Optimal l^1 factorizations of positive semi-definite matrices

Radu Balan

University of Maryland
Department of Mathematics and the Norbert Wiener Center
College Park, Maryland rvbalan@umd.edu

December 8, 2022
Pacific Rim Mathematical Association (PRIMA) 2022 Congress
Pacific Institute for the Mathematical Sciences (PIMS), Vancouver, BC
Acknowledgments

This material is based upon work partially supported by the National Science Foundation under grant no. DMS-2108900 and by Simons Foundation. “Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.”

Collaborators:
Felix Krahmer (TUM), Fushuai (Black) Jiang (Brown/UMD), Kasso Okoudjou (Tufts), Anirudha Poria (Bar-Ilan U.), Michael Rawson (UMD/PNNL), Yang Wang (HKUST), Rui Zhang (HKUST)

Works:

Let $\text{Sym}^+(\mathbb{C}^n) = \{ A \in \mathbb{C}^{n \times n} : A^* = A \geq 0 \}$. For $A \in \text{Sym}^+(\mathbb{C}^n)$,

$$\gamma_+(A) := \inf_{A=\sum_{k \geq 1} x_k x_k^*} \sum_k \|x_k\|_1^2$$

The *matrix conjecture*: There is a universal constant C_0 such that, for every $n \geq 1$ and $A \in \text{Sym}^+(\mathbb{C}^n)$,

$$\gamma_+(A) \leq C_0 \|A\|_1 := C_0 \sum_{k,l=1}^{n} |A_{k,l}|$$
Motivation
A Feichtinger Problem

At a 2004 Oberwolfach meeting, Hans Feichtinger asked the following question: (Q1) Given a positive semi-definite trace-class operator $T : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, $Tf(x) = \int K(x, y)f(y)dy$, with $K \in M^1(\mathbb{R}^d \times \mathbb{R}^d)$, and its spectral factorization, $T = \sum_k \langle \cdot, h_k \rangle h_k$, must it be $\sum_k \|h_k\|_{M^1}^2 < \infty$?

A modified version of the question is: (Q2) Given T as before, i.e., $T = T^* \geq 0$, $K \in M^1(\mathbb{R}^d \times \mathbb{R}^d)$, is there a factorization $T = \sum_k \langle \cdot, g_k \rangle g_k$ such that $\sum_k \|g_k\|_{M^1}^2 < \infty$?
Consider an infinite matrix $A = (A_{m,n})_{m,n \geq 0}$ so that
\[
\|A\|_\wedge := \|A\|_1 := \sum_{m,n \geq 0} |A_{m,n}| < \infty.
\]
This implies that A acts on $l^2(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A = A^* \geq 0$ as a quadratic form.
Let $(e_k)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that
$A = \sum_{k \geq 0} e_k e^*_k$. It is easy to check that $e_k \in l^1(\mathbb{N})$, for each k.
Equivalent reformulations of the two problems (Heil, Larson ‘08):
Consider an infinite matrix $A = (A_{m,n})_{m,n \geq 0}$ so that
\[\|A\|_\wedge := \|A\|_1 := \sum_{m,n \geq 0} |A_{m,n}| < \infty. \]
This implies that A acts on $l^2(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A = A^* \geq 0$ as a quadratic form.
Let $(e_k)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that
$A = \sum_{k \geq 0} e_k e_k^*$. It is easy to check that $e_k \in l^1(\mathbb{N})$, for each k.
Equivalent reformulations of the two problems (Heil, Larson ‘08):
Q1: Does it hold $\sum_{k \geq 0} \|e_k\|_1^2 < \infty$?
Problem Reformulation
Matrix Language

Consider an infinite matrix \(A = (A_{m,n})_{m,n \geq 0} \) so that
\[
\|A\|_\wedge := \|A\|_1 := \sum_{m,n \geq 0} |A_{m,n}| < \infty.
\]
This implies that \(A \) acts on \(l^2(\mathbb{N}) \) as a trace-class compact operator.
Assume additionally \(A = A^* \geq 0 \) as a quadratic form.
Let \((e_k)_{k \geq 0} \) denote an orthogonal set of eigenvectors normalized so that
\[
A = \sum_{k \geq 0} e_k e_k^*.
\]
It is easy to check that \(e_k \in l^1(\mathbb{N}) \), for each \(k \).
Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold \(\sum_{k \geq 0} \|e_k\|_1^2 < \infty \)? Answer: Negative in general! (see [1])
Problem Reformulation

Matrix Language

Consider an infinite matrix $A = (A_{m,n})_{m,n \geq 0}$ so that

$$\|A\|_\wedge := \|A\|_1 := \sum_{m,n \geq 0} |A_{m,n}| < \infty.$$

This implies that A acts on $l^2(\mathbb{N})$ as a trace-class compact operator.

