, · · · , bN}. For any i 6= j and gj = gi, we have

◦
ωi ∩

◦
ωj= ∅. (3.9)

Proof. Since gi = gj = g, both bisection patches Ri and Rj belong to the uniformly
refined mesh T g . If (3.9) were not true, then there would exists τ ∈ Ri∩Rj ⊂ T g containing
distinct refinement edges ei and ej because i 6= j. This contradicts rules R2 and R3 which
assign a unique refinement edge to each element.

A simple consequence of (3.9) is that, for all u ∈ L2(Ω) and k ≥ 1,∑
gi=k

‖u‖2ωi ≤ ‖u‖
2
Ω, (3.10)

∑
gi=k

‖u‖2ω̃i . ‖u‖
2
Ω. (3.11)

The second property is about the ordering of generations. For a given bisection sequence
B, we define bi < bj if i < j, which means bisection bi is performed before bj . The gen-
eration sequence {g1, · · · , gN}, however, is not necessary monotone increasing; there could
exist bi < bj but gi > gj . This happens for bisections driven by a posteriori error estima-
tors in practice. Adaptive algorithms usually refine elements around a singularity region first,
thereby creating many elements with large generations, and later they refine coarse elements
away from the singularity. This mixture of generations is the main difficulty for the analysis
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of multilevel methods on adaptive grids. We now prove the following quasi-monotonicity
property of generations restricted to a fixed bisection patch.

LEMMA 3.5 (Quasi-monotonicity). Let TN ∈ T(T0) be TN = T0 + B, where B =

{b1, · · · , bN} is a compatible bisection sequence. For any j > i and
◦
ω̃j ∩

◦
ω̃i 6= ∅, we have

gj ≥ gi − g0, (3.12)

where g0 > 0 is an integer depending only on the shape regularity of T0.

Proof. Since
◦
ω̃j ∩

◦
ω̃i 6= ∅, there must be elements τj ∈ Rpj ∪ Rplj ∪ Rprj and

τi ∈ Rpi ∪ Rpli ∪ Rpri such that
◦
τj ∩

◦
τi 6= ∅. Since we consider triangulations in T(T0),

the intersection τj ∩ τi is still a simplex. When bj is performed, only τj exists in the current
mesh. Thus τj = τj ∩ τi ⊆ τi and gτj ≥ gτi .

Shape regularity implies the existence of a constant g0 only depending on T0 such that

gj + g0/2 ≥ gτj ≥ gτi ≥ gi − g0/2,

and (3.12) follows.
A key practical issue is to find a decomposition of a bisection grid. We refer to Chen and

Zhang [22] and Chen [19] for a vertex-oriented coarsening algorithm and the application to
multilevel preconditioners and multigrid methods.

4. Space Decomposition on Bisection Grids. We give a space decomposition for La-
grange finite element spaces on bisection grids. Given a conforming mesh T of the domain
Ω ⊂ Rd and an integerm ≥ 1, them-th order finite element space on T is defined as follows:

V(Pm, T ) := {v ∈ H1
0 (Ω) : v|τ ∈ Pm(τ) for all τ ∈ T }.

We restrict ourselves to bisection grids in T(T0) satisfying (B1) and (B2). Therefore
by Theorem 3.1, for any TN ∈ T(T0), there exists a compatible bisection sequence B =
{b1, · · · , bN} such that

TN = T0 + B.

We give a decomposition of the finite element space V := V(Pm, TN ) using this decom-
position of TN . If Ti = T0 + {b1, · · · , bi}, let φi,p ∈ V(P1, Ti) denote the linear nodal basis

at a vertex p ∈ N (Ti). Let
◦
N (Ti) denote the set of interior vertices of the triangulation Ti.

