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ABSTRACT: Estimation of a sparse signal representation, one with
the minimum number of nonzero compaonents, is hard. in this paper,
we show that for a nontrivial set of the input data the corresponding
optimization problem is equivalent to and can be solved by an aigo-
rithm devised for a simpler oplimization problem. The simpler oplimi-
zation problem correspends to estimation of signals under a low-
spread constraint. The goal of the two optimization problems is to
minimize the Euclidian norm of the linear approximation error with an
P penalty on the ceefficienis, for p = 0 (sparse) and p = 1 (low-
spread), respectively. The £ problem is hard, whersas the ' problem
can pe scived efficiently by an iterative algorithm. Here we precisely
define the /7 optimization probiem, construct an associated ! optimi-
zation problem, and show that for a set with open interior of the input
data the optimizers of the two optimization problems have the same
support. The associated ' optimization problem is used to find the
support of the I° optimizer. Once the support of the /° problem is
known, the actual soiution is easily found by solving a linear system
of equations. Howsver, we point ocut our approach does not sclve the
harder optimization problem for all input data and thus may fail to pro-
duce the optimal sclution in some cases.  ©2005 Wiley Periodicals,
inc. int J imaging Syst Technol, 15, 10-17Y, 2005; Published onfine in Wilsy
InterScience [www.interscience.wiley.com). DO 10.1002/ima 20034
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. INTRODUCTION
Consider the following linear problem: Given x € C" of the form

X = As + v, {1}

estimate s € 7, where A is a given n X n invertible (complex)
mairix and ¥ € C" is an interference {(noise) term. Obviously, when
v = 0 the solution of this problem is trivially, s = A~ 'x. However,
in a practical setting v # 0 and it may also happen that A is ill-con-
ditioned in which case the inversion becomes a problem. Two
approaches have been devised to deal with these issues,
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One approach is purely deterministic and addresses mainly the
case when A is ill-conditioned. The main observation in this case is
that inverting A yields

Alx=s+ Ay,

which potentially amplifies the noise-like error in the data. The sol-
ation is then to minimize a criterion containing two terms: one term
that measures how well X matches As without regard to the noise-
ferm and a second term that penalizes large entries in s, which,
potentially, are due to amplified noise. Thus, the regularized prob-
lem becomes

min
se(”

\As —x[i, + 28], @)

where [} - ||} and [} - |||z are some norm-like measures chosen

more often from a convenient algebraic computation point of view.

Ome of the most popular choices for these measures is the square of
. ; d 20172

the Euclidian norm [| - ||, {|¥l] = {320, |vi7} ", thus the problem

can be stated as

il (3)

min |As - x| 4+ 4
s C"

T
i

where /. is a regularization parameter. Choosing || - ||* for ||| - i},
and | - |l as in (3} results in the Tikhonov regularization method
(Eng! et al., 1996). Alternatively, and more general, one can use the
following measures:

min ||As — x|* + iljs|l;  forp > 0 (4)
saC”

and
min ||As — x|+ i||s|, forp =0, (5)
s=C" ”

where |! - ||, is the p (quasi) norm defined by



Iip
’) forp >0

and

lyllo= [supp(y): forp =0

with | |lo, instead of {|-]|f, because Hmy olislfh= fisl,,
supp{(y) = {kiy # 0} is the support of y, and |5} denotes the cardi-
nal of the discrete set S. For 0 < p < 1, || - ||, defines a guasi-norm,
whereas for p = 0 it is not even linear with respect to scatar multi-
plication.

