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ASYMPTOTIC RELATIONS AMONG FOURIER COEFFICIENTS
OF AUTOMORPHIC EIGENFUNCTIONS

SCOTT A. WOLPERT

ABSTRACT. A detailed stationary phase analysis is presented for noncompact
parameter ranges of the family of elementary eigenfunctions on the hyperbolic
plane K(z) = y'/2 K, (2nmy)e2™ % 2 = z4iy, A = i-{—rQ the eigenvalue, s =
2rmA~1/2 and K;, the Macdonald-Bessel function. The phase velocity of K on
{|s|[Imz < 1} is a double-valued vector field, the tangent field to the pencil of
geodesics G tangent to the horocycle {|s|Imz = 1}. For A € SL(2;R) a multi-
term stationary phase expansion is presented in \ for IC(Az)e?™*" B¢z uniform
in parameters. An application is made to find an asymptotic relation for the
Fourier coefficients of a family of automorphic eigenfunctions. In particular,
for ¢ automorphic with coefficients {an} and eigenvalue A it is shown for the
special range n ~ A/2 that a, is O()\l/4 67‘,/\1/2/2) for A large, improving by
an order of magnitude for this special range upon the estimate from the general
Hecke bound O(|n|1/2)\1/4 e""\l/z/g). An exposition of the WKB asymptotics
of the Macdonald-Bessel functions is presented.

1. INTRODUCTION

A cuspidal automorphic eigenfunction for the hyperbolic Laplacian has a Fourier
series expansion

(1) Y(z) =) a(n)y' 2K (2mln]y)e* ™
n#0

for z = x +iy,y > 0, eigenvalue —\ = —(% + r?) < —1/4 and K, a Macdonald-
Bessel function, [Iw2| VK| [Tr]. The Fourier coefficients are of interest, [Bml [BDHI|
HA| Twll ITw2| Ms| Pt1l [Pt2, Myl [Sr1l, [Sbil Vk]. For instance for I' = SL(2; Z) and

o0

the Hecke basis of eigenfunctions, the Hecke-Maass L-series L(s,v) = > a(n)n™*
n=1
continues to an entire function of s with an Euler product

L(s,) =[] —ap)p™ +p~>) 7"

p

for Res > 1, and for ¢ even a functional equation A(s,) = A(1 — s,4) for
A(s, 1) = m ST (55D (252) L(s, ), T(z) the Euler gamma function, [Bm, [GSh].
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The order of magnitude of the Fourier coefficients and their sums are basic is-
sues, even for nonarithmetic groups [DI, Iw2l [Pt1l [Pt2], [Sr1l, Sb2]. Hecke gave
the argument for the elementary bound valid for I" cofinite with a cusp at infinity
la(n)|e=™""*/2 < Cp|n|Y/2A1/4 (the factor e™'/*/2 is an artifact of the normaliza-
tion of the Macdonald-Bessel functions), [Tr]. The magnitude is also a basic matter
for questions in quantum chaos, [Sr1l[Wp]. Numerical investigations of D. A. Hejhal
[HA|, [Hj2] have provided evidence for a generalized Ramanujan-Petersson conjec-
ture: the coefficients |a(n)| should be Oy (|n|°).

The focus of the present investigation is a set of relations among the Fourier co-
efficients of a cuspidal automorphic eigenfunction. To present the relations we first
introduce the required quantities. Let h(u) be a smooth function with supp(h) C
(0,2) and > h(u+n)=1. Forn,m € Z and A = < a b

n€zZ c d
the parameters t = 2rn\~Y2, s = 2rmA~'/? and 7 = ¢?|st|~'. Further define the
(phase) function Qo = 2(1 + 7~ 1)V/2 —log(27 4+ 1 4 2(72 + 7)Y/?) — (td + sa)c™".
We find in Corollary that, given parameter values 0 < tg < t; and 8 > 4,
the Fourier coefficients {a,} of an automorphic eigenfunction ¢ with eigenvalue A
satisfy