We define the sub-spaces

V0 := V(P1, T0), and Vi := span{φi,q : q ∈ {pi, pli , pri}∩
◦
N (Ti)}. (4.1)

Since the basis functions of Vi, i = 0, . . . , N, are piecewise linear polynomials on TN , we
know Vi ⊆ V . Let {φp : p ∈ Λ} be a basis of V(Pm, TN ) such that v =

∑
p∈Λ v(p)φp for

all v ∈ V(Pm, TN ), where Λ is the set of indices. For example, for quadratic element spaces,
Λ consists of interior vertices and middle points of interior edges. We define Vp = span{φp}
and end up with the following space decomposition:

V =
∑
p∈Λ

Vp +

N∑
i=0

Vi. (4.2)

The space decomposition (4.2) can be thought of as a decomposition into frequencies.
The local mesh sizes hi and hp are the “wave lengths”. In each subspace Vi, the energy norm
is equivalent to a scaling of the L2-norm:

h−2
i ‖vi‖

2 . ‖vi‖A = |vi|1 . h−2
i ‖vi‖

2, for all vi ∈ Vi, i = 0, · · · , J ; (4.3)
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the same holds for functions in Vp. The first inequality is just a scaled Poincaré inequality
since Vi ⊂ H1

0 (ω̃i). The second inequality in (4.3) is the well known inverse inequality for
finite element functions.

We next verify that the space decomposition (4.2) satisfies the assumptions (A1) and
(A2).

4.1. Stable Decomposition: Proof of (1.6). The purpose of this section is to discuss
and give a full proof of the following decomposition.

THEOREM 4.1 (Space decomposition over graded meshes). For any v ∈ V, there exist
vp, p ∈ Λ, and vi ∈ Vi, i = 0, · · · , N such that v =

∑
p∈Λ vp +

∑N
i=0 vi and

∑
p∈Λ

‖vp‖2A +

N∑
i=0

‖vi‖2A . ‖v‖2A. (4.4)

An important ingredient of the proof is to use the Scott-Zhang quasi-interpolation oper-
ator [50]

IT : H1
0 (Ω) 7→ V(P1, T )

for a conforming triangulation T ; see also Oswald [45]. For any interior vertex p ∈
◦
N (T ),

we choose a τp ⊂ Rp. Let {λτp,i : i = 1, · · · , d + 1} be the barycentric coordinates of τp
which span P1(τp). We construct the L2-dual basis Θ(τp) = {θτp,i : i = 1, · · · , d + 1} of
{λτp,i : i = 1, · · · , d+1}. If θp ∈ Θ(τp) is the dual basis function so that

∫
τp
θpv dx = v(p),

for all v ∈ P1(τp), we then define

IT v =
∑

p∈
◦
N (T )

(∫
τp

θpv dx
)
φp,

and note that IT v(p) =
∫
τp
θpv . h−2

p ‖v‖τp . The operator IT preserves homogeneous
Dirichlet conditions as well as the space of piecewise linear functions, and satisfies the fol-
lowing estimate and stability [50, 45]

|IT v|1 + ‖h−1(v − IT v)‖ . |v|1, (4.5)

hdi |IT v(pi)|2 . ‖v‖2τpi , (4.6)

with hi the size of τpi .
Given v ∈ V(Pm, TN ), we let u = INv and decompose v = u + (v − u), where

IN : V(Pm, TN ) → V(P1, TN ) is the Scott-Zhang operator. We next give a multilevel
decomposition of u using a sequence of quasi-interpolations of Scott-Zhang type

Ji : V(P1, TN )→ V(P1, Ti), for i = 0 : N.

First, we let J0 : V(P1, TN ) → V0 be a quasi-interpolation operator with values in the
coarsest space V0. If we already have Ji−1 : V(P1, TN ) → V(P1, Ti−1), we recall that
Ti = Ti−1 + bi and exploit the fact that the bisection bi only changes the local patches of
the two end points of the refinement edge ei ∈ E(Ti−1). We then define Jiu(pi) at the

newly added vertex pi ∈
◦
N (Ti) using a simplex τi newly created by the bisection bi, namely

τi ⊂ ωi. If p is any other vertex and τp ∈ Ti−1 is the simplex used to define Ji−1u(p), then
we define Jiu(p) according to the following rules:

18



1. if τp ⊂ ωp(Ti) we keep the nodal value, i.e., Jiu(p) = Ji−1u(p);
2. otherwise we choose a new τp ⊂ ωp(Ti) ∩ ωp(Ti−1) to define Jiu(p) =

∫
τp
θpu.

This construction guarantees that, in either case, the simplex τp satisfies (see Figure 4.1 for
d = 2)

τp ⊂ ωp(Ti) for all p ∈
◦
N (Ti). (4.7)

Moreover, the slicing operator Ji − Ji−1 verifies the crucial property

ei pi

τpi

FIGURE 1. Patches are similar

1

(a) Simplex to define (Jiu)(pi)

eipli

τpli τpli

pli

FIGURE 1. Patches are similar

1

(b) Simplex to define (Jiu)(pli )

ei pri

τpri

pri

τpri

FIGURE 1. Patches are similar

1

(c) Simplex to define (Jiu)(pri )

ei

p

τp τp

p

FIGURE 1. Patches are similar

1

(d) Simplex to define (Jiu)(p)

FIG. 4.1. Update of nodal values Ji−1u to yield Jiu: the element τp chosen to perform the averaging that
gives (Jiu)(p) must belong to ωp(Ti). This implies (Ji − Ji−1)u(p) 6= 0 possibly for p = pi, pli , pri and = 0
otherwise, and τp belongs to ωi (the patch of pi in Ti).

vi := (Ji − Ji−1)u ∈ Vi for all 1 ≤ i ≤ N, (4.8)

because (Ji − Ji−1)u(p) = 0 for p ∈
◦
N (Ti), p 6= pi, pli or pri . Furthermore a closer look

reveals that
if (Ji − Ji−1)u(p) 6= 0, then the elements τp used to define both Ji(p) or
Ji−1(p) are inside the patch ωi of pi in Ti. Figure 4.1 depicts four possible
configurations for d = 2.

(4.9)

We stress that, in general JNu 6= u = INv because the simplex used to define nodal
values of JNu may not be in the finest mesh TN but in TN−1 instead (see Figure 4.1(d)).
Nevertheless, the difference v − JNu = (u − JNu) + (v − u) is of high frequency in the
finest mesh TN . We will exploit this fact.

Let v − JNu =
∑
p∈Λ vp be the nodal basis decomposition in TN . We then write

v =
∑
p∈Λ

vp +

N∑
i=0

vi, vi ∈ Vi, (4.10)

where vi = (Ji − Ji−1)u and for convenience we define J−1u := 0; thus JNu =
∑N
i=0 vi.

To prove that the decomposition (4.10) is stable we first study the high frequency com-
ponent

∑
p∈Λ vp. According (4.5) and (4.7), we get∑

p∈Λ

h−2
p ‖vp‖2 . ‖h−1(v − JNu)‖2 . ‖h−1(v − INv)‖2 + ‖h−1(u− JNu)‖2 . |v|21.

(4.11)
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We next prove that the decomposition JNu =
∑N
i=0(Ji − Ji−1)u is stable. For this

purpose, we consider an auxiliary decomposition over uniformly refined meshes T k of T0,
and denote by Vk = V(P1, T k) for 0 ≤ k ≤ L. We choose L = maxτ∈TN gτ so that
V(P1, TN ) ⊆ VL and state the following well-known stable decomposition for the space
VL =

∑L
k=0 Vk [61, 43, 44, 13].