A second approach to solving (1) uses a stochastic estimation
framework. For example, we may assume v is N0, ¢*1) Gaussian
noise and that the signal s has » independent components with a pri-
ori distribution Exp{0.,p,20) given by

-fS(S) - H Cﬂ,n e’ MEP;'“- (6)
k=1

Such distributions, for instance, have been cited as sparse distribu-
tions in the work of Zibulevski and Pearlmutter (20:01) and Karva-
nen and Cichocki (2003), since they have a sharper peak than the
Gaussian distribution for p < 2, It is not hard to show that the maxi-
mum a posteriori {MAP) estimator of s in this case is given by

§argmin [|As — xi’ + —-I|si}?, (7)
seC” aip

which is exactly the same as the regularization mentioned before.

The purpose of this paper is to connect the optimization problem
with the general form expressed in (7) for p == 0 to that with p = .
For p == 0, the problem can be simply stated as

m%nHAswaer Wik sp # 0}, (8)
sz )

for some fixed g > C. If one is given the support of the optimizer,
then finding the optimizer becomes a simple least square problem,
and this involves merely solving a linear system. Hence the hard
problem is to find the right support. For p = 1, the situation is com-
pletely different. In the literature, algorithms have been proposed
by Engl et al. (1996) and Daubechies et al. (2003} to solve

min Bx - s|* + 2 Sl {9
min (Bx - sl + 2 Jsi|. (©)

and they converge quickly to a solution. In this paper, we show how
the solution of (9) can be used to obtain the sclution of (8), for spe-
cific choices of B, and 4, and for an open set of data x.

The next section briefly discusses work related to problems (8)
and (9). Then Section I presents the main theoretical results,
which were grouped together in order to offer a succinct view of
the work. Section IV contains proofs of the main lemmas and the
central theorem. Section V demonstrates the application of this
work in a simple example. Section VI sumumarizes this work.

li. RELATED WORK

The seminal work by Donoho and Hue (2001), in which a connec-
tion of a similar nature has been made, subsequently sparked inter-
est from other researchers (Elad and Bruckstein, 2002; Fuchs, 2002,
Gribonval and Nielsen, 2002; Feuer and Nemirovski, 2003; Maliou-
tov et al., 2004). These authors tackied the preblem, given a redun-
dant dictionary D == {d;, ..., d,,} in C" (m > n), and a vector x €
C” that admits a sparse representation, find the sparse decomposi-
tion of x, that is x = 3y s;d; where [J| < n.

The problem can be turned into an optimization problem as fol-
lows:

argmin  {|supp(s)|}, (10)
s and Dy=x
where D = [dy] - - | d,,,] is the 1 > m matrix whose ¢olumns are the
d; vectors.

The main result in the work of Donoho and Huo (2001) is that
for a “‘thin’® set of input data x (“*thin” in the sense that is has
empty interior), the solution of this problem coincides with the solu-
tion of a similar, but easier to solve optimization problem

argmin  {fis], }. (11
seC" and Dyrx

In this framework, our problem can be restated as follows. Define
the 1 » 2r matrix

E=(al] (12)

Then (7) is equivalent to the following optimization problem

argmin a5, (13)
uzC” and Bu=x
where
# 2n
Lo P ISTS
lall,s = > lwf+ > wi’s {14)
ke k=n+1

which is slightly different than (11), even with p = 1. Note, ln|],.»
is not a norm (or quasi-norm), since it does not scale properly.
Unlike the work of Doacho and Huo (2001), our theorem says that
for a ponthin set (i.e., with nonempty interior) of input data x, the
support of the first # components of the optimizer for p = 1 coin-
cides with the support of the first n components of one optimizer for
p = 0. On the one hand. the conclusion of cur theorem is weaker
than that of Donoho and Huo (2001), namely the optimizers for p ==
0 and p = 1 do not coincide, but only their supports ceincide. On
the other hand, our result has a much wider applicability, since the
set of input data where the conciusion holds true has nonempty inte-
rior.

