Lipschitz Embeddings and Riemannian Properties of Spaces of Low-Rank Symmetric Matrices

Radu Balan
Department of Mathematics and the Norbert Wiener Center for Harmonic Analysis and Applications
University of Maryland
rvbalan@umd.edu

September 12, 2022

Joint Work with Chris Dock (Tufts University).
Acknowledgments

This material is based upon work partially supported by the National Science Foundation under grant no. DMS-2108900 and Simons Foundation. “Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.”
Overview

1 Introduction

2 Lipschitz Embeddings

3 Geometry of $S^{r,0}(\mathbb{C}^n)$

4 Stability Bounds

5 Criteria for Phase Retrievability
The Complex Phase Retrieval Problem: Variants

- Continuous Fourier/Windowed Fourier: Recover $f \in \mathcal{B} \subset \{ f \in S'(\mathbb{R})| \hat{f} \in L^1_{loc}(\mathbb{R}) \}$ from $|\hat{f}|$ or $|V_g f|$ (for some known window g). Only possible if \mathcal{B} is sufficiently restrictive - for example if \hat{f} is taken to have compact support or is supported in the half line \cite{KST95, Jam14, AW21, GL22}.

- Discrete Fourier/Windowed Fourier: Recover $f = (f[0], \ldots, f[n-1]) \in \mathbb{C}^n$ from the (typically squared) magnitudes of its DFT coefficients $y[k] = |\sum_{j=0}^{n} y[j] e^{2\pi i kj/n}|^2$ \cite{Fie82, Hay82, IPSV20, IMP19, PS19}.

- Separable Hilbert space: Take H a separable complex Hilbert space. Recover $z \in H$ from $(|\langle z, f_k \rangle|)_{k \in I}$ where $(f_k)_{k \in I} \subset H$ is a frame for H \cite{CCD16}.

- Finite Hilbert space: Recover $z \in H = \mathbb{C}^n$ from $(|\langle z, f_k \rangle|)_{k=1}^{m}$ where $(f_k)_{k=1}^{m}$ is a frame for \mathbb{C}^n [...].

- Phase Retrieval with generalized frames: Recover $z \in H = \mathbb{C}^n$ from $\langle z, A_j z \rangle$ where $(A_j)_{j=1}^{m}$ is a generalized frame of Hermitian matrices (termed measurement matrices). Note that $A_j = f_j f_j^*$ gives the finite Hilbert space case. \cite{WX19}

In all such cases recovery is only ever possible up to an overall phase - that is to say modulo the action of $U(1)$.
Applications

- Inverse Problem in Potential Scattering - Determine potential / surface structure from (typically x-ray or neutron) scattering matrix. [KST95]
- Thin film optics - Inferring dielectric permittivity $\epsilon(z)$ of medium from the frequency dependence of the ratio $R(k)$ of the strength of transmitted and reflected tangential components. [KST95]
- Coherent Diffraction Imaging - infer shape of object in imaging plane from the diffraction pattern it produces under a coherent beam. [HTSL20]
- X-ray crystallography - infer electron density function $\rho(r) = \sum_{i=1}^{N} r_i \delta(r - r_i)$ of a single crystal cell from the measured diffraction pattern. [KH91]
- Speech recognition - the human ear is quite reliably “phase deaf,” determining what has been said only from the magnitude spectrum of a signal. [DJPH93]
- Pure state quantum tomography - inferring the state of a quantum system (represented by a vector in a Hilbert space) from potentially noisy measurements. [BBCE09][KW15]
Motivating Application: Mixed Quantum Tomography

A mixed state quantum system is modeled as a statistical ensemble over pure quantum states living in a Hilbert space H. The standard example is unpolarized light. In such cases, all of the measurable information in the system is contained in a density matrix:

$$\rho = \sum_{j \in \mathcal{I}} p_j \psi_j \psi_j^*$$

- p_j - ensemble probability of being in pure state ψ_j: $\sum_{i \in \mathcal{I}} p_j = 1$.
- $\psi_j \in H$ - a pure state: Given an observable (Hermitian matrix) A with eigenpair (ν, λ) we have $\Pr_{\psi_j}[A \text{ takes value } \lambda] = |\langle \nu, \psi_j \rangle|^2$.

If we take $H = \mathbb{C}^n$ and $|\mathcal{I}| = r$ then ρ is a positive semi-definite matrix of rank at most r and having unit trace, we write $\rho \in S^{r,0}(\mathbb{C}^n) \cap \{x \in \text{Sym}(\mathbb{C}^n) | \text{tr}\{x\} = 1\}$, where $S^{r,0}(\mathbb{C}^n)$ denotes the set of PSD matrices of rank at most r. The goal of quantum tomography is to infer ρ from measurements $(\text{tr}\{\rho A_j\})_{j \in [m]}$ given by a collection of observables $(A_j)_{j=1}^m$.
Motivating Application: Mixed Quantum Tomography

The expectation of an observable A_j in mixed state ρ is

$$
\mathbb{E}_\rho[A_j] = \sum_{k=1}^{r} p_k \langle \psi_k, A_j \psi_k \rangle = \sum_{k=1}^{r} p_k \text{tr}\{\psi_k \psi_k^* A_j\} = \text{tr}\{\rho A_j\} = \langle \rho, A_j \rangle
$$

By repeatedly measuring our observables and allowing the system to “relax” we may obtain these expectations to within a small error. Since $\rho \in S^{r,0}(\mathbb{C}^n)$ we may write via Cholesky factorization for some $z \in \mathbb{C}^{n \times r}$

$$
\rho = zz^*
$$

Note ρ is unchanged by $z \mapsto zU$ for $U \in U(r)$, so the problem becomes to stably recover z modulo $U(r)$ (a “unitary phase”) from $(\langle zz^*, A_j \rangle)_{j=1}^m$. In particular we would like the following map to be injective (and indeed lower Lipschitz):

$$
\beta : \mathbb{C}^{n \times r} / U(r) \to \mathbb{R}^m
$$

$$
\beta(z) = (\langle zz^*, A_j \rangle)_{j=1}^m
$$

A generalized frame $(A_j)_{j=1}^m$ for which β is injective is called $U(r)$ phase retrievable.
U(r) phase retrievability

A generalized frame $\mathcal{A} = (A_j)_{j=1}^m$ for which β is injective is called *U(r)* phase retrievable.

- As for $U(1)$, *U(r)* phase retrievability is a stronger condition than being a generalized frame for $\mathbb{C}^{n \times r}$.
- If \mathcal{A} is a frame for $\text{Sym}(\mathbb{C}^n)$ itself then it is automatically *U(r)* phase retrievable.
- If \mathcal{A} is *U(r)* phase retrievable then it is *U(k)* phase retrievable for any $1 \leq k \leq r$, in particular it is phase retrievable.

Thus the concept of being *U(r)* phase retrievable is an intermediate between being phase retrievable for \mathbb{C}^n and being a frame for $\text{Sym}(\mathbb{C}^n)$. Another way to think about *U(r)* phase retrieval is as low rank positive semi-definite matrix recovery [Xu18].

In analogy with the pure state case in which one is also interested in the stable recovery properties of the non-linear measurement map $\alpha_j(x) = |\langle x, f_j \rangle|$ we define

$$\alpha : \mathbb{C}^{n \times r}/U(r) \to \mathbb{R}^m$$

$$\alpha(z) = (\langle zz^*, A_j \rangle^{1/2})_{j=1}^m$$
The problem

\[\beta, \alpha : \mathbb{C}^{n \times r} / U(r) \to \mathbb{R}^m \]
\[\beta(z) = (\langle zz^*, A_j \rangle)^m_{j=1} \]
\[\alpha(z) = (\langle zz^*, A_j \rangle^{\frac{1}{2}})^m_{j=1} \]

The problem is then to

- Identify appropriate distances on \(\mathbb{C}^{n \times r} / U(r) \) to use for stability analysis of \(\alpha \) and \(\beta \).
- Find out whether \(\beta \) (resp. \(\alpha \)) is lower Lipschitz on its range whenever \((A_j)^m_{j=1} \) is \(U(r) \) phase retrievable.
- If so, provide a means of computing the lower Lipschitz constant for \(\beta \) (resp. \(\alpha \)).
- Give if and only if criteria for a given frame of observables to be phase retrievable.
Metric Space Structures

We define the equivalence relation \sim on $\mathbb{C}^{n \times r}$ via

$$x \sim y \iff \exists U \in U(r) | x = yU$$

and denote by $[x]$ the equivalence class of $x \in \mathbb{C}^{n \times r}$, and by $\mathbb{C}^{n \times r}/U(r)$ the set of equivalence classes $\{[x] | x \in \mathbb{C}^{n \times r}\}$. We define $D, d, \delta : \mathbb{C}^{n \times r} \times \mathbb{C}^{n \times r} \to \mathbb{R}$:

$$D(x, y) = \min_{U \in U(r)} ||x - yU||_2 = \sqrt{||x||^2_2 + ||y||^2_2 - 2||x^*y||_1}$$

$$d(x, y) = \min_{U \in U(r)} ||x - yU||_2||x + yU||_2 = \sqrt{(||x||^2_2 + ||y||^2_2)^2 - 4||x^*y||^2_1}$$

$$\delta(x, y) = ||xx^* - yy^*||_2$$

- D is known as the Bures-Wasserstein distance, or the ”natural” distance. Note for $\lambda \in \mathbb{C}$, $D(\lambda x, \lambda y) = |\lambda|D(x, y)$, so D is appropriate for analyzing the α map.
- d scales like $d(\lambda x, \lambda y) = |\lambda|^2d(x, y)$ and is appropriate for analyzing β and so is δ, the matrix norm induced distance.
- d, D, δ are not Lipschitz equivalent but they do generate the same topology on $\mathbb{C}^{n \times r}/U(r)$.

Radu Balan
(UMD)
Embeddings of Low-Rank Symmetric Matrices
September 12, 2022
The new (and mysterious) distance d

It is easy to show that $D, d(x, y) = \min_{U \in U(r)} \|x - yU\|_2$ is a (semi)distance. For $d, d(x, y) = \min_{U \in U(r)} \|x - yU\|_2 \|x + yU\|_2$, it is easy to show positivity and symmetry. The tricky part is the triangle inequality. For $r = 1$ real-case see [EM14, BCMN14, Sal19] (the last paper analyzes the complex-case as well).