Assume additionally $A = A^* \geq 0$ as a quadratic form.

Let $(e_k)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A = \sum_{k \geq 0} e_k e_k^*$. It is easy to check that $e_k \in l^1(\mathbb{N})$, for each k.

Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold $\sum_{k \geq 0} \|e_k\|_1^2 < \infty$? Answer: Negative in general! (see [1])

Q2: Is there a factorization $A = \sum_{k \geq 0} f_k f_k^*$ so that $\sum_{k \geq 0} \|f_k\|_1^2 < \infty$?
Problem Reformulation
Matrix Language

Consider an infinite matrix $A = (A_{m,n})_{m,n \geq 0}$ so that
$$\|A\|_\wedge := \|A\|_1 := \sum_{m,n \geq 0} |A_{m,n}| < \infty.$$ This implies that A acts on $l^2(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A = A^* \geq 0$ as a quadratic form.
Let $(e_k)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A = \sum_{k \geq 0} e_k e_k^*$. It is easy to check that $e_k \in l^1(\mathbb{N})$, for each k.
Equivalent reformulations of the two problems (Heil, Larson ‘08):
Q1: Does it hold $\sum_{k \geq 0} \|e_k\|_1^2 < \infty$? Answer: Negative in general! (see [1])
Q2: Is there a factorization $A = \sum_{k \geq 0} f_k f_k^*$ so that $\sum_{k \geq 0} \|f_k\|_1^2 < \infty$?

Using previous equivalence and some functional analysis arguments:

Proposition
If (Q2) is answered affirmatively, then the matrix conjecture must be true.
Recall the setup. Take $A \in \text{Sym}^+(\mathbb{C}^n) := \{ A \in \mathbb{C}^{n \times n} , A^* = A \geq 0 \}$. We are interested in this quantity:

$$\gamma_+(A) := \inf_{A = \sum_{k \geq 1} x_k x_k^*} \sum_k \|x_k\|_1^2$$

Recall definitions of norms:

$$\|A\|_1 = \sum_{k,l=1}^n |A_{k,l}| , \|A\|_{op} = \max_{\|x\|_2 = 1} \|Ax\|_2 = s_{max}(A)$$

The matrix conjecture: There is a universal constant C_0 such that, for every $n \geq 1$ and $A \in \text{Sym}^+(\mathbb{C}^n)$,

$$\gamma_+(A) \leq C_0 \|A\|_1$$
The infimum is achieved:

\[
\gamma_+(A) := \inf_{A=\sum_{k \geq 1} x_k x_k^*} \sum_k \|x_k\|_1^2 = \min_{A=\sum_{k=1}^{n^2} x_k x_k^*} \sum_k \|x_k\|_1^2.
\]

Upper bounds:

\[
\gamma_+(A) \leq n \text{trace}(A) \leq n \|A\|_1 = n \sum_{k,j} |A_{k,j}|
\]

\[
\gamma_+(A) \leq n \text{trace}(A) \leq n^2 \|A\|_{op}
\]

Lower bounds:

\[
\|A\|_1 = \min_{A=\sum_{k \geq 1} x_k y_k^*} \sum_k \|x_k\|_1 \|y_k\|_1 \leq \gamma_+(A)
\]

Convexity: for \(A, B \in \text{Sym}^+(\mathbb{C}^n) \) and \(t \geq 0 \),

\[
\gamma_+(A + B) \leq \gamma_+(A) + \gamma_+(B), \quad \gamma_+(tA) = t \gamma_+(A)
\]
Current Status of the Matrix Conjecture [2]

Lower bound is achieved:

1. If $A = xx^*$ is of rank one, then $\gamma_+(A) = \|x\|_1^2 = \|A\|_1$.
2. If $A \geq 0$ is diagonally dominant matrix, then $\gamma_+(A) = \|A\|_1$.

Continuity and Lipschitz:

1. Let $\text{Sym}^{++}(\mathbb{C}^n) = \{A = A^* > 0\}$. Then $\gamma_+|_{\text{Sym}^{++}} : \text{Sym}^{++}(\mathbb{C}^n) \rightarrow \mathbb{R}$ is continuous.
2. If $A, B \in \text{Sym}^{++}(\mathbb{C}^n)$, $\text{trace}(A), \text{trace}(B) \leq 1$ and $A, B \geq \delta I$ then

$$|\gamma_+(A) - \gamma_+(B)| \leq \left(\frac{n}{\delta^2} + n^2\right) \|A - B\|_{op}$$

hence Lipschitz continuous.