) €I',c > 0, introduce

4
ane_ﬂ)‘l/z/Q _ )\_1/4 Z ame_m\l/z/Qe—i)\l/on Z )\_k/ﬁgk(t, 5)
(2) m>0 k=0

+ O g]l2)

for tg < 27nA~'/2 < t; and a remainder constant depending on tg, t1, 3, h, A and I.
We find that the Fourier coefficients a,,, for the hybrid range to < 2rnA\~1/2 < t;,
are bounded as O()\l/4e”>‘1/2/2||w|\2). The present bound for the hybrid range is
a considerable improvement over the estimate obtained by specializing the general
bounds of P. Sarnak [Sr2] and Y. N. Petridis [Pt1l Pt2]. Petridis has established
the general bound that a,, is O(|n|3/8+€)\1/4e”/\1/2/2||1p||2). Each Fourier coefficient
is presented above as a sum of Fourier coefficients with the phase —A'/2Qq. The
coefficients g are smooth functions of ¢, s and are supported on the interval § <
T4 2<a, a= (2t + (8 —1)/2)? (see (T9) and Section BT for the definition of
the coefficients); the first coefficient is

go = (W/2)1/207167i7r/47_1/2(27_ + 1)2/3(7_2 + ,7_)75/12
XAt + )Y = (8- 1)),
The sum over m is in fact supported in the range
AtHB - 2) < 2mmATV2 < At o - 2).
The focus of our approach is the stationary phase expansion in the eigenvalue
A= i + 72 of the integral
3) / (ImA(w))/? K (2| Im A(w))
Imw=XA1/2(27|n|)~1

% eZwimReA(w)JrQﬂ'inRew B(R@'IU)CZRB’U}
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for m,n € Z, A € SL(2;R) and h a suitable test function. We start our consider-
ations in Section [2 by recalling the Liouville-Green asymptotics of the Macdonald-
Bessel functions

2@”)‘1/2/2(|m|[mz)1/2Kir(27r|m|Imz)eQmmRez
_ (lsllmz)l/Q(ei)\l/zq;+(z)—i7r/4 4 eiAl/zqz_(z)+i7r/4) + O()\—l/Q)

for s = 2rmA~1/2, |s|Imz << 1 and the phase function ¥4 (z) = sRez+ F(|s|Imz)
for F(Y) = f; (172 —1)/2dr, [BI,[Ov]. We find that the hyperbolic gradient V¥,
the phase velocity, is a double-valued vector field on {|s|[Imz < 1} with a sim-
ple geometric description. If G is the pencil of geodesics tangent to the horocycle
{|s|Imz = 1}, then V¥ is the rightward pointing unit tangent double-field to G
(see Figure B)). The graph of the differential d¥ gives a two-sheeted Lagrangian
over {|s|Imz < 1} which folds over {|s|Imz = 1}. Similarly the phase of the inte-
grand of (B) is ® = e, F(|s|ImA(w)) + Re(sA(w) + tw) for e, = 1, s = 2rmA~1/?
and t = 2mnA~/2. In Section 32 we show that on the horocycle {|t|Imw = 1} the
phase derivative is given as

do 2
—— =t ((1+appm)'? +ea (1 -pr)-ap)’?)
for the parameters A = < Z : ) , T =2c2st|7 p=|st71| |A(w)|, €1 = sgn(—st)

and e = sgn(e.t). It follows directly that the phase ® is stationary (to second
order) precisely for e = —1 and p = (27 + €)1

In Section[4] (see Propositions[£.2] through [77) we use the explicit description of
the Macdonald-Bessel function asymptotics, the phase ® and its derivative dgfw
to give a five-term stationary phase expansion of the integral (3)) for a range of the
t and s parameter values. The expansion is the focus of this paper.

To obtain the coefficient relation (2)) for an automorphic eigenfunction v, con-

sider for A € T" the integrals

/ Y(w)e? "R h( Rew)d Rew
[t Imw=1
= / Y(A(w))e?™ B b Rew)d Rew
[t Imw=1

and insert the series representation () of v on both the left and right sides. The
right-hand side is a sum of products of Fourier coefficients of ¢ and integrals (B)).
This is the fundamental coefficient relation; the full statement and proof are given

in Theorem L8] Provided > ?L(:c—i—n) = 1, by the orthogonality of exponentials the
neE”Z

left-hand side reduces to a multiple of the single coefficient a_,,, [¢t| = 27|n|A\~
and we find the stated relation.