Optimization problems of type (8) have been analyzed from a com-
putational complexity point of view. More specifically in the work of
Davis et al. (1997}, the authors proved that when A is a full rank n %
m matrix with m = O, for some k > 1, the finite-input L-term &-
approximation of the optimurn value problem (i.e., within ¢ of the opti-
mum) is NP-complete. The prool though relies crucially upon the
redundancy of the dictionary formed by the columns of matrix A. For
mstance, when A = UD with U/ a unitary (or orthogonal} matrix and D
a diagonal invertible matrix, we have
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1As - xj* + jis]ly = IDs — Ux* + | Ds|l,. {15)

whiich can easily be solved in order O(#%} time. However, for gen-
eral A, we do not know whether the L-term approximation problem
within ¢ to the optimal value is NP-complete or not.

Research into practical problems leading to similar optimization
problems appears in the literature on speech enhancement and
image processing, and more generally signal trapsformation using
the independent component analysis {ICA} and blind source separa-
ticn (BSS) technigues. In speech enhancement, the interest is to use
a signal-adapted (i.e., learned from the data) representation, instead
of the standard frequency-domain representation, in hope of trans-
forming the signal into a sparse form, which can offer simpiification
of the complex estimation problems to be dealt with. Recently,
many other signal transformation preblems seem to benefit from the
use of data-dependen: mransformations, for example independent
wavelet bases or independent components learned from the data, in
contrast to the use of fixed rransformations such as a frequency
domain data-independent transformation. One ouistanding research
question is whether real data in various domains (MRI, EEG,
vision, and speech} is amenable to such approaches. Experimental
evidence is constantly being gained in this sense. The definition of
a sparse representation of a signal here is that a “*smail”” number of
coefficients different from zero are necessary in a decomposition of
the signal using the bases (Zibulevski and Pearlmutter, 2001). The
idea of sparse coding is summarized by Hyvarinen et al. (2001).

For example, speech is a sparse signal, and the property has been
explotted in the ICA-BSS community for parameter estirnation and
source separation (Huang et al., 1995; Acoki et al., 2001; Zibulevski
and Pearlmutter, 2001). A time-frequency {TF) sparseness assump-
tion has been introduced (Jourjine et al., 2000} and subsequently
used in the works of Rickard et al. (2001} and Balan et al. {20033,
which allows for the separation of more than two sources given just
two mixtures. This sparseness property, catled W-disjoinr orthogon-
ality (WDQ), assumnes that the signals have nonoverlapping TF rep-
resentation supports. Given source TF representations Si{w, 1), ...,
Sa(w. 1), the WDO assumption can be stated as

Sdw. ry Silw,y =0 ¥ifkj Yot (16}
This assumption has been shown to be approximately true for speech
signals (Rickard and Yilmaz, 2002). Further, WDO is approximately
safisfied when one assumes a signal model of the form

S{ew, 1y = Blew. 1) Gl 1), 7

where B{ew, 1) is a Bernoulli random variable {i.e., it takes a value of
only 0 or 1), and G(w, f) is a continuously distributed random varia-
ble {Balar et al., 2003). It follows that the joint distribution is

ps1.5:{81,82) = (1 — ¢)°8(8:)5(82)+
g1 — @) (S(S)p(Sa) + S(S2)p{S1)) + @ p(S1)pS2). (18)

Sparse decompositions directly lead to solving a problem eguivalent
to (7} in the context of learning a signal dictionary, that is the
matrix A, such as wavelet or ICA bases. More specifically, assume
given a sequence of measurements (x’)f;{, with observation model
x = As', for every 0 < r < T. Assume that each s’ is drawn inde-
pendently from a distribution p (s}, each v' is drawn independently
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from a distribution p.{v), and the prior distribution pa(A) of A. Then
the posterior distribution of (A, (s)7,) given (¥ )Z:o is given by

T
[ — AR palA). (19)

p(A, {SF)L_O!(‘YI}LU) - pilx} =0

The MAP estimator of (A, (¢ };0) is obtained my maximizing the
above probability. Typically optimization algorithms (Zibulevski
and Pearlmutter, 2001} iterate between optimization over A for
fixed (sf};{j, and optimization over {s’)LG for fixed A. In this work,
we concenirate on the latter optimization problem that is given A,
we look for the MAP estimator of {5 )Z_G