Maximum of $\sum_k \|x_k\|_1^2 / \|A\|_1$ over 30 random noise realizations, where x_k's are obtained from the eigendecomposition, or the LDL factorization.
Two New Results

Optimal Factorization from a Measure Theory Perspective

Let $S_1 = \{x \in \mathbb{C}^n, \|x\|_1 = 1\}$ denote the compact unit sphere with respect to the l^1 norm, and let $\mathcal{B}(S_1)$ denote the set of Borel measures over S_1. For $A \in \text{Sym}(\mathbb{C}^n)^+(\mathbb{C}^n)$ consider the optimization problem:

$$(p^*, \mu^*) = \inf_{\mu \in \mathcal{B}(S_1)} \int_{S_1} xx^* d\mu(x) = A \quad \mu(S_1) \quad (M)$$

Theorem (Optimal Measure)

For any $A \in \text{Sym}^+(\mathbb{C}^n)$ the optimization problem (M) is convex and its global optimum (minimum) is achieved by

$$p^* = \gamma_+(A), \quad \mu^*(x) = \sum_{k=1}^{m} \lambda_k \delta(x - g_k)$$

where $A = \sum_{k=1}^{m} (\sqrt{\lambda_k} g_k)(\sqrt{\lambda_k} g_k)^*$ is an optimal decomposition that achieves

$$\gamma_+(A) = \sum_{k=1}^{m} \lambda_k.$$
Super-resolution and Convex Optimizations

\[
\gamma_+ (A) = \min_{x_1, \ldots, x_m : \ A = \sum_{k=1}^{m} x_k x_k^*} \sum_{k=1}^{m} \|x_k\|_2^2, \ m = n^2 \quad (P)
\]

\[
p^* = \inf_{\mu \in \mathcal{B}(S_1) : \ A = \int_{S_1} xx^* d\mu(x)} \int_{S_1} d\mu(x) \quad (M)
\]

Remarks

1. The optimization problem \((P)\) is non-convex, but finite-dimensional. The optimization problem \((M)\) is convex, but infinite-dimensional.

2. If \(g_1, \ldots, g_m \in S_1\) in the support of \(\mu^*\) are known so that \(\mu^* = \sum_{k=1}^{m} \lambda_k \delta(x - g_k)\), then the optimal \(\lambda_1, \ldots, \lambda_m \geq 0\) are determined by a linear program. More general, \((M)\) is an infinite-dimensional linear program.

3. Finding the support of \(\mu^*\) is an example of a super-resolution problem. One possible approach is to choose a redundant dictionary (frame) that includes the support of \(\mu^*\), and then solve the induced linear program.
Theorem (The Continuity Property)

The map $\gamma_+: (\text{Sym}^+(\mathbb{C}^n), \| \cdot \|) \to \mathbb{R}$ is continuous.

Remarks

1. This statement extends the continuity result from $\text{Sym}^{++}(\mathbb{C}^n) = \{A = A^* > 0\}$ to $\text{Sym}^+(\mathbb{C}^n) = \{A = A^* \geq 0\}$.

2. Proof is based on a (new?) comparison result between non-negative operators.

3. Global Lipschitz is still open.
Thank you for listening!

QUESTIONS?
Proof of the Optimal Measure Result

Recall: we want to show the following problems admit same solution:

\[
\gamma_+ (A) = \min_{x_1, \ldots, x_m : A = \sum_{k=1}^m x_k x_k^*} \sum_{k=1}^m \|x_k\|_1^2 , \ m = n^2 \quad (P)
\]

\[
p^* = \inf_{\mu \in \mathcal{B}(S_1) : A = \int_{S_1} x x^* d\mu(x)} \int_{S_1} d\mu(x) \quad (M)
\]

a. Assume \(A = \sum_{k=1}^m x_k x_k^* \) is a global minimum for \((P)\). Then
\[
\mu(x) = \sum_{k=1}^m \|x_k\|_1^2 \delta(x - \frac{x_k}{\|x_k\|_1})\]
is a feasible solution for \((M)\). This shows \(p^* \leq \gamma_+ (A) \).

b. For reverse: Let \(\mu^* \) be an optimal measure in \((M)\). Fix \(\varepsilon > 0 \). Construct a disjoint partition \((U_l)_{1 \leq l \leq L}\) of \(S_1 \) so that each \(U_l \) is included in some ball \(B_\varepsilon (z_l) \) of radius \(\varepsilon \) with \(\|z_l\|_1 = 1 \). Thus \(U_l \subset B_\varepsilon (z_l) \cap S_1 \).