A cuspidal automorphic eigenfunction ¢ with eigenvalue A gives rise to linear
forms

1/2
)

Eko,kl (w) — Z akeQWikV.

ko<k<k:
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The question of analyzing the signs of the Fourier coefficients has previously been
studied following E. Hecke with the individual bound that Lk, , (¢) is

Oc(Nky) /2™ 22|y )

(see the discussion in Section 8.3 of [Iw2] and in Section 4 of [Iw1]) and with spectral
averaging in the work of Deshouillers and Iwaniec, [DI]. A heuristic model from an-
alytic number theory suggests that the coefficients {ane%m”e”)‘m/ 2} could behave
as independent identically distributed random variables with variance comparable
to unity. In particular, for ko and k; — ko substantial the linear form Lg, , (¢)
would have magnitude

Oc((ky = ko) #F X ™2 s ).
Similarly, for {anez’rm”e’i)‘l/QQO e”)‘l/2/2} independent identically distributed ran-
dom variables the right-hand side of the above relation would have magnitude
On(A\°||¥||2) in accordance with the generalized Ramanujan-Petersson conjecture.
In [Wp| we presented a formula for the microlocal lift of ¥ to SL(2;R) with A
large in terms of the linear forms Ly, , (¢). We found that the microlocal lift of v
approximates a constant (the wave ¥ and its derivatives are uniformly distributed)
if and only if | Lk, £, (1)|* weak* approximates a constant as a function of v and the
sum length (k1 — ko)A~'/2. In Section EE8 we find that the linear forms also occur
as the leading term in the expansion in A for the integral of an eigenfunction over
a vertical geodesic in the upper half plane.

Our original purpose was to use the automorphy condition to derive Fourier co-
efficient relations, which in turn could be used to determine the behavior of the
coefficients and their sums. The status is as follows. A unit-norm automorphic
eigenfunction has coeflicients with average square magnitude unity; a slight im-
provement of the standard bound is presented in the Appendix. The right-hand
side of the relation (@) in general will have at least unit magnitude while the pro-
vided remainder term is significantly smaller, with magnitude O(A\~7/12). The
relation in effect provides a matrix equation for the vector of Fourier coefficients
of length A\/2, one equation for each element of the discrete group. The relation
provides an immediate restricted bound for a, without analyzing cancellation in
coefficient sums. The relation appears to provide no special information on the
cancellation. An open matter is to find a tractable transformation of the coefficient
sums.

I would like to thank Wenzhi Luo, Peter Sarnak and Steven Zelditch for their
valued suggestions. I would also like to thank the Institute for Physical Science
and Technology at the University of Maryland, the Graduate Research Board of
the University of Maryland, as well as the Institute for Mathematics and its Appli-
cations at the University of Minnesota.

2. THE LIOUVILLE-GREEN APPROXIMATION
FOR THE MACDONALD-BESSEL FUNCTIONS

2.1.  The Liouville-Green approximation (WKB) is a well established prescription
for finding the asymptotics of solutions of differential equations [Ovl, esp. Chaps. 6
and 11]. R. E. Langer refined the method to give uniform asymptotic solutions to
turning point problems, [Ov]. For the Macdonald-Bessel functions the approxima-
tion is given in terms of two scalings, a change of variables, and the Airy function.
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The consequence is that the asymptotics of y!/ 2Kir(y) in y and \ = % + 72 are
given by the asymptotics of a single function Ai(u). The required Liouville-Green
approximation is given in Chapter 11, Sections 3 and 7 of [Ovl]. The approximation
for the Macdonald-Bessel functions is given in Chapter 11, Section 10 of [Ov], and
also by C. Balogh in Section 3 of [Bl]. The prescription will be reviewed in the
following sections. The basic change of variables is presented in Section The
approximating solution is presented in Definition 2.1 and the error bound in The-
orem 221 In Section 2:4] we review the asymptotics of the approximating solution
and consider first consequences. In Section we review the stationary phase ex-
pansion for a cubic phase, and also provide the stationary phase expansion for the
Macdonald-Bessel function.

2.2.  We start with the differential equation
(4) K"(y) = (2 = Ay K@), y>0,A>0,

for the Macdonald-Bessel functions (K-Bessel functions), [Lb, Sec 5.7]. The rescaled
independent variable is Y = ty for 2 = L?A~!, ¢ > 0. The composition KT (Y) =
K(Yt™1) satisfies

(5) KT"(Y)=A1-Y ?)KT(Y)

as a function of Y. The factor (1 — Y ~2) will play a basic role in this section and
the next. The differential equation is now in the standard form given in [Ovl Chap.
11, Subsection 3.1, display (3.01)] with u?> =\, f = (1 — Y ~2) and g = 0.

We next consider the important change of variables ((Y") defined by

1
2_¢p2 = / (2 = 1) 2dr for 0 <Y <1
Y

=—(1-Y*)2 +log((1+ (1 -Y?)'/2)/Y),
2(¢)%3% = /Y(l — 7)Y 24r for Y > 1
3 -
1

= (Y2 - 12 4 arcsin(Y ') — 7/2
(Balogh and Olver write z in place of Y, and thus ((z)). The function {(Y") is real
2
d

s
analytic on RT with positive derivative, satisfies the defining relation ¢ (d—y) =

(1 — Y ~2) and has the following expansions:
2(=¢)*? =1log(2/Y) =14 O(Y?) for Y near 0,
Y =2e72/3(0Y-1 4 0(6’2(*03/2) for ¢ large negative,
2(=¢)¥? =1(1-Y?)¥24+0((Y —1)?) for Y near 1,Y <1,
2(0%? =Y —n/24+0(Y ") for Y large positive,
and Y = %(C)?’/Q +7/2 4+ O(C3/2) for ¢ large positive.
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FIGURE 1. The Airy function Ai(x)

2.3.  We present the Liouville-Green model solution (the approximating solution)
to (@), as well as the error estimate. The change of variables ¢ gives the standard
form for the differential equation [Ov, pg. 398, esp. display (3.04)] (we write Y (¢)
for the inverse function).

Definition 2.1. The model solution is, for Y > 0,
MS(Y) = (C(Y)/(1 = Y 2NMAAN2CY)) + A2 Bo(C(Y) AP (A3¢(Y)))

where
Bof¢) = — g2 + 52 ((V(OF = O3+ 5V (0? = 1)),
Airy’s function of the first kind is
1 [ 1
Ai(p) = = —73 d
i(w) 7r/O COS(3T + pr)dr

LB, Sec. 5.17], [Ov,, Chaps. 2 and 11]; the basic properties of Ai will be cited. The
first is that Ai is a solution of the differential equation A”(u) = pA(u). A graph
of Ai(u) is given in Figure [T} the Airy function is a library function for Maple V.

Now from Theorems 3.1 and 7.1 of Chapter 11 of Olver the above differential
equation (B]) has a solution, denoted wsy in Theorem 3.1 and W3 2 in Theorem 7.1,
with

Wiz = MS(Y) + (((Y)/(1 = Y2 AT AL(C(Y)) Ai(AP¢(Y) + €3.2),
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where from [Bl Sec. 3] and [Ovl] Chap. 11, Subsection 7.2]
WO = 562~ YOV (O + (VO ~ 1)

1/2 _ ¢ —1/2
20 2B0(¢) = [ wl

(the square roots are given by the same branch)

24,(C) = —BY(¢ / B(O)Bo()dc,

20128, () = / () A () — AL ()~ 2dp,

0
and

les o] <

30 M .
22 3/2§(A1/3C(Y))exp(2a/\ 2V ,00 (112 Bo(1)) Ve oo (11 /2 Ba ().

Clarifications are needed. The functions v, By, By, Ag and A; are real analytic; the
constant a (Olver’s \) is explicit (a ~ 1.04); V4 3 denotes the absolute variation
on the interval [, 8]. M and E are explicit functions with the quotient %(,u),
hence notated M E(u), an explicit envelope for the Airy function, discussed in
detail in [Ovl Chap. 11, Sec. 2]. Its basic properties are as follows: ME is
a continuous function on the real line with M E(u) ~ (27r)*1/2u’1/4e*2/3“3/2 as
o tends to positive infinity and ME(u) ~ 7= %2|u|~%/* as u tends to negative
infinity. It is essential to understand the absolute variation V. The Liouville-Green
remainder involves V(|u|'/2Bo(p)) and V(|u|'/2B1(p)). From the defining relation
the absolute variation V_ . o (|pt|'/2Bo(p)) is the L'(R)-norm of |u|~*/24(11). Now
from the asymptotics of Y(¢) it follows that 1 ({) and By(() are both bounded by
a multiple of (14 [¢|)~2 for all ¢. In particular, the L'(R)-norm of |p|~'/2¢) () is
finite. We are ready to consider V(|u|*/2B;(1)). From the defining relation for %

and an induction argument it follows that < CZ is 0, (¢3?~") for ¢ large positive

and is Ome(e( 2/3+e)(= C)3/2) for ¢ large negative. It follows readily that A; is
bounded and that A7 (u) is bounded by a multiple of (1+ |u|) . Now the absolute
variation of |u|"/?B;(u) on R is the L*(R)-norm of (¢(p)Aq(p) — AY (u))|p| /2,
which in turn is bounded by a multiple of (1+|u|)~2|x|~*/2. The absolute variation
Vo000 (|12]Y/2 By (1)) is finite.

With the above estimates we have a specific form of Balogh’s and Olver’s expan-
sion [Bl} display (15)], [Ov, Chap. 11, Sec. 10].

Theorem 2.2. The differential equation [ has a solution

W(Y) = (C(Y)/(1 = Y ) AIN((Y))
+ATHEBy(C(Y)) A (WY ) + E(Y))
for Y = ty, t2 = L2X71, ((Y) given in (6) and Bo(¢) given in Definition 2.1.
The remainder é(Y) is bounded for X\ > 1 by a multiple of \"*ME(X/3((Y)) for
ME the envelope for the Airy function (M E(u) ~ (27‘1’)_1/2/1_1/46_2/3”3/2, 1 large
positive; ME(p) ~ 72 |u|~Y*, 1 large negative).
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2.4.  We are ready to consider the basic behavior of the Airy function [Ovl, Chap.
11, Sec. 1], [LY, Sec. 5.17], and to relate the solution W of (@) to the Macdonald-
Bessel functions.

For 1 tending to negative infinity

Ai(p) = 72 T (cos(F|n? - §)

7) +aglul =2 sin(G a2 = ) + O(lul =),

Ay = w2 sin (P — 5) + Ol =),

and thus on also noting that (%M_S/Q +[¢1M2By(€)) = —L(1-Y?)73/2(3y2 +2)
we have, as Y approaches zero,

MS(Y) _ )\_1/127T_1/2(Y_2 _ 1)—1/4 (COS(%/\1/2|C|3/2 _ %)

(8) A—1/2 (1 _ Y2)73/2(3Yz + 2) Sin(%)\l/2|<|3/2 _ z))

T T4 4

4 O()\_13/12Y1/2|C|_3).
For p tending to positive infinity we have

. 1 o3/ _ _
Ai(p) =(2W1/2M1/4) 1o—24 2/3(1_4_58M 3/2+0(M ),

Ail(r) = (2mV/2) e (1 4 O ),

and thus, as Y approaches positive infinity,
9) MS(Y)= )\_1/12(27r1/2)_1(1 . Y—2)—1/4e—2/\1/2(3/2/3

x (1+ )\*1/2(_£C—3/2 + CI/QBO(C))) + O(/\*13/12e’2A1/2<3/2/3C’3)

48

and, given the asymptotics of ¢ as Y approaches infinity,

MS(Y) = (2n1/2A1/12)=1(1 — y=2)~1/4= A2 (Y =n/240(Y 1))
(10)
X(14+A2(= (732 + 2By (¢) + O(A1Y72)).

There is an important qualitative change in behavior of the Airy function Ai(u)
at p = 0, and of the model solution and Macdonald-Bessel function at ¥ = 1.
For values of the argument less than the turning point the functions are oscillatory,
while for values greater than the turning point the functions have exponential decay.
For example the model solution MS is trigonometric in 2AY/2¢3/2 (with a Y'1/2
envelope) for Y < 1, and exponential in —%)\1/2@/2 forY >1(¢>0).

The Macdonald-Bessel functions give rise to solutions of the differential equation
@). In particular, for A > 1/4, A = 1 4+ r?, then y'/?2K;.(|L|y) gives a solution to
(@), vanishing at infinity, for K. the Macdonald-Bessel function, |Lb, Sec. 5.7].

Lemma 2.3. Notation as above. The Macdonald-Bessel function and solution VW
of @) are related by

y1/2KW(|L|y) _ |L|71/221/2ﬂ_>\1/12(1 + O(}\fl))efﬂ')\l/z/2w(y).
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Proof. A second solution y'/2I;,.(|L|y) to (@) is given in terms of the I-Bessel func-
tion. The second solution is unbounded for large y; all solutions to (@) bounded for
large y are multiples of y'/2K;,(|L|y). It will suffice to consider the y-asymptotic
expansion. For L and X fixed, y'/2K;,(|L|y) = (7/2|L|)*/?e~ v (1 + O(y~1)), [Lb}
pg. 123]. Similarly for L and X fixed, given |L|y = A\Y/2Y, Theorem 22} (IU) and
that Bo(¢) is O(¢2) for ¢ large, we have

W = (27T1/2/\1/12)7le7r)\1/2/27|L|y(1 + O(/\1/2Y’1 + )\71)).
The result now follows. (]

Corollary 2.4. There exist positive constants ¢1 and co such that for A = i + 72

Cl)\l/lQe—w)\l/z/Q < mjx |y1/2Kir (y)| < 62/\1/126—77A1/2/2.

Proof. Given the above Lemma [Z3] it is enough to estimate W(Y). First we
consider the lower bound. For Y = 1,¢(Y) is zero, (¢(Y)/(1-Y ~2))1/4 = 271/6 and
Ai(A/3¢(1)) = Ai(0) is nonzero; it follows that M S(1) = 27Y/64i(0) + O(A\~2/3)
and that ME(A/3¢(1)) is independent of A. Thus, from Theorem 2.2} for A large
W(1) = MS(1) + O(A\~%/3) is bounded below by a positive constant, the desired
lower estimate.

We are ready to consider the upper bound. From the asymptotics of |Ai(u)|, the
|M E(p)| are bounded above by a multiple of (|u|*/441)~! and |Bo(u) Ai’ (11)| by a
multiple of (|p|"/4+1)~1. Thus [Ai(A/3¢)], |A\~2/3Bo(¢) Ai' (\/3¢)| and M E(AY/3¢)
are all bounded by a multiple of (A/12|¢|'/* 4 1)~!. The majorant is decreasing
in A; it follows that the model solution W(Y') is bounded for all A by a fixed
multiple of (¢/(1 —Y*Q))1/4()\(1)/12|§|1/4+ 1)~1, X\o fixed, which in turn is a bounded
function. O

Corollary 2.5. Let g(u) be a continuously differentiable function with support a
compact subinterval of (0,1). For |L| and A = 1 + % large,

/0 (LI 2g) (K (L))~ dy
Caal/2 > g(pwdu -
= ([ 007

Proof. The first matter is the support of the integrand. By hypothesis the integrand
is compactly supported in (0,1). From Section 2.3 and Lemma 2.3] we have on

supp(g) that
|Lly(Kir(IL|y))? = 20\ e ™2 (W(Y))2(1 + O(A 1))

L2 _ : - _
— 2me ™ (Y72 = 1) 712 cos? (BAV2|C3/2 - 7) 4+ O(A1/2))

= e~ (Y2 - 1) V2 (1 cos(ANV2|C]P2 - T) + O(A1/2))

for Y = |L|A71/2y and the remainder constant dependent on the interval. The last
expansion is used in evaluating the integral with the cosine term to be integrated
by parts. O
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2.5.  In Section H] we will use the stationary phase expansion for the integral of
an exponential with a cubic phase. We now recall the expansion, [GS]. For u
a smooth function with compact support, write F(u) = 4(§) = ffooo u(z)e” " dx
for the Fourier transform. From the definition of the Airy function we have that
F(ew*/3) = 2ma=1/3 Ai(—a~1/3¢).

Proposition 2.6. For n a non-negative integer and u a smooth function with
compact support,

> i —1/c - ik .
/ e y(x)de = 2r(3a) /3 Z mAZ(k) (0)u™(0)
— 00 k=0 .

+ Onla” DB (|l + [ 1)),

Proof. First apply Parseval’s identity to find that
/ eiams/?’u(m)dm = a71/3/ Ai(—a"13¢)a(€)de.
Then for p,, the nth Taylor polynomial of Ai we have |Ai(7) — pn(7)] < cpl7|?

for all 7, and thus
(o]

a3 / " Ai(—aBE)a(e)de = a3 / pa(—a~3€)a(€)de

— 00

+ 02 T lerrage)|de).

— 00
The explicit terms are evaluated with [*°_(i€)*a(¢)d¢ = 27u®) (0). The remainder
is bounded from the inequality [@(&)|+[€"3a(¢)| < [7 Ju(@)|+|u"t¥)(z)|dz. O

We are now ready to consider the stationary phase expansion for the integral of
the Macdonald-Bessel function.

Proposition 2.7. For g(u) a smooth function with support a compact subinterval
of (0,00), L nonzero and A = % + 12 large, we have

| oLy
0
y1/2 _ _ _ —
— e /2|L| 1/2y—1/4 (g(|L| 1>\1/2) +0,(\ 3/4)) .
Furthermore, there exist positive constants ¢y and c1, depending on g, such that for
|LIN"Y2 > ¢q the integral is Og(e_)‘l/z/Q_“'L'),

Proof. The analysis will focus on the expansion for the integral
(11) / g(|L|TIANY2Y)MS (Y)Y Y
0

for M S the model solution of Definition[Zl The considerations will be in terms of
three regions for the magnitude of |L|A~'/2. Theorem and Lemma P23 will be
used to relate ([IdJ) to the integral of the Macdonald-Bessel function.

We first consider that |L|]A~1/? is large; in particular, for y in the support of g
we assume that Y = |L|]A~/2y > 2. From the expansion (I0) and the preparatory

discussion to Theorem we have that MS(Y) is O(/\’l/ue’)‘lmy) for Y > 2,
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and since Y > ¢/L|]A"/2 on the support of g we have that the integral (II) is
Oy (e~¢IFl)| a suitable bound. We next consider the situation that |L|]A~1/2 is small;

in particular, for y in the support of g we assume that Y = |L|A~'/2y < 1/2. For
this range we will use the expansion (Z4]) for M S(Y). The integral (Z7) now has
the expansion

/OO g(y)/\_1/127r_1/2(Y_2 _ 1)—1/4
0

A2 (3Y2 +2)
24 (1-Y2)3/2

X (cos© — sin @)y~ tdy 4+ 0,(A~13/12)
for © = (%)\1/2|C|3/2 — %). We prepare to integrate by parts. From the defining
relation for ¢ we have that %d%|§|3/2 = (1-Y?)Y2y~1; it follows that (%%|§|3/2)_1
and its y-derivatives are bounded on supp(g) for Y < 1/2. Also from the relation
we have that cos © = (A/2(1 —Y?2)1/2y=1)~1 % sin ©, and a corresponding formula
for the sine. We can integrate by parts: twice for the cosine term and once for the
sine term. The resulting integral is bounded as O, (A~13/12).

We are ready to consider the stationary phase expansion for ([I)). Akin to
Proposition 2.6] from the Fourier transform F(Ai(A/3¢)) = A=1/3¢2'€°/3 we find
the expansion [ Ai(A\Y3Q)u(Q)d¢ = A73u(0) + OA43(JJullpr + [|ul®]|1)).
Now since % = (¢/(1=Y2))1/2, the integral () after an integration by parts has

the above form with u(¢) = g(y)(%)?’/zY’1 - )\’1d%(g(y)(%)?’/QY*IBO(Q). We
are ready to consider the parameter ranges. For 1/2 <Y < 2 and y in the support of
g the quantity |L|)\_1/ 2 is bounded above and below by positive constants. It follows
that u(¢) and its (-derivatives are uniformly bounded on the specified ranges. We
now combine the stationary phase expansion with the earlier considerations to find
for L nonzero and A large that [~ g(y)MS(Y)y~dy = 271/2A=1/3g(|L|71AV/2) +
O,4(A13/12). Tt only remains to relate (2.7) to the integral of the Macdonald-Bessel
function. We have from Theorem [2.2] and the accompanying discussion that

W(Y) = MS(Y)+ O\ (1 + A2V,

and from Lemma the relation to the Macdonald-Bessel function. The desired
expansion is now established. ([

3. MICROLOCAL BEHAVIOR OF THE MACDONALD-BESSEL PHASE

3.1.  We consider elementary (unit-translation invariant, small at infinity) eigen-
functions for the hyperbolic Laplacian, particularly the geometry of their associated
phase functions.

Definition 3.1. For \ = % +r% > 1/4, the Macdonald-Bessel function Kj,.,
m a nonzero integer and z = z + iy, y > 0, let s = 27rmA~Y2 and K,(z) =
N2 2w mly) V2K (2 |mly) e,

KC, satisfies DK, = —A\C, for D = 92 (88—;2 + g—;), and K is 0(6_2”””‘”) for A
fixed and y large. From Lemma 2.3 and (@) the phase for K¢ (below the turning
line) is U = eF(|s|Imz) + sRez for |s|Imz < 1, where F(Y) = f;(T’2 — 1)'2dr.

The phase velocity is the hyperbolic gradient of ¥, V¥ = (Imz)? (%—‘i’, %—‘;’) =
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FI1GURE 3. The pencil of geodesics tangent to a horocycle

Imz(sImz, —e(1 — (sImz)?)'/?), a double-valued vector field on {|s|Imz < 1}, the
exterior of a horocