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Problem Formulation Decompositions The (Counter)Example

Problem Formulation
Function Space Formulation

Let T : L2(R)→ L2(R) be a positive semi-definite trace-class compact
operator written in integral form

Tf (x) =
∫ ∞
−∞

K (x , y)f (y)dy .

Assume K ∈ M1(R2) belongs to the modulation space M1 (a.k.a. the
Feichtinger algebra, or the Segal algebra for TF ops).
Let (fk)k≥0 be a set of eigenvectors, Tfk = ‖fk‖22fk . Thus T =

∑
k fk f ∗k

and
∑

k ‖fk‖
2
2 = tr(T ) <∞.

Fact: It is known [HeilLars04/08] that fk ∈ M1 for each k.

Problem 1 [Feichtinger2004]: Does
∑

k≥0 ‖fk‖
2
M1 <∞ ?

Problem 2 [HeilLars04]: If the answer is negative to Problem 1, is there a
decomposition T =

∑
k gkg∗k , not necessarily spectral, so that∑

k≥0 ‖gk‖2M1 <∞ ?
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Problem Formulation
Interlude: Modulation space M1

The Feichtinger space M1 is defined as follows. Let g : R→ R,
g(x) = e−πx2 be the Gaussian window. Let

f ∈ S′ 7→ Vg f (t,w) =
∫ ∞
−∞

e−2πiwx f (x)g(x − t)dx

be the windowed Fourier transform of f with respect to g . Then

M1(R) =
{

f ∈ L2(R) , ‖f ‖M1 :=
∫ ∞
−∞

∫ ∞
−∞
|Vg f (t,w)|dt dw <∞

}
.

Fact: [FeichtGrochWaln92] The Wilson ONB is an unconditional basis in
M1. Let (wn)n≥0 denote this Wilson basis. Then we can identify M1 with
l1(N) space, with equivalent norms:

M1(R) = {f =
∑
n≥0

cnwn , ‖f ‖M1 ∼
∑
n≥0
|cn|}.
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Problem Formulation
Matrix Reformulation

Consider an infinite matrix A = (Am,n)m,n≥0 so that

‖A‖∧ :=
∑

m,n≥0
|Am,n| <∞.

This implies that A acts on l2(N) as a trace-class compact operator.
Assume additionally A = A∗ ≥ 0.
Let (ek)k≥0 denote an orthogonal set of eigenvectors normalized so that
A =

∑
k≥0 eke∗k . It is easy to check that ek ∈ l1(N), for each k.

Equivalent problems reformulation ([HeilLars04]):

Problem 1: Does it hold
∑

k≥0 ‖ek‖21 <∞ ?
Problem 2: If negative to problem 1, is there a factorization
A =

∑
k≥0 fk f ∗k so that

∑
k≥0 ‖fk‖

2
1 <∞ ?

Radu Balan (UMD) L1 decompositions 23 September 2017



Problem Formulation Decompositions The (Counter)Example

Problem Formulation
Matrix Reformulation

Consider an infinite matrix A = (Am,n)m,n≥0 so that

‖A‖∧ :=
∑

m,n≥0
|Am,n| <∞.

This implies that A acts on l2(N) as a trace-class compact operator.
Assume additionally A = A∗ ≥ 0.
Let (ek)k≥0 denote an orthogonal set of eigenvectors normalized so that
A =

∑
k≥0 eke∗k . It is easy to check that ek ∈ l1(N), for each k.

Equivalent problems reformulation ([HeilLars04]):
Problem 1: Does it hold

∑
k≥0 ‖ek‖21 <∞ ?

Problem 2: If negative to problem 1, is there a factorization
A =

∑
k≥0 fk f ∗k so that

∑
k≥0 ‖fk‖

2
1 <∞ ?

Radu Balan (UMD) L1 decompositions 23 September 2017



Problem Formulation Decompositions The (Counter)Example

Problem Formulation
Matrix Reformulation

Consider an infinite matrix A = (Am,n)m,n≥0 so that

‖A‖∧ :=
∑

m,n≥0
|Am,n| <∞.

This implies that A acts on l2(N) as a trace-class compact operator.
Assume additionally A = A∗ ≥ 0.
Let (ek)k≥0 denote an orthogonal set of eigenvectors normalized so that
A =

∑
k≥0 eke∗k . It is easy to check that ek ∈ l1(N), for each k.

Equivalent problems reformulation ([HeilLars04]):
Problem 1: Does it hold

∑
k≥0 ‖ek‖21 <∞ ?

Problem 2: If negative to problem 1, is there a factorization
A =

∑
k≥0 fk f ∗k so that

∑
k≥0 ‖fk‖

2
1 <∞ ?

Radu Balan (UMD) L1 decompositions 23 September 2017



Problem Formulation Decompositions The (Counter)Example

Tensor Products

Consider A ∈ Cn×n. We seek ”optimal” decompositions of A into a sum of
rank-1 operators: A =

∑
k ukv∗k .

In this talk we assume A to be positive semi-definite: A = A∗ ≥ 0.
Criterion 1:

J(A) = inf
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

Criterion 2:
J0(A) = inf

A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

where εk ∈ {+1,−1}.
Criterion 3:

J∧(A) = inf
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1
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What we know

J∧(A) = min
A=
∑m

k=1 fkg∗
k

m∑
k=1
‖fk‖1‖gk‖1

J0(A) = min
A=
∑m

k=1 εk fk f ∗
k

m∑
k=1
‖fk‖21

J(A) = min
A=
∑m

k=1 fk f ∗
k

m∑
k=1
‖fk‖21.

1. J∧, J0, J are positive, homogeneous, and convex on Sym+(Cn).
2. J∧, J0 extend to norms on Sym(Cn).
3. The following hold true:∑

i ,j |Ai ,j | =: ‖A‖∧ = J∧(A) ≤ J0(A) ≤ 2‖A‖∧ , ∀A ∈ Sym(Cn).

‖A‖∧ = J∧(A) ≤ J0(A) ≤ J(A) ≤ n‖A‖∧ , ∀A ∈ Sym+(Cn).
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Central Example
Consider the identity matrix In and two possible decompositions:

In =
n∑

k=1
δkδ
∗
k =

n−1∑
k=0

en,ke∗n,k

where {δk}k is the canonical ONB, and {en,k}k is the Fourier ONB:

en,k = 1√
n
[

1 e−2πik/n · · · e−2πik(n−1)/n
]T
.

Note:
n∑

k=1
‖δk‖21 = n = ‖In‖∧ = J(In)→ ”good decomposition”

n−1∑
k=0
‖en,k‖21 = n2 = nJ(In)→ ”bad decomposition”
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The CounterExample
Block Diagonal Form

We construct an example that answers negatively problem 1, but positively
problem 2.
The form: T = T1 ⊕ T2 ⊕ · · · ⊕ Tn ⊕ · · · ,

T =



T1
T2

. . .
Tn

. . .


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The CounterExample

Each block Tn is diagonalized by the Fourier ONB, and has positive simple
eigenvalues:

Tn = 1
n3

n−1∑
k=0

(
1 + k

np

)
en,ke∗n,k .

Thus:

T =
⊕
n≥1

n−1∑
k=0

1
n3

(
1 + k

np

)
en,ke∗n,k .
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Problem 1
Negative Answer

The eigendecomposition of T is

T =
∑
n≥1

n−1∑
k=0

fn,k f ∗n,k , fn,k = 1√
n3

√
1 + k

np en,k .

Then ∑
n≥1

n−1∑
k=0
‖fn,k‖21 =

∑
n≥1

n−1∑
k=0

1
n3 (1 + k

np )n ≥
∑
n≥1

1
n =∞

Hence the answer to problem 1 is negative: There is an operator
S : f 7→ Sf (x) =

∫
K (x , y)f (y)dy with K ∈ M1(R2) and S = S∗ ≥ 0, so

that its spectral decomposition S =
∑

k≥1 〈·, fk〉fk satisfies∑
k ‖fk‖

2
M1 =∞.
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Problem 2
Positive Answer

We show now that same operator T we constructed earlier admits a
decomposition T =

∑
m gmg∗m so that

∑
m ‖gm‖21 <∞.

Notice:

Tn = 1
n3

n−1∑
k=0

(
1 + k

np

)
en,ke∗n,k = 1

n3

n−1∑
k=0

δkδ
∗
k + 1

n3+p

n−1∑
k=0

ken,ke∗n,k

Thus the induced decomposition

Tn =
n−1∑
k=0

g1,n,kg∗1,n,k +
n−1∑
k=0

g2,n,kg∗2,n,k

satisfies
n−1∑
k=0
‖g1,n,k‖21 + ‖g2,n,k‖21 = 1

n2 + 1
n2+p

n(n − 1)
2 ≤ 1

n2 + 1
np
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Problem 2
Positive Answer - cont’d

Thus:

T =
⊕
n≥1

n−1∑
k=0

g1,n,kg∗1,n,k + g2,n,kg∗2,n,k

satisfies ∑
n≥1

n−1∑
k=0
‖g1,n,k‖21 + ‖g2,n,k‖21 ≤

∑
n≥1

1
n2 + 1

np <∞

Hence the answer to the second problem is affirmative: There is an
operator S = S∗ ≥ 0, f 7→ Sf (x) =

∫
K (x , y)f (y)dy with K ∈ M1(R2)

that admits a decomposition S =
∑

k≥1 〈·, gk〉gk that satisfies∑
k ‖gk‖2M1 <∞, but whose spectral decomposition does not satisfy the

same localization condition.
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Open Problem
A remaining open problem:Is there a universal constant C0 > 1 so that for
any n ≥ 1 and every positive semidefinite A ∈ Cn×n,

J(A) = min
A=
∑m

k=1 fk f ∗
k

‖fk‖21 ≤ C0

n∑
i ,j=1
|Ai ,j | ?

Why we care?
If the answer is positive, it follows that, given a trace-class positive
semidefinite operator T : f 7→ Tf (x) =

∫
K (x , y)f (y)dy the following two

statements are equivalent:
1 K ∈ M1(R2).
2 There are functions gk ∈ M1(R) so that

T =
∑
k≥0
〈·, gk〉gk

and
∑

k≥0 ‖gk‖2M1 <∞.
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