For each \(l \), compute \(x_l = \frac{1}{\mu^*(U_l)} \int_{U_l} x d\mu^*(x) \in B_\varepsilon (z_l) \). Let \(g_l = \sqrt{\mu^*(U_l)} x_l \).
Proof: The Optimal Measure Result (cont)

Key inequality:

\[0 \leq R_l := \int_{U_l} (x - x_l)(x - x_l)^* \, d\mu^*(x) = \int_{U_l} xx^* \, d\mu^*(x) - \mu^*(U_l) x_l x_l^* \]

Sum over \(l \) and with \(R = \sum_{l=1}^{L} R_l \) get

\[A = \int_{S_1} xx^* \, d\mu^*(x) \leq \sum_{l=1}^{L} g_l g_l^* + R \]

By sub-additivity and homogeneity:

\[\gamma_+(A) \leq \sum_{l=1}^{L} \|g_l\|_1^2 + \gamma_+(R) \leq \sum_{l=1}^{L} \mu^*(U_l) \|x_l\|_1^2 + n \text{ trace}(R) \]

But \(\|x_l - z_l\|_1 \leq \varepsilon \) and \(\|x - x_l\|_1 \leq 2\varepsilon \) for every \(x \in U_l \). Hence \(\|x_l\|_1 \leq 1 + \varepsilon \) and \(\text{trace}(R_l) \leq 4\mu^*(U_l)\varepsilon^2 \).
Proof: The Optimal Measure Result (end)

Thus:

$$\gamma_+(A) \leq \mu^*(S_1) + (2\varepsilon + \varepsilon^2 + 4n\varepsilon^2)\mu^*(S_1)$$

Since $\varepsilon > 0$ is arbitrary, it follows

$$\gamma_+(A) \leq \mu^*(S_1) = p^*$$

This ends the proof of the measure result. \square
The Continuity Property

The proof is based on the following two lemmas:

Lemma (L1)

Let $A \in \text{Sym}^+(\mathbb{C}^n)$ of rank $r > 0$. Let $\lambda_r > 0$ denote the r^{th} eigenvalue of A, and let $P_{A,r}$ denote the orthogonal projection onto the range of A. For any $0 < \varepsilon < 1$ and $B \in \text{Sym}^+(\mathbb{C}^n)$ such that $\|A - B\|_{Op} \leq \frac{\varepsilon \lambda_r}{1 - \varepsilon}$, the following holds true:

$$A - (1 - \varepsilon) P_{A,r} B P_{A,r} \geq 0 \quad (1)$$

Lemma (L2)

Let $A \in \text{Sym}^+(\mathbb{C}^n)$ of rank $r > 0$. Let $\lambda_r > 0$ denote the r^{th} eigenvalue of A. For any $0 < \varepsilon < \frac{1}{2}$ and $B \in \text{Sym}^+(\mathbb{C}^n)$ such that $\|A - B\|_{Op} \leq \varepsilon \lambda_r$, the following holds true:

$$B - (1 - \varepsilon) P_{B,r} A P_{B,r} \geq 0 \quad (2)$$

where $P_{B,r}$ denotes the orthogonal projection onto the top r eigenspace of B.
Proof of Continuity of γ_+

Fix $A \in \text{Sym}^+(\mathbb{C}^n)$. Let $(B_j)_{j \geq 1}$, $B_j \in \text{Sym}^+(\mathbb{C}^n)$, be a convergent sequence to A. We need to show $\gamma_+(B_j) \to \gamma_+(A)$.

Let $A = \sum_{k=1}^{n^2} x_k x_k^*$ be the optimal decomposition of A such that

$$\gamma_+(A) = \sum_{k=1}^{n^2} \|x_k\|_1^2.$$

If $A = 0$ then $\gamma_+(A) = 0$ and

$$0 \leq \gamma_+(B_j) \leq n \text{trace}(B_j) \leq n^2 \|B_j\|_{Op}.$$

Hence $\lim_j \gamma_+(B_j) = 0$.

Assume $\text{rank}(A) = r > 0$ and let $\lambda_r > 0$ denote the smallest strictly positive eigenvalue of A. Let $\varepsilon \in (0, \frac{1}{2})$ be arbitrary. Let $J = J(\varepsilon)$ be so that

$$\|A - B_j\|_{Op} < \varepsilon \lambda_r$$

for all $j > J$. Let $B_j = \sum_{k=1}^{n^2} y_{j,k} y_{j,k}^*$ be the optimal decomposition of B_j such that $\gamma_+(B_j) = \sum_{k=1}^{n^2} \|y_{j,k}\|_1^2$.