However it has never been explicitly mentioned it is a metric. In the real-case the triangle inequality reduces to a statement about the analytic geometry of parallepipeds in \mathbb{R}^3, namely that the sum of the products of face diagonals on any two sides sharing a vertex exceeds the product of the third side sharing the vertex.

On the other hand, in the real-case, for $x, y \in \mathbb{R}^n$,
\[\|x - y\|_2 \|x + y\|_2 = \|xx^T - yy^T\|_1; \] in the complex case, for $x, y \in \mathbb{C}^n$,
\[\min_{\varphi} \|x - e^{i\varphi}y\|_2 \|x + e^{i\varphi}y\|_2 = \|xx^* - yy^*\|_1. \]

This identity implies the triangle inequality in the case $r = 1$. For $r > 1$, the identity $\min_{U \in U(r)} \|x - yU\|_2 \|x + yU\|_2 = \|xx^* - yy^*\|_1$ fails in general for $x, y \in \mathbb{C}^{n \times r}$! However both sides define (inequivalent) distances!
Lipschitz Embeddings

We would like to embed the metric spaces \((\mathbb{C}^{n\times r}/U(r), D \text{ or } d)\) into \((\text{Sym}(\mathbb{C}^n), \| \cdot \|_2)\) in a (bi)Lipschitz way. Defining invertible maps (modulo \(\sim\))

\[
\theta, \pi, \psi : \mathbb{C}^{n\times r} \rightarrow S^{r,0}(\mathbb{C}^n)
\]

\[
\theta(x) = (xx^*)^{\frac{1}{2}} \quad \pi(x) = xx^* \quad \psi(x) = \| x \|_2 (xx^*)^{\frac{1}{2}}.
\]

Theorem ([BD22])

(i) \(\theta : (\mathbb{C}^{n\times r}/U(r), D) \rightarrow (S^{r,0}(\mathbb{C}^n), \| \cdot \|_2)\) is a bi-Lipschitz map:

\[
\frac{1}{\sqrt{2}} \| \theta(x) - \theta(y) \|_2 \leq D(x, y) \leq \| \theta(x) - \theta(y) \|_2 \quad \forall x, y \in \mathbb{C}^{n\times r}/U(r)
\]

(ii) \(\pi, \psi : (\mathbb{C}^{n\times r}/U(r), d) \rightarrow (S^{r,0}(\mathbb{C}^n), \| \cdot \|_1)\) are upper and lower Lipschitz:

\[
\| \pi(x) - \pi(y) \|_1 \leq d(x, y) \leq 2\| \psi(x) - \psi(y) \|_2 \quad \forall x, y \in \mathbb{C}^{n\times r}/U(r)
\]

(iii) For \(r = 1\) we have \(d(x, y) = \| \pi(x) - \pi(y) \|_1\)

(iv) For \(r > 1\), there is no constant \(C\) satisfying \(d(x, y) \leq C\| \pi(x) - \pi(y) \|_2\) for all \(x, y \in \mathbb{C}^{n\times r}/U(r)\) (hence the use of the alternate embedding \(\psi\)).
Lipschitz Constants

With these embeddings in mind we define lower Lipschitz bounds:

\[
a_0 = \inf_{x, y \in \mathbb{C}^{n \times r}, [x] \neq [y]} \frac{||\beta(x) - \beta(y)||_2^2}{||\pi(x) - \pi(y)||_2^2} = \inf_{x, y \in \mathbb{C}^{n \times r}, [x] \neq [y]} \frac{\sum_{j=1}^{m} (\langle xx^*, A_j \rangle_{\mathbb{R}} - \langle yy^*, A_j \rangle_{\mathbb{R}})^2}{||xx^* - yy^*||_2^2}
\]

\[
A_0 = \inf_{x, y \in \mathbb{C}^{n \times r}, [x] \neq [y]} \frac{||\alpha(x) - \alpha(y)||_2^2}{||\theta(x) - \theta(y)||_2^2} = \inf_{x, y \in \mathbb{C}^{n \times r}, [x] \neq [y]} \frac{\sum_{j=1}^{m} (\langle xx^*, A_j \rangle_{\mathbb{R}}^{\frac{1}{2}} - \langle yy^*, A_j \rangle_{\mathbb{R}}^{\frac{1}{2}})^2}{||(xx^*)^{\frac{1}{2}} - (yy^*)^{\frac{1}{2}}||_2^2}
\]

Assume \((A_j)_{j \in [m]}\) is \(U(r)\) phase retrievable for \(\mathbb{C}^{n \times r}\). Then we showed that:

1. The bound \(a_0 > 0\) and provided a means of computing it for any \(r \geq 1\); hence \(\beta : (\mathbb{C}^{n \times r} / U(r), \delta) \to (\text{Sym}(\mathbb{C}^n), || \cdot ||_2)\) is bi-Lipschitz, where \(\delta(x, y) = ||xx^* - yy^*||_2\).