LEMMA 4.2 (Stable decomposition for quasi-uniform meshes). For any v̄ ∈ VL, let
v̄k = (Qk −Qk−1)v̄ for k = 0, · · · , L. Then v̄ =

∑L
k=0 v̄k is a stable decomposition in the

sense that

L∑
k=0

h̄−2
k ‖v̄k‖

2 . |v̄|21. (4.12)

We apply the slicing operator Ji − Ji−1 to this decomposition with v̄ = JNu ∈ VL.
If gi is the generation of bisection bi and k ≤ gi − 1, then v̄k is piecewise linear in ωei (the
patch of refinement edge ei) and (Ji−Ji−1)v̄k = 0 according to (4.9), because Ji preserves
piecewise linear functions. So the slicing operator detects frequencies higher than or equal to
gi, namely,

vi = (Ji − Ji−1)

L∑
l=gi

v̄l. (4.13)

Employing properties (4.8), (4.7) and (4.6), in this order, we infer that

‖vi‖2ω̃i . h
d
i

[
vi(pi)

2 + vi(pli)
2 + vi(pri)

2
]
.
∥∥∥ L∑
l=gi

v̄l

∥∥∥2

ωi
,

because the simplices used to define nonzero values of vi(pi), vi(pli) or vi(pri) are inside ωi
according to (4.9). This explains why the domain of integration on the right-hand side is ωi
instead of ω̃i.

Since distinct bisections patches with the same generation are weakly disjoint (Lemma
3.4), namely

◦
ωi ∩

◦
ωj= ∅ if gi = gj , we deduce

∑
gi=k

‖vi‖2 =
∑
gi=k

‖vi‖2ω̃i .
∑
gi=k

∥∥∥ L∑
l=gi

v̄l

∥∥∥2

ωi
≤
∥∥∥ L∑
l=k

v̄l

∥∥∥2

Ω
=

L∑
l=k

‖v̄l‖2,

where in the last step we have used that {v̄l} are L2-orthogonal.
To proceed further we need the following elementary result, which can be found in [25].
LEMMA 4.3 (Discrete Hardy inequality). If the non-negative sequences {ak}Lk=0, {bk}Lk=0

satisfy

bk ≤
L∑
l=k

al, for all k ≥ 0,

then for any s ∈ (0, 1) we have

L∑
k=0

s−kbk ≤
1

1− s

L∑
k=0

s−kak.
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Proof. Since

L∑
k=0

s−kbk ≤
L∑
k=0

L∑
l=k

s−kal =

L∑
l=0

l∑
k=0

s−kal =

L∑
l=0

s−lal

l∑
k=0

sl−k,

and s < 1, the geometric series is bounded by 1/(1− s). This concludes the proof.
Applying Lemma 4.3 with s = γ = (1/2)1/d to ak = ‖v̄k‖2 and bk =

∑
gi=k
‖vi‖2,

and recalling that hk ≈ γgk according to (3.8), we obtain

L∑
k=0

h̄−2
k

∑
gi=k

‖vi‖2 .
L∑
k=0

h̄−2
k ‖v̄k‖

2,

and thus from the stable decomposition of Lemma 4.2 for uniform refinement, we conclude

N∑
i=0

h−2
i ‖vi‖

2 =

L∑
k=0

h̄−2
k

∑
gi=k

‖vi‖2 .
L∑
k=0

h̄−2
k ‖v̄k‖

2 . |JNu|21 . |v|21. (4.14)

Finally, combining (4.11), (4.14) and invoking (4.3), we get the asserted estimate (4.4).
REMARK 4.4 (Spaces decompositions for traditional smoothing). Consider piecewise

linear finite element spaces, i.e. m = 1. If we define Ṽi = span{φi,q, q ∈ ωpi∩
◦
N (Ti)} to

be the space spanned by the hat basis functions associated with node pi and all neighboring
nodes, then in the construction of the quasi-interpolation operators Ji we can always choose
a simplex τp in the star of ωp for each vertex p, whence the difference (Ji−Ji−1)u ∈ Ṽi and
JNu = u. Consequently we can prove that the space decomposition V =

∑N
i=0 Ṽi is stable.

The corresponding subspace correction methods require smoothing in the new node and all
neighboring nodes, but an additional fine grid smoothing is not necessary.

Similarly for quadratic and higher elements, i.e. m ≥ 2, one can include all degree of
freedom (dof) inside the bisection patch ωi into the subspace Ṽi and obtain a stable decompo-
sition. The corresponding local multigrid methods then requires smoothing on all dof inside
ωi; see [39].

4.2. Strengthened Cauchy-Schwarz Inequality: Proof of (1.7). In this section we es-
tablish the strengthened Cauchy-Schwarz (SCS) inequality (1.7) for the space decomposition∑N
i=0 Vi. We first present a SCS inequality for uniform refinement.

LEMMA 4.5 (SCS inequality for quasi-uniform meshes; see Lemma 4.26 in [63]). For
any ui ∈ Vi, vj ∈ Vj , j ≥ i, we have

(ui, vj)A . γ
j−i|ui|1h−1

j ‖vj‖0,

where γ < 1 is a constant such that hi h γ2i.
Proof. Let us first prove the inequality on one element τ ∈ Ti. Using integration by

parts, Cauchy-Schwarz inequality, and inverse inequality, we have∫
τ

∇ui · ∇vj dx =

∫
∂τ

∂ui
∂n

vj ds . ‖∇ui‖0,∂τ‖vj‖0,∂τ . h−1/2
i ‖∇ui‖0,τh−1/2

j ‖vj‖0,τ

. (
hj
hi

)1/2|ui|1,τh−1
j ‖vj‖0,τ h γj−i|ui|1,τh−1

j ‖vj‖0,τ .
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Adding over τ ∈ Ti, and using Cauchy-Schwarz inequality again, yields

(∇ui,∇vj) =
∑
τ∈Ti

(∇ui,∇vj)τ . γj−ih−1
j

∑
τ∈Ti

|ui|1,τ‖vj‖0,τ

. γj−ih−1
j

( ∑
τ∈Ti

|ui|21,τ
)1/2( ∑

τ∈Ti

‖vj‖20,τ
)1/2

= γj−i|ui|1h−1
j ‖vj‖0,

which is the asserted estimate.
THEOREM 4.6 (SCS inequality for graded meshes). For any ui, vi ∈ Vi, i = 0, · · · , N ,

we have

∣∣∣ N∑
i=0

N∑
j=i+1

(ui, vj)A

∣∣∣ . ( N∑
i=0

‖ui‖2A

)1/2( N∑
i=0

‖vi‖2A

)1/2

. (4.15)

Proof. We resort to the concept of generation to rewrite several sums in terms of uniform
refinements. The proof is divided into four steps.
1 For a fixed index i ∈ [1, N ], we denote by

n(i) = {j > i :
◦
ω̃j ∩

◦
ω̃i 6= ∅} and wik =

∑
j∈n(i),gj=k

vj .

We observe that wik ∈ Vk and k = gj ≥ gi − g0 whereas ui ∈ Vgi+g0 according to Lemma
3.5. For any τ ⊂ ω̃i, we apply Lemma 4.5 over τ to ui and wik to obtain

(ui, w
i
k)A,τ . γ

k−gi‖ui‖A,τ h̄−1
k ‖w

i
k‖τ .

Then

(ui, w
i
k)A,ω̃i =

∑
τ⊂ω̃i

(ui, w
i
k)A,τ . γ

k−gi
∑
τ⊂ω̃i

‖ui‖A,τ h̄−1
k ‖w

i
k‖τ

. γk−gi‖ui‖A,ω̃i h̄
−1
k

( ∑
τ⊂ω̃i

‖wik‖2τ
)1/2

.

Since vj’s with the same generation gj = k have supports supp vj ⊂ ω̃j with finite overlap
(see Lemma 3.4), we infer that ‖wik‖2τ .

∑
j∈n(i),gj=k

‖vj‖2τ ≤
∑
gj=k

‖vj‖2τ and

(ui, w
i
k)A,ω̃i . γ

k−gi‖ui‖A,ω̃i h̄
−1
k

( ∑
gj=k

‖vj‖20,ω̃i
)1/2

.