Let $\Delta_j = A - (1 - \varepsilon) P_{A,r} B_j P_{A,r}$. By Lemma L1, for any $j > J$,

$$\gamma_+(A) \leq (1 - \varepsilon) \gamma_+(P_{A,r} B_j P_{A,r}) + \gamma_+(\Delta_j) \leq (1 - \varepsilon) \sum_{k=1}^{n^2} \|P_{A,r} y_{j,k}\|_1^2 + n \text{trace}(\Delta_j).$$
Proof of Continuity of γ_+ (cont)

Pass to a subsequence j' of j so that $y_{j',k} \to y_k$, for every $k \in [n^2]$, and
$\gamma_+(B_{j'}) \to \lim \inf_j \gamma_+(B_j)$. Then
\[\lim_{j'} \sum_{k=1}^{n^2} \| P_{A,r} y_{j',k} \|^2_1 = \lim_{j'} \sum_{k=1}^{n^2} \| y_{j',k} \|^2_1 = \lim \inf_j \gamma_+(B_j) \]

On the other hand, $\lim_j \text{trace}(\Delta_j) = \varepsilon \text{trace}(A)$. Hence:
\[\gamma_+(A) \leq (1 - \varepsilon) \lim \inf_j \gamma_+(B_j) + \varepsilon \text{trace}(A) \]

Since $\varepsilon > 0$ is arbitrary, it follows $\gamma_+(A) \leq \lim \inf_j \gamma_+(B_j)$.

The inequality $\lim \sup_j \gamma_+(B_j) \leq \gamma_+(A)$ follows from Lemma L2 similarly: with
$\Delta_j = B_j - (1 - \varepsilon)P_{B_j,r} A P_{B_j,r}$ and $A = \sum_{k=1}^{n^2} x_k x_k^*$ optimal,
\[\gamma_+(B_j) \leq (1 - \varepsilon) \gamma_+(P_{B_j,r} A P_{B_j,r}) + n \text{trace}(\Delta_j) = (1 - \varepsilon) \sum_{k=1}^{n^2} \| P_{B_j,r} x_k \|^2_1 + n \text{trace}(\Delta_j). \]

Next take limsup of lhs by noticing $P_{B_j,r} \to P_{A,r}$ and $\lim \sup_j \| \Delta_j \|_{O_p} = \varepsilon \| A \|_{O_p}$:
\[\lim \sup_j \gamma_+(B_j) \leq (1 - \varepsilon) \gamma_+(A) + n^2 \varepsilon \| A \|_{O_p} \]. Take $\varepsilon \to 0$ and result follows. □
Proof of Lemmas

Proof of Lemma L1

Let $P = P_{A,r}$ and $\Delta = A - (1 - \varepsilon)P_{A,r}BP_{A,r}$. For any $x \in \mathbb{C}^n$:

$$\langle \Delta x, x \rangle = \langle APx, Px \rangle - (1 - \varepsilon)\langle BPx, Px \rangle = \langle (A - (1 - \varepsilon)B)Px, Px \rangle =$$

$$= \varepsilon \langle APx, Px \rangle + (1 - \varepsilon)\langle (A - B)Px, Px \rangle \geq \varepsilon \lambda_r \|Px\|^2 - (1 - \varepsilon)\|A - B\|_{Op} \|Px\|^2 \geq 0$$

because $\|A - B\|_{Op} \leq \frac{\varepsilon \lambda_r}{1 - \varepsilon}$.

Proof of Lemma L2

Let $P = P_{B,r}$ and $\Delta = B - (1 - \varepsilon)P_{B,r}AP_{B,r}$. Let $C = B - P_{B,r}BP_{B,r} \geq 0$. Let μ_r be the r^{th} eigenvalue of B. Note $|\mu_r - \lambda_r| \leq \|A - B\|_{Op} \leq \varepsilon \lambda_r$. Thus $\mu_r \geq (1 - \varepsilon)\lambda_r$. For any $x \in \mathbb{C}^n$:

$$\langle \Delta x, x \rangle = \langle Cx, x \rangle + \langle BPx, Px \rangle - (1 - \varepsilon)\langle APx, Px \rangle = \langle Cx, x \rangle + \varepsilon \langle BPx, Px \rangle +$$

$$+ (1 - \varepsilon)\langle (B - A)Px, Px \rangle \geq \langle Cx, x \rangle + (\varepsilon \mu_r - (1 - \varepsilon)\|A - B\|_{Op})\|Px\|^2 \geq 0$$

because $\|A - B\|_{Op} \leq \varepsilon \lambda_r \leq \frac{\varepsilon \mu_r}{1 - \varepsilon}$.