2. However \(A_0 = 0\) for \(r > 1\)! Thus the \(\alpha\) map is not Lipschitz invertible for \(r > 1\) with respect to any of the three metrics \(d, D\) or \(\delta\), nor matrix norm induced distances via \(\theta, \pi, \psi\).
Geometry of $S^{r,0}(\mathbb{C}^n)$

To compute a_0 and A_0 we need to linearize π and θ and find their actions on the “tangent bundle” of $S^{r,0}(\mathbb{C}^n)$. $S^{r,0}(\mathbb{C}^n)$ is only a semi-algebraic variety, however, so we need to understand its singular structure and whether the linearized problem suffices when “boundary manifolds” are encountered. We showed that $S^{r,0}(\mathbb{C}^n)$ has a Whitney stratification over the smooth Riemannian manifolds $\tilde{S}^{i,0}(\mathbb{C}^n)$ (PSD matrices of rank exactly i) for $i = 0, \ldots, r$ having real dimension $2ni - i^2$.

Definition (a-regular, b-regular, from [Kal00])

Let V_i, V_j be disjoint real manifolds embedded in \mathbb{R}^d such that $\dim V_j > \dim V_i$ and $V_i \cap \overline{V_j}$ non-empty. Let $x \in V_i \cap \overline{V_j}$. Then a triple (V_j, V_i, x) is called a– (resp. b–) regular if

(a) If a sequence $(y_n)_{n \geq 1} \subset V_j$ converges to x in \mathbb{R}^d and $T_{y_n}(V_j)$ converges in the Grassmannian $\text{Gr}_{\dim V_j}(\mathbb{R}^d)$ to a subspace τ_x of \mathbb{R}^d then $T_x(V_i) \subset \tau_x$.

(b) If sequences $(y_n)_{n \geq 1} \subset V_j$ and $(x_n)_{n \geq 1} \subset V_i$ converge to x in \mathbb{R}^d, the unit vector $(x_n - y_n)/\|x_n - y_n\|_2$ converges to a vector $v \in \mathbb{R}^d$, and $T_{y_n}(V_j)$ converges in the Grassmannian $\text{Gr}_{\dim V_j}(\mathbb{R}^d)$ to a subspace τ_x of \mathbb{R}^d then $v \in \tau_x$.

Radu Balan (UMD)
Geometry of $S^{r,0}(\mathbb{C}^n)$

Definition (Whitney stratification, from [Kal00])

Let V be a real semi-algebraic variety. A disjoint decomposition

$$V = \bigsqcup_{i \in I} V_i, \quad V_i \cap V_j = \emptyset \text{ for } i \neq j$$

into smooth manifolds $\{V_i\}_{i \in I}$, termed strata, is a Whitney stratification if

- Each point has a neighborhood intersecting only finitely many strata
- The boundary sets $\overline{V_j} \setminus V_j$ of each stratum V_j are unions of other strata.
- Every triple (V_j, V_i, x) such that $x \in V_i \subset \overline{V_j}$ is a-regular and b-regular.

The point is that there is a compatibility between the stratifying manifolds - if you are in the tangent space of lower dimensional strata you are in a limiting sense also in the tangent space of higher strata. This gives the semi-algebraic variety more structure, and as we’ll see in this case enables us to find what almost looks like a Riemannian geometry on the whole of $S^{r,0}(\mathbb{C}^n)$ (even though it isn’t a manifold).
Geometry of $S^{r,0}(\mathbb{C}^n)$

We will stratify $S^{r,0}(\mathbb{C}^n)$ as $\bigsqcup_{i=0}^{r} S^{i,0}(\mathbb{C}^n)$, where $S^{i,0}(\mathbb{C}^n)$ is the set of positive semi-definite matrices of rank exactly i.

Theorem ([BD22]; see also [BJL19])

Let D be the Bures-Wasserstein (a.k.a., the natural) distance. Then

(i) $S^{p,q}(\mathbb{C}^n)$ is a real analytic manifold with
$$\dim_{\mathbb{R}}(S^{p,q}(\mathbb{C}^n)) = 2n(p + q) − (p + q)^2.$$

(ii) $\pi : \mathbb{C}_*^{n \times r} \to S^{r,0}(\mathbb{C}^n)$ can be made into a Riemannian submersion by choosing the unique Riemannian metric on $S^{r,0}(\mathbb{C}^n)$, for $Z_1, Z_2 \in T_X(S^{r,0}(\mathbb{C}^n))$:
$$h_X'(Z_1, Z_2) = \text{tr}\{Z_2^\Vert \int_0^\infty e^{-uX} Z_1^\Vert e^{-uX} du\} + \Re \text{tr}\{Z_1^\bot * Z_2^\bot X^\dagger\}$$

where $Z_i^\Vert = \mathbb{P} \text{Ran}(X) Z_i \mathbb{P} \text{Ran}(X), Z_i^\bot = \mathbb{P} \text{Ran}(X) \bot Z_i \mathbb{P} \text{Ran}(X)$ and the real Hilbert-Schmidt inner product as metric on $T_{\pi^{-1}(X)}(\mathbb{C}_*^{n \times r})$.

(iii) $(S^{r,0}(\mathbb{C}^n), h^r)$ is a Riemannian manifold with $D \circ (\pi^{-1} \times \pi^{-1})$ as its geodesic distance.

(iv) $S^{r,0}(\mathbb{C}^n)$ admits as a Whitney stratification $(S^{i,0})_{i=0}^r$.