Hl. MAIN RESULTS
Consider the following {wo optimization problems

s°(x) = arg minix — Asi]® + ullsi,. {20)
s

s'(x) = argminfjx — Bs|® + i||sli,, (21)
se”

where A, B € C" ™", 11, 4 > 0and x € C" are given. In general, the opti-
mizer in (20} may not be unique, in which case $°(x) denotes one such
optimizer. On the other hand, since the criterion (21} is strictly convex,
the optimizer in (21) is unique, and sex) is a well-defined function.

The main results of this paper are stated as follows:

Proposition 1.  Consider the optimizarion problem (21} with B
tnvertible and A > Q. Then for every subser Y {1,2, ..., nl, there
is a set Ey © C" with nonempty interior so that for X © Ey,
supp(s' (X)) L.

Proposition 2.  Consider the optimizarion problent (20) with A
invertible and p > 0. Then for every subset 1 C {1,2, ..., n}, there
is a set Fy © C" with nonempty interior so that for x € Fy there is
an optimizer SO(X) such that Sﬂpp(so(x)} == L.

Theorem 3.  Assume A is invertible and p > 0 is given constant.
Then there are o« = 2(A) > O and sets with nonempty interiors Dy
indexed by subsets 1 < {1, 2, ..., n} such that for B = (AT (the
adioint of the inverse matrix), A= A = /Buifu, and for every subset

1C{1,2,..., 1}, x € Dy, and at least one optimizer so(x} has
supp(s”(x}) = supp(s' (x)) = L. (22)
Remark 4. With the notations above, the main result simply

says Ey("\Fy has nonempty interior for every I C (1, 2, ..., a],
when B = (A" ¥ and / = 4 = /8u/x,

The function « = «{A) has an explicit description that we
present next. First a lemma:

Lemma 3. Assume {v,, ..., v,} isa set of independent vectors
in C". Consider two sets £, J C 11, 2, ..., n} so thar |I| > |J].
Denote by P the orthogonal projection onto the span of {v; j € J}.
Then the set {(1—Pyv;; i € IN J} is independent in C".

This lemma says that forevery twosets L J C {1, 2, ..., n] with
A = 11|, and denoting by A; the jth column of A, and by P the



orthogonal projection onto the span of {A; j €1} the ser {(1-P)A
i < INJ} is a Riesz basis for its span (Daubechies, 2003), hence
there is a a(l, I) > 0 so that:

2

i

EZ a(l=Pi| zal B > foff ¥er,....c,eC. (23)

i icl'F el

Then define « as the minimum of Riesz basis lower bounds a(I, J)
over all pairs of subsets (L, D) of {1, 2, ..., v} with | = |}

%= min i.J. (24
* I,J:|I]?z\Jia(‘ ! 24

IV. PROOF OF RESULTS
Let us start by proving first Lemma 5.

Proof of Lemma 5:  Consider {v}, v;. ..., v,} independent vec-
tors in C%, and L J < {1, 2, ..., n} with [I| > |J|. Denote by P the
orthogenal projection onto span {v; j € J} and by @ = 1P, the pro-
jection onto its orthogonal complement. We need to prove {Qv; [ €
I\J} is independent. Assume this is not so. Then there are ¢; £ C, i €
BJ, not all zero so that

Z Qv = 0.

iy
Hence

cv; € span{v;; j € dJ}
el

But then, there should exist d; € €, j € J so that

Z oV = Zdj‘ﬁ‘

il g jed

Thus we obtained a linear combination of {v,, vy, ..., v,}, with not
all coefficients zero, which is zero. Contradiction with the inde-
pendence hypothesis. L]

Now we prove Theorem 3. A sketch of its proof is as follows, First
we construct explicit solutions of (21) and prove Proposition 2. Then
we show that there 1s some X £ Ej that is also in Fy, and furthermore it
is an interior point in both that concludes the proof of Theorem 3,

Constder the [ lwo]_atimization preblem (21).