2 We fix ui and consider

∣∣∣(ui, N∑
j=i+1

vj)A

∣∣∣ =
∣∣∣(ui, ∑

j∈n(i)

vj)A,ω̃i

∣∣∣
=
∣∣∣(ui, L∑

k=gi−g0

∑
j∈n(i),gj=k

vj)A,ω̃i

∣∣∣ ≤ L∑
k=gi−g0

∣∣∣(ui, wik)A,ω̃i

∣∣∣,
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because (ui, vj) = 0 for k = gj < gi − g0 (Lemma 3.5). Since k ≥ 0 and k ≥ gi − g0, this
is equivalent to k ≥ (gi − g0)+ = max{gi − g0, 0}, whence∣∣∣(ui, N∑

j=i+1

vj)A

∣∣∣ . L∑
k=(gi−g0)+

γk−gi‖ui‖A,ω̃i h̄
−1
k

( ∑
gj=k

‖vj‖20,ω̃i
)1/2

.

3 We now sum over i but keeping the generation gi = l ≥ 0 fixed:

∑
gi=l

∣∣∣(ui, N∑
j=i+1

vj)A

∣∣∣ . L∑
k=(l−g0)+

γk−l

∑
gi=l

‖ui‖A,ω̃i (h̄−2
k

∑
gj=k

‖vj‖2ω̃i
)1/2


.

L∑
k=(l−g0)+

γk−l

∑
gi=l

‖ui‖2A,ω̃i

1/2 h̄−2
k

∑
gi=l

∑
gj=k

‖vj‖2ω̃i

1/2

.

In view of (3.11), due to the finite overlap property of patches ω̃i for generation gi = l, we
deduce

∑
gi=l

∣∣∣(ui, N∑
j=i+1

vj)A

∣∣∣ . L∑
k=(l−g0)+

γk−l

∑
gi=l

‖ui‖2A,ω̃i

1/2 h̄−2
k

∑
gj=k

‖vj‖2
1/2

.

4 . We finally sum over all generations 0 ≤ l ≤ L to get

L∑
l=0

∑
gi=l

|(ui,
N∑

j=i+1

vj)A| .
L∑
l=0

L∑
k=(l−g0)+

γk−l

∑
gi=l

‖ui‖2A,ω̃i

1/2 h̄−2
k

∑
gj=k

‖vj‖2
1/2

.

 L∑
l=0

∑
gi=l

‖ui‖2A,ω̃i

1/2 L∑
k=0

h̄−2
k

∑
gj=k

‖vj‖2
1/2

,

where we have used the estimate
n∑

i,j=1

γ|i−j|xixj ≤
2

1− γ

( n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2

∀(xi)ni=1, (yi)
n
i=1 ∈ Rn.

Since
∑N
i=0 =

∑L
l=0

∑
gi=l

and h̄k = hj for k = gj , using the local norm equivalence (4.3),
we end up with the desired estimate (4.15).

REMARK 4.7 (Traditional smoothers). A SCS inequality similar to (4.15) can be proved
for the slightly larger spaces Ṽi of Remark 4.4. Using the stable decomposition of V =∑N
i=0 Ṽi, we can prove that local multigrid methods with traditional smoothers also converge

uniformly for graded bisection meshes. �

To apply the abstract convergence theory for SSC to the space decomposition V =∑
p∈Λ Vp +

∑N
i=0 Vi , we still need to prove the following inequalities.

THEOREM 4.8 (SCS between high frequency and multilevel decomposition). For any
vp ∈ Vp and ui ∈ Vi, we have

∣∣∣∑
p∈Λ

N∑
i=0

(vp, ui)A

∣∣∣ .
∑
p∈Λ

‖vp‖2A

1/2(
N∑
i=0

‖ui‖2A

)1/2

, (4.16)
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and

∣∣∣∑
p∈Λ

∑
q∈Λ,q>p

(up, vq)A

∣∣∣ .
∑
p∈Λ

‖up‖2A

1/2∑
q∈Λ

‖vq‖2A

1/2

, (4.17)

where we assume there is an ordering in the set Λ.
Proof. By the Cauchy-Schwarz inequality and the finite overlap property of the stars ωp,

we deduce ∣∣∣∑
p∈Λ

N∑
i=0

(vp, ui)A

∣∣∣ .∑
p∈Λ

(
‖vp‖A

∥∥∥ N∑
i=0

ui

∥∥∥
A,ωp

)

.

∑
p∈Λ

‖vp‖2A

1/2∑
p∈Λ

∥∥∥ N∑
i=0

ui

∥∥∥2

A,ωp

1/2

.

∑
p∈Λ

‖vp‖2A

1/2 ∥∥∥ N∑
i=0

ui

∥∥∥
A
.

Combining this with the estimate

∥∥∥ N∑
i=0

ui

∥∥∥2

A
= (

N∑
i=0

ui,

N∑
i=0

ui)A ≤
N∑
i=0

‖ui‖2A + 2

∣∣∣∣∣∣
N∑
i=0

N∑
j=i+1

(ui, uj)A

∣∣∣∣∣∣ .
N∑
i=0

‖ui‖2A,

we then get (4.16). The proof of (4.17) is simpler and follows from mesh shape regularity. In
fact, given p ∈ Λ, the cardinality of the set {q ∈ Λ : q > p and ωp ∩ ωp 6= ∅} is uniformly
bounded.

5. BPX Preconditioner and Multigrid on Graded Bisection Grids. We apply PSC
and SSC to the space decomposition

V =
∑
p∈Λ

Vp +

N∑
i=0

Vi, (5.1)

and thus obtain multilevel preconditioners and V-cycle multigrid methods on graded bisection
grids.

We first observe that we can use standard smoothers, e.g. Richardson, symmetric Gauss-
Seidal or Jacobi, for the nodal basis decomposition. Since dimVi = 3, we have a three-point
local smoother for multilevel decomposition and the total computational cost for subspace
correction methods based on (5.1) is CN , with a relatively small constant C. In addition, the
three-point local smoother simplifies the implementation of multilevel methods especially in
dimensions higher than 2. For example, we only need to maintain an ordered vertex array
with two parent vertices rather than a tree structure to store the hierarchical mesh structure.

BPX Preconditioner. We use the stable decomposition and SCS inequality to obtain the
optimality of the resulting preconditioner.

THEOREM 5.1 (Optimality of BPX on graded bisection grids). If the preconditioner B
of (2.3) is based on the space decomposition (5.1) and SPD smoothers satisfying (2.12), then
we have

κ(BA) . 1.
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Proof. Combine Theorems 4.1 and 4.6 with Theorem 2.4. As mentioned above, stan-
dard smoothers such as Richardson, Jacobi, or symmetric Gauss-Seidel iterations satisfy
(2.12) and therefore we have uniform convergence of PCG with additive preconditioner.

V-Cycle Multigrid. This method results from applying SSC to the space decomposition
(5.1). A standard V-cycle loop reads as follows:

1. pre-smoothing in the finest space V(Pm, TN );
2. multilevel smoothing in piecewise linear finite element spaces Vi for i = N to 1;
3. approximate solving in the coarsest piecewise linear finite element space V0;
4. multilevel smoothing in piecewise linear finite element spaces Vi for i = 1 to N ;
5. post-smoothing in the finest space V(Pm, TN ).
We remark that the smoothing in the finest space V(Pm, TN ) is crucial to take care of

high frequency modes which may not be seen by the multilevel splitting {Vi}Ni=1 of piecewise
linear finite element spaces; see (4.4).

THEOREM 5.2 (Uniform convergence of V-cycle multigrid on graded bisection grids).
The above V-cycle multigrid, based on the space decomposition (5.1) with smoothers satisfy-
ing the contraction property (T), is uniformly convergent.

Proof. Combine Theorems 4.1 and 4.6 with Theorem 2.6.
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