Radu Balan (UMD)
Embeddings of Low-Rank Symmetric Matrices
September 12, 2022 16 / 30
Geometry of $S^{r,0}(\mathbb{C}^n)$

We will stratify $S^{r,0}(\mathbb{C}^n)$ as $\bigsqcup_{i=0}^r \hat{S}^{i,0}(\mathbb{C}^n)$, where $\hat{S}^{i,0}(\mathbb{C}^n)$ is the set of positive semi-definite matrices of rank exactly i.

Theorem ([BD22])

The geometry associated to h is compatible with the Whitney stratification in the following sense: If $(A_i)_{i \geq 1}, (B_i)_{i \geq 1} \subset \hat{S}^{p,0}$ have limits A and B respectively in $\hat{S}^{q,0}$ for $q < p$ and if $\gamma_i : [0, 1] \to \hat{S}^{p,0}$ are geodesics in $\hat{S}^{p,0}$ connecting A_i to B_i chosen in such a way that the limiting curve $\delta : [0, 1] \to \hat{S}^{p,0}$ given by

$$\delta(t) = \lim_{i \to \infty} \gamma_i(t)$$

exists, then the image of δ lies in $\hat{S}^{q,0}$ and is a geodesic curve in $\hat{S}^{q,0}$ connecting A to B.

Another way to look at this is if $0 \leq q \leq p \leq r$ and $X = xx^* \in \hat{S}^{p,0}$, $Y = yy^* \in \hat{S}^{q,0}$ and $\gamma_{X_1,X_2} : [0, 1] \to \hat{S}^{p,0}$ is the geodesic connecting X_1 to X_2 then

$$D(x, y)^2 = \min_{U \in U(r)} \|x - yU\|_2^2 = \lim_{Z \to Y} \int_0^1 h^p_{\gamma_X, Z(t)}(\gamma'_X, Z(t), \gamma'_X, Z(t)) dt$$
Geometry of $S^{r,0}(\mathbb{C}^n)$ via $\mathbb{C}^{n \times r}$

We may view $S^{r,0}(\mathbb{C}^n)$ as the image under $\pi : x \mapsto \pi(x) = xx^*$ of $\mathbb{C}^{n \times r}$, and each stratifying manifold $\check{S}^{i,0}(\mathbb{C}^n)$ as the image of $[\mathbb{C}_{*}^{n \times i} | 0^{n \times (r-i)}]$ (the $*$ means full rank). This is surjective, but not injective owing to the ambiguity $U(r)$. We can compute the differential $D\pi(z)(w) = zw^* + wz^*$, its kernel $V_{\pi,x}(\mathbb{C}_{*}^{n \times r})$ (the vertical space), and the orthogonal complement of its kernel $H_{\pi,x}(\mathbb{C}_{*}^{n \times r})$ (the horizontal space) which maps one to one onto the tangent space of $\check{S}^{i,0}(\mathbb{C}^n)$.

\[Z(\det x^*x) \]
\[T_x(\mathbb{C}^{n \times r}) = \mathbb{C}^{n \times r} \]
\[[x] \]
\[V_{\pi,x} \]
\[H_{\pi,x} \]
\[\pi(x) \]
\[\check{S}^{r,0}(\mathbb{C}^n) \]
\[T_{\pi(x)}(\check{S}^{r,0}) \]
\[0 = D\pi(x)(V_{\pi,x}) \]
\[D\pi(x) \]
\[D\pi(x)^\dagger \]
The spaces $V_{\pi,x}(\mathbb{C}^{n\times r})$, $H_{\pi,x}(\mathbb{C}^{n\times r})$ and $T_{\pi(x)}(\hat{S}^{r,0}(\mathbb{C}^n))$ may be computed as

Lemma ([BD22])

Let $\pi : \mathbb{C}^{n\times r} \to \hat{S}^{r,0}(\mathbb{C}^n)$ be as before and let $V_{\pi,x}(\mathbb{C}^{n\times r})$ and $H_{\pi,x}(\mathbb{C}^{n\times r})$ denote the vertical and horizontal spaces of the manifold $\mathbb{C}^{n\times r}$ at x with respect to the embedding π. Let $T_{\pi(x)}(\hat{S}^{r,0}(\mathbb{C}^n))$ denote the tangent space of $\hat{S}^{r,0}(\mathbb{C}^n)$ at $\pi(x)$. Then

\[
V_{\pi,x}(\mathbb{C}^{n\times r}) = \{ xK | K \in \mathbb{C}^{r\times r}, K^* = -K \}
\]
\[
H_{\pi,x}(\mathbb{C}^{n\times r}) = \{ Hx + X | H \in \mathbb{C}^{n\times n}, H^* = H = \mathbb{P} \text{Ran}(x) H, X \in \mathbb{C}^{n\times r}, \mathbb{P} \text{Ran}(x) X = 0 \}
\]
\[
T_{\pi(x)}(\hat{S}^{r,0}(\mathbb{C}^n)) = \{ W \in \text{Sym}(\mathbb{C}^n) | \mathbb{P} \text{Ran}(x) \perp W \mathbb{P} \text{Ran}(x) \perp = 0 \}
\]
\[
= D_{\pi(x)}(H_{\pi,x}(\mathbb{C}^{n\times r}))
\]

Note that $\dim_{\mathbb{R}}(V_{\pi,x}(\mathbb{C}^{n\times r})) = r^2$ and $\dim_{\mathbb{R}}(T_{\pi(x)}(\hat{S}^{r,0}(\mathbb{C}^n))) = \dim_{\mathbb{R}}(H_{\pi,x}(\mathbb{C}^{n\times r})) = 2nr - r^2$.

Radu Balan
(UMD)
The tangent space Lipschitz bounds

In our effort to obtain or at least control the global Lipschitz constant a_0 we define the following local lower Lipschitz constants:

$$a_1(z) = \lim_{R \to 0} \inf_{x \in \mathbb{C}^n \times r, \ ||\pi(x) - \pi(z)||_2 < R} \frac{||\beta(x) - \beta(z)||_2^2}{||\pi(x) - \pi(z)||_2^2}$$

$$a_2(z) = \lim_{R \to 0} \inf_{x, y \in \mathbb{C}^n \times r, \ ||\pi(x) - \pi(z)||_2 < R, \ ||\pi(y) - \pi(z)||_2 < R} \frac{(||\beta(x) - \beta(y)||_2^2)}{||\pi(x) - \pi(y)||_2^2}$$

As well as the following geometric constant

$$a(z) := \min_{W \in T_{\pi(\hat{z})}(S^k, \mathbb{C}^n)} \sum_{j=1}^{m} \left| \langle W, A_j \rangle_{\mathbb{R}} \right|^2$$

Where here $\hat{z} \in \mathbb{C}^{n \times k}_*$ is such that $z = [\hat{z}|0]U$ for some $U \in U(r)$ ($\hat{z} = z$ if z has rank r, and moreover the tangent space doesn’t depend on the choice of \hat{z}).
The tangent space Lipschitz bounds

Given $z \in \mathbb{C}^{n \times r}$ having rank $k > 0$ define $Q_z \in \mathbb{R}^{(2nk-k^2) \times (2nk-k^2)}$ as follows. Let $U_1 \in \mathbb{C}^{n \times k}$ be a matrix whose columns are left singular vectors of z corresponding to non-zero singular values of z, so that $U_1 U_1^* = \mathbb{P} \text{ Ran}(z)$. Let $U_2 \in \mathbb{C}^{n \times (n-k)}$ be a matrix whose columns are left singular vectors of z corresponding to the zero singular values of z, so that $U_2 U_2^* = \mathbb{P} \text{ Ran}_z \perp$. Then

$$Q_z := Q[u_1 | u_2] = \sum_{j=1}^{m} \begin{bmatrix} \tau(U_1^* A_j U_1) \\ \mu(U_2^* A_j U_1) \end{bmatrix}^T$$

where the isometric isomorphisms τ and μ are given by

$$\tau : \text{Sym}(\mathbb{C}^k) \to \mathbb{R}^{k^2} \quad \mu : \mathbb{C}^{p \times q} \to \mathbb{R}^{2pq}$$

$$\tau(X) = \begin{bmatrix} D(X) \\ \sqrt{2} T(\Re X) \\ \sqrt{2} T(\Im X) \end{bmatrix} \quad \mu(X) = \text{vec}(\begin{bmatrix} \Re X \\ \Im X \end{bmatrix})$$

where if $A \in \text{Sym}(\mathbb{R}^n)$ $D(A)$ is the vectorization of its diagonal and and $T(A)$ is the vectorization of its upper triangular part.
The tangent space Lipschitz bounds

Theorem ([BD22])

- \((A_j)_{j=1}^m\) is \(U(r)\) phase retrievable if and only if \(a_0 > 0\).
- The global lower bound \(a_0\) is given as \(a_0 = \inf_{z \in \mathbb{C}^{n \times r} \setminus \{0\}} a(z)\).
- The local lower bounds \(a_1(z)\) and \(a_2(z)\) are squeezed between \(a_0 \leq a_2(z) \leq a_1(z) \leq a(z)\) so that in particular \(a_0 = \inf_{z \in \mathbb{C}^{n \times r} \setminus \{0\}} a_i(z)\).
- The infimization problem in \(a(z)\) may be reformulated as an eigenvalue problem. Let \(Q_z\) be as above. Then

\[
a(z) = \lambda_{2nk-k^2}(Q_z)
\]

Corollary

Fix any \(U_2 \in \mathbb{C}^{n \times n-r}\) with orthonormal columns. We may compute \(a_0\) as

\[
a_0 = \min_{U_1 \in \mathbb{C}^{n \times r}} \lambda_{2nr-r^2}(Q[U_1|U_2])
\]

\[
U = [U_1|U_2] \in U(n)
\]
The horizontal space Lipschitz bounds

An alternate method of controlling a_0 is to use the (new) distance d. We define for $z \in \mathbb{C}^{n \times r}$ with rank k the local lower Lipschitz constants

\[
\hat{a}_1(z) = \lim_{R \to 0} \inf_{x \in \mathbb{C}^{n \times r}} \frac{||\beta(x) - \beta(z)||_2^2}{d(x, z)^2} \quad \text{subject to} \quad \begin{cases} d(x, z) < R \\ \text{rank}(x) \leq k \end{cases}
\]

\[
\hat{a}_2(z) = \lim_{R \to 0} \inf_{x, y \in \mathbb{C}^{n \times r}} \frac{||\beta(x) - \beta(y)||_2^2}{d(x, y)^2} \quad \text{subject to} \quad \begin{cases} d(x, z) < R \\ d(y, z) < R \\ \text{rank}(x) \leq k \\ \text{rank}(y) \leq k \end{cases}
\]

Unfortunately the rank constraints are necessary here - without them the constants would be zero. We also define the geometric constant

\[
\hat{a}(z) = \min_{w \in H, \hat{z} \in \mathbb{C}^{n \times k}} \sum_{j=1}^{m} |\langle D_{\pi}(\hat{z})(w), A_j \rangle_R|^2
\]
Given \(z \in \mathbb{C}^{n \times r} \) having rank \(k > 0 \) define \(\hat{Q}_z \in \mathbb{R}^{2nk \times 2nk} \) as follows. Let \(F_j = \mathbb{I}_{k \times k} \otimes j(A_j) \in \mathbb{R}^{2nk \times 2nk} \) where

\[
j : \mathbb{C}^{m \times n} \to \mathbb{R}^{2m \times 2n}
\]

\[
j(X) = \begin{bmatrix} \Re X & -\Im X \\ \Im X & \Re X \end{bmatrix}
\]

is an injective homomorphism. Then

\[
\hat{Q}_z := 4 \sum_{j=1}^{m} F_j \mu(\hat{z}) \mu(\hat{z})^T F_j
\]
The horizontal space Lipschitz bounds

Theorem ([BD22])

- For $r = 1$ $\hat{a}(z)$ differs from $a(z)$ by a constant factor hence $\inf_{\hat{\mathbf{z}} \in \mathbb{C}^{n \times r} \setminus \{0\}} \hat{a}(z) > 0$. For $r > 1$ this infimum is zero and there is no non-trivial global lower bound \hat{a}_0 analogous to a_0 for the natural metric d.

- The local lower bounds with respect to the alternate metric d satisfy

$$\hat{a}_1(z) = \hat{a}_2(z) = \frac{1}{4||z||_2^2} \hat{a}(z)$$

- The infimization problem in $\hat{a}(z)$ may be reformulated as an eigenvalue problem. Let \hat{Q}_z be as above. Then $\hat{a}(z)$ is directly computable as

$$\hat{a}(z) = \lambda_{2nk-k^2}(\hat{Q}_z)$$

- We have the following local inequality relating $a(z)$ and $\hat{a}(z)$.

$$\frac{1}{4||z||_2^2} \hat{a}(z) \leq a(z) \leq \frac{1}{2\sigma_k(z)^2} \hat{a}(z)$$
The horizontal space Lipschitz bounds

Theorem ([BD22])

While the fact that $\hat{a}_0 = 0$ makes clear that a_0 cannot be upper bounded by $\inf_{z \in \mathbb{C}^{n \times r} \setminus \{0\}} \hat{a}(z)$, we can achieve a similar end by constraining z to have orthonormal columns. Namely

$$\frac{1}{4} \inf_{z \in \mathbb{C}^{n \times r} \atop z^* z = I_{r \times r}} \hat{a}(z) \leq a_0 \leq \frac{1}{2} \inf_{z \in \mathbb{C}^{n \times r} \atop z^* z = I_{r \times r}} \hat{a}(z)$$
Phase retrievability criteria

The last two theorems give criteria for a frame to be $U(r)$ phase retrievable.

Theorem ([BD22])

Let $\{A_j\}_{j=1}^m$ be a frame for $\mathbb{C}^{n \times r}$. Then the following are equivalent:

(i) $\{A_j\}_{j=1}^m$ is $U(r)$ phase retrievable.

(ii) For all $U_1 \in \mathbb{C}^{n \times r}$, $U_2 \in \mathbb{C}^{n \times (n-r)}$ such that $[U_1|U_2] \in U(n)$ the matrix

$$Q_{[U_1|U_2]} = \sum_{j=1}^m \begin{bmatrix} \tau(U_1^* A_j U_1) \\ \mu(U_2^* A_j U_1) \end{bmatrix}^T \begin{bmatrix} \tau(U_1^* A_j U_1) \\ \mu(U_2^* A_j U_1) \end{bmatrix}$$

is invertible.

(iii) For all $z \in \mathbb{C}^{n \times r}$ such that z has orthonormal columns, the matrix

$$\hat{Q}_z = 4 \sum_{j=1}^m (I_{k \times k} \otimes j(A_j))\mu(z)\mu(z)^T(I_{k \times k} \otimes j(A_j))$$

has as its null space the r-dimensional $V_z = \{\mu(u) | u \in V_{\pi}, z{:} \mathbb{C}^{n \times r}\}$.
Phase retrievability criteria

Theorem ([BD22])

(Continued)

1. For all \(U_1 \in \mathbb{C}^{n \times r} \), \(U_2 \in \mathbb{C}^{n \times (n-r)} \) such that \([U_1|U_2] \in U(n)\), \(H \in \text{Sym}(\mathbb{C}^r)\), \(B \in \mathbb{C}^{(n-r) \times r} \) there exist \(c_1, \ldots, c_m \in \mathbb{R} \) such that

\[
U_1^* \left(\sum_{j=1}^{m} c_j A_j \right) U_1 = H \quad (1a)
\]

\[
U_2^* \left(\sum_{j=1}^{m} c_j A_j \right) U_1 = B \quad (1b)
\]

2. For all \(U_1 \in \mathbb{C}^{n \times r} \) with orthonormal columns

\[
\text{span}_{\mathbb{R}} \{ A_j U_1 \}_{j=1}^{m} = \{ U_1 K | K \in \mathbb{C}^{r \times r}, K^* = -K \}^\perp
\]

The second criterion is a generalization of the result in [BCMN14] which says that a frame \((\phi_j)_{i=1}^{m} \) for \(\mathbb{C}^n \) is phase retrievable iff
Other results in the paper

- We give a purely topological proof that \((A_j)_{j=1}^m\) phase retrievable implies \(a_0 > 0\) (we do this before computing \(a_0\)).
- We prove using continuity of eigenvalues with respect to matrix entries that \(A_0 = 0\) for \(r > 1\).
- We compute local lower Lipschitz constants for \(\alpha\).
- We compute Lipschitz upper bounds \(b_0\) and \(B_0\).
- We show that our results reduce to those in [BZ16] for the case \(r = 1\).
- We verify the lower Lipschitz theorems numerically.
Summary of differences between mixed and pure state case

<table>
<thead>
<tr>
<th>$r = 1$ (pure state case)</th>
<th>$r > 1$ (mixed state case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase ambiguity is scalar $e^{i\theta}$</td>
<td>Phase ambiguity is in $U(r)$</td>
</tr>
<tr>
<td>$(z_i)_{i \geq 1} \subset \mathbb{C}^n/U(1)$ with $|z_i|_2 = 1$ cannot approach zero</td>
<td>$(z_i)_{i \geq 1} \subset \mathbb{C}^{n \times r}/U(r)$ with $|z_i|_2 = 1$ can come ϵ close to dropping rank</td>
</tr>
<tr>
<td>$d(x, y) = |xx^* - yy^*|_1$</td>
<td>β is bi-Lipschitz with $|xx^* - yy^*|_p$</td>
</tr>
<tr>
<td>β is bi-Lipschitz wrt. d and $\delta(x, y) = |xx^* - yy^*|_2$</td>
<td>β is bi-Lipschitz wrt. $|xx^* - yy^*|_2$ Only locally lower Lipschitz wrt. D</td>
</tr>
<tr>
<td>$A_0 > 0$, α is bi-Lipschitz wrt. D and $|(xx^)^{\frac{1}{2}} - (yy^)^{\frac{1}{2}}|_2$</td>
<td>$A_0 = 0$, α is locally lower Lipschitz wrt. D and $|(xx^)^{\frac{1}{2}} - (yy^)^{\frac{1}{2}}|_2$</td>
</tr>
</tbody>
</table>
References

Uniqueness of stft phase retrieval for bandlimited functions.

Radu Balan, Bernhard G Bodmann, Peter G Casazza, and Dan Edidin.
Painless reconstruction from magnitudes of frame coefficients.

Afonso S Bandeira, Jameson Cahill, Dustin G Mixon, and Aaron A Nelson.
Saving phase: Injectivity and stability for phase retrieval.

Radu Balan and Chris B Dock.
Lipschitz analysis of generalized phase retrievable matrix frames.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim.
On the bures–wasserstein distance between positive definite matrices.

Jameson Cahill, Peter Casazza, and Ingrid Daubechies. Phase retrieval in infinite-dimensional hilbert spaces.

Yonina C Eldar and Shahar Mendelson. Phase retrieval: Stability and recovery guarantees.

P. Grohs and L. Liehr.
On foundational discretization barriers in stft phase retrieval.

M.H. Hayes.
The reconstruction of a multidimensional sequence from the phase or magnitude of its fourier transform.

Zhukuan Hu, Cuimei Tan, Zhenzhen Song, and Zhengjun Liu.
A coherent diffraction imaging by using an iterative phase retrieval with multiple patterns at several directions.

Mark A. Iwen, Sami Merhi, and Michael Perlmutter.
Lower lipschitz bounds for phase retrieval from locally supported measurements.

Mark A. Iwen, Brian Preskitt, Rayan Saab, and Aditya Viswanathan.
Phase retrieval from local measurements: Improved robustness via eigenvector-based angular synchronization.

Philippe Jaming.
Uniqueness results in an extension of pauli’s phase retrieval problem.

Vadim Kaloshin.
A geometric proof of the existence of whitney stratifications.

Wooshik Kim and Monson H Hayes.
The phase retrieval problem in x-ray crystallography.

Michael V Klibanov, Paul E Sacks, and Alexander V Tikhonravov.
The phase retrieval problem.
Michael Kech and Michael Wolf.
From quantum tomography to phase retrieval and back.

Götz E. Pfander and Palina Salanevich.
Robust phase retrieval algorithm for time-frequency structured measurements.

Palina Salanevich.
Stability of phase retrieval problem.

Yang Wang and Zhiqiang Xu.
Generalized phase retrieval: measurement number, matrix recovery and beyond.

Zhiqiang Xu.
The minimal measurement number for low-rank matrix recovery.