Definition 6. We call a pair (5, x) € C" x C" admissible if t
satisfies the following set of conditions:

(B=Bs—B=x], -%g;{jﬁ;:{) forall & sothat s; £ G, (25)
2igd

{(BxBs—Bxx) <-

% foralj sothat s, = 0. (26}

Then we have the following Lemma:

Lemma 7. s is a solution of the optimization problem (21) if
and only if (s, X) is an admissible pair.

In other words, this lemma says thar (s'(X),X) satisfies (25 and
(26} and conversely, any solution of (25} and (26) is an optimizer.

Proof:
First note that the criterion

Ji(s) =[x~ Bs|*+ 7]s||,. (27}

is strictly convex, and therefore it has a unigue global minimum.

‘23 Assume s = ¢'(x) is the unique minimum. Denote by I the
index set of nonzero entries of s, that is I = {4 5; ¢ 0}, and denote by
e, the kth vector of the canenical basis, i.e.. all entries are zeros except
for one ‘177 on the kth position. Since for k € L J, 40 = J (s + e;)
has a minimum and is differentiable at 1 = 0, 87,/9s,/ — +{x) = 0. The
partial derivative is exactly the left-hand-side of (25}, Forj € L the
situation is different. We compute the variation J,{s -+ te)) ~ J(s).
Expanding the quadratic form we obtain

I{s+e) 1 (s) =B, ~1(B,x - Bs) —i{x — Bs,B,) — A1,

where B; is the jth column of B, Choosing ¢ = & (x—Bs, B} = ¢
(B*(x—~Bs));, with £ > O arbitrary small, we obtain:

Ji{s + re) - Ji(s)
= O(e") + [e|iB*{x — Bs)} |(4 — 2{(B"(Bs — x)')].|),

J

In order for this to be positive for all ¢ > 0, the last term should
always be nonnegative, meaning

7= 2B (Bs — %)) >0,

and thus (26}

‘=" Assume now that {s, X) is an admissible pair. Then com-
pute the variation J,(s + v) — J,(8), where w = >, w,e, is an arbi-
trary vector with fwy] <[5! for £ £ 1. We obtain:

Ti(s -+ w) = Ji(s) = [Bw*+> " [2Re((B"Bs — B"x),y)
k<l
+ s el = sl ) [2Re((B'Bs — BX) ) + Awi]

L3

Now use (25) in the first sum over & € I, and then: {26} to obtain the
inequality below

r TR

s+ w) g (s)= |\Bw|\2-;--z;,l\sk +we| - ise] - Re G%i) i

kel Sl

mf_Zz;m[f+Re((B="Bs—B"x>.!i>}

-~ 2 Sy
L i

R s\

=y Al oy —is,ine(wwwN,

; { i lsel

Now a little algebra shows

sl —Re(ﬁi‘ii
fae

(R

SL + e

o [lsed 3+ [y

= |5k + welillse £ wel + || — isedl,

which is always positive by application of the triangle inequality twice.
once in cach term. Therefore, if (s, X) is an admissible pair, /(8 +
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wi—J(8) > 0 i5 & neighborhood of zern. Hence s is a local minimum
for J4(-), but since the local minimum is also global, s = ¢'(x). 7

Next we construct particular admissible pairs. Fix I an arbitrary
subset of [1, 2, ..., n}, possibly the empty set, We wili construct
an admissible pair {8, X} so that supp{$) == I. Consider a § € C" 50
that supp(8) = I and {[&]] < /4 ||A||*. Then define for k & /

. is
&= (B B)hs,rfn £ (28)
il
and construct
« =S &B e (29)
kel

We claim (8, %) is an admissible pair. Indeed, first note (B* %), =
Eo for b e 1, and (B* %), = 0 for j ¢ L Then (28} proves (25),
whereas (26) is satisfied by the norm constraint ||8]| < /4] A|°.

The third step is to show that for an admissible pair (§, ), as
construcied above, there is an open neighborhood of %, say £y, so
that for every x € £y the optimal solution s*(x} has support I

supp(s'(x}) =1 vxefy.

Note first that at (8, %), (26} is zctually satisfied as
{(B*Bs ~ B"%)| < ‘ < ‘
IS

By continuity of the left-hand-side there are 1y, 5 > 0 so that for
every s, X € C", lis—§|| < r, {|x—%|} < 1y,

_ . i
(B'Bs ~B')[ < 7.
Now set

Fls (D« (D)« C" - C kel je{l2}

iy

Fla,v.x) = g {B'B S +i‘ B'x},,
RSt 7 [EI- S ) ! 7 ﬁ[k B ( Sk
Fﬁ(u.v.x} = g (B'B),_ 5 +£‘ LR (B"x),,
- T k 2 \/ffkvk ks

where /*(E) is the set of I-indexed vectors with nonvanishing com-
ponents. An admissible pair {s, x) with supp(s) = I satisfies Ff(s, =
X)=0,forall ke Tandj< {1, 2}. Ourtask is to show tha t there is
U = u(X) 5o that £ (u(x), wlx),x)=0forallkelje {1,2) and x
in a neighborhood of %, This follows from the Implicit Mapping
Theorem, provided the Jacobian of (F heljett ’, with respect to (u,
v} is nonzero at (7 @)1 (83,%) (where L2, L a) - ED
is the reduction, or cut-off, operator to index set I). The Jacobian at
{n(8), (&), &) trns out to be the determinant of

- leag(g‘ B .)
BB + ¢Diag (L)

T

We compute the quadratic form (7, x5 ) x, )T

1 owith xy, 0 €
P

14 Vol. 15, 10-17 (2005)

= [Ba'x, i + {Br %

ez, 12

A bxp g — a2
- LV S0
4 Z z,

rel 54

2 Janin (B'B) (|11}

Lo lF).

where &% = § /|3;|. Hence J is invertible and det(J) > 0. By the
inverse mapping theorem, we thus have obtained a neighborhood of
X where s'(x) always has support exactly I This concludes the
proof of Proposition 1. 0

Let us twm now our attention to Proposition 2. For every T &
(1,2,..., n} we construct a sotution of (20), which is stable under
perturbations in X. This will prove the result.

Fix T ¢ 1,2, ..., n}. Set
I Y
=3 fAe =L 2H g, (30)
K=l =

where (¢ihier are some arbitrary phases, Define

s° zZéEek. (31}

kel

We claim s” above is a solution of (20) forx = x°. Denote

"2

Jols) = [x" ~ As|" + s, (32)

We need to show Jois%) < Jofsy, Tor all s # s Note first Jo(s™) =
ISt N

Let s € C” be arbitrary. If [supp(s)] > |
1 isupp(sy| = p I = (s,

Assume now [supp(s)i < |E. Let us denote J = supp(s). Nofice
that x° ¢ span{Ae;; j € J} because otherwise this would imply the
columns of A are not independent. Let us denote by P the orthogo-
nat projection onto the span of {Ae; j € J}. Then:

I. then clearly Ju(s) >

Jo(s) > 1 ‘

~Pxt +'Ju~‘ L\/ “(1—P)Ae,

&&I\J

Now we apply (23} with (24), and obtain

Jo(s) = a(1,d) Z ‘

2= 40 )

+ i = 2u(1\F)
+ pldl = [T+ (T = Wi = pll = Jo(s7).

This shows that s is the optimum for Jo(). Furthermore, we also
obtain the following inegualities:

To(s) — Jo(s8%) = pllIslly — 38010}
forall s € C*, and
Il > 210

Tols]

when |Isi|o = |1|. Explicitly this means



[ - A+l — APl 8”2 g

~max(ifis]y~[is"]|, 2lsupp(s)\supp(s”)[). (33)

In particular, these show & is the unigue sclation of (20). The left-
hand-side of (33) is a differentiable function on x°, with Lipschitz
constant L = 2 |JA(s—s%)||. Therefore, for any s & C" with ||s—s"||
< 2/ 0min (A)/20] = § with o,,(A) the smallest singular eigen-
value of A, and supp(s) # supp(s®), and x € C” with

%~ x°]| < min(e\ (2 A}S), /T (34)
we obtain
JO(S;X} _J(}(SO:X)

< pmax{{is{l,—||s"(|,i = 1, [supp(s)\I| - 1} = 0,
where

Jols, x) = ||x — As|” + sl

Furthermore, for [|s—s7[1 > 2/min(A) v/ 241T,

2 V 2,“:1‘ < Gmin(A

s o < lats - 7]
f+[lx — As"| < |x — As|| +

Vol

Hence
Jis,x) > (9 — 4vV2)ulll + pisupp(s) = (9 — 42 uli.
On the other hand
J(s, %) = |x — x| + 4w < 20T < J(s,x).

This shows that for such a X, an optimum s°(x) has to have the same
support as £, Le., supp(sﬂ{_x)) = I. Hence we obtained a neighbor-
hood of x”, say Fy, so that the optimum solution of (20) has support
I. This proves Proposition 2. £l

Now we are prepared to prove Theorem 3. The above discussion
showed the existence of neighborhoods in C”, denoted Fy, £y, where
the optimizers of (21), respectively (34} have support exactly I
Theorern 3 is praved by showing Ey M Fy # §. But, for B =
{(A"N* and i = /Bu/z, %7 of (30} is in the closure of both the set
of % defined by (28} and of X defined by (29). Hence the two sets £
and Fy should have a nonempty interior intersection, and this proves
the statement of the Theorem. L

V. AN EXAMPLE

In this section, we present an example of optimization in R?. Con-
sider the case of problem (20) where

11
A {0 l! p= 1. (35)
This data turns (20 into
($9(x). 52()

= argmm{\g — 8 — S1|2 + xx — SQEE - i.s;#@ -+ ]_(;,‘4._-'-0}. (36)

BT

where /... gis1ifs # 0, and Ofors =0,

Let us state the P optimization problem. To compute o we
need to consider only (I = {1}, J = 2D and 0 = (2}, J =
{1}), because I = {1, 2} and J = {1} (or J = {2}} reduces to
one of these two cases. The lower Riesz basic sequence bound
is the norm of the projection of the corresponding column vector
onto the orthogonal direction to the other column vector. The
bound for ( = {1}, J = (2}) 158 a{l, I) = !4, whereas the
bound of I = {2}, J = {1} is af,)) = 1. Hence o = 4 and
therefore the assoctated /'-optimization prebiem ¢21) has the fol-
lowing parameters:

Bz{l ?3124 (37)

3
-1 1]

This data turns {21) into

. ! 2.
argmm{ixi — 5|+

5182

Xy -5 ~‘§2|2+4%51§+4‘32|}.

(38)

After a few computations, one can obtain the solutions in closed
torm as follows. The /° optimization probiem (36) has the foliowing
solution:

S =050 =0 for{x,xn)e{d+3 <2}

Alnl < 10y + < V21

il

(S

Xy X .
l 5 2 for (x,x) € v —ml < V2

r‘]{)ci-—)m> {

@
ot 1
fl
o
S

(“L\’ W_J
.

A

Sl:x,,sg’::() for {(x1,x2) € {jm| = 110 {Ixpj < 1}

{W<¢14}

X1

0

5] =X wxgjsg =x; for{x xm) e {ix =1}

Fily — x> 130 {ad + 05 = 20

Figure 1 shows the data domains £; in the input space, where the
solution to the optimization problem, has some specific support. At
the intersection of domains (on the frontiers}, the optimizer may be
degenerate.

The /' optimization problem (38) has the following solution:

s} =055 =0 for (x.x2) € {|naf <230 {lx2 - x] <2}

s}zO,SEIZO('—zi) for {lxt =23 {jv - 2 sign(x)) < 2}

XX ,
st ;—:0( 1,) 2)¢52Em0 for {v,0) € {ixg —xy] > 2}

M{ix) +x; — Zsign(y )| <4}
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Figure 1. The data domains in 0xy, x5} space with same support of
sotution of i optimization (38).

5 = x| — 2[sign(s}) + sign{s})!.

5, = x; +x; ~ 2[sign(s}) + 2 sign(s3)] for the rest,

where
x—1 forx>=1.
xy =0 for v < &,
x-1 forx< —1.

Figure Z shows the data domains for the !' optimization problem.
Within each domain, the solution has the same support.

Overlapping the Figure 1 and Figure 2 we obtain Figure 3. The
intersections where supperts of the solutions of the two problems
coincide, Dy, Dy, D)y, Dy 2y, deseribe the set of input data where
the method presented in this paper correctly solves the hard / prob-
lem by first solving the easier /' problem. The unlabeled shaded
portions of the graph correspond to inputs for which the method
described in this paper would fail to determine the correct {* solu-
tion. One of the main results of this paper is that the set of input
data for which the supports of the solution to the /” problem and
appropriately constructed {° problem coincide is nonempty, and this
fact is clearly verified in Figure 3.

Vi. CONCLUSIONS

Estimation of a sparse data or signal representation is hard, We
present a new approach to the corresponding optimization problem,
which shows that for a nontrivial set of input data the problem is
equivalent to and can be solved by an algorithm devised for the
simpler low-spread optimization problem. This does not mean a
reduction of the harder /* problem to a simpler {* problem in alj
cases, however. The two optimization problems are to minimize the
Euclidian norm of lirear approximation error with an I penalty. or
with an /' penalty. The latter problem can be solved efficiently by
an terative algorithm. Here, for a given {7 optimization problem,
we construct an associated [' optimization problem and show that
for a set with open interior of the mput data the optimizers of the
two optimization probtems have the same support. Onee the support
of the / problem is known, the actual solution is easily found by
solving a linear system of equations. Thus the associated I optimi-

16 Vol. 15, 10-17 (2003)
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Figure 2. The data domains in (x4, xo} space with same support of
solution of ' optimization (38).

zation prebiem is used o find the support of the /° optimizer and
this leads to the optimal /” solution when the two optimization prob-
lems have the same support. When the optimizers do not have the
same support, the method will fail to produce the optimal solution.

This class of optimization problems is related to a number of
signal estimation problems of interest. The MAP estimator of a sig-
nal with generalized exponential prior in the presence of Gaussian
noise reduces to an optimization problem of the type studied here,
Similarly, regularization problems with exponential cost reduce (o
the same optimization problem.

Our result can be applied to a new class of sparse signal repre-
sentation techniques, for example speech enhancement techniques,
which use signal-adapted representations instead of the standard
frequency-domain representation. Such representations use for
instance the ICA technique to replace the Fourier transtorm by a
more dense but, hopetully, better signal adapted transformation that
represents the signal in a much sparser form.

Sy 05520

514 [E.;F‘52= b

- T

Figure 3. The intersection of the data domains where supports of
(36) and {(38) coincide.



Several issues remain as topics of further study. One such issue
is the “‘size’’ of regions where the supports of the two optimization
problems overlap. We have shown here only that the regions have
nonzero size. Another topic concerns the redundant case, namely
the case when A is a C™ matrix with m > n, which is not
addressed in this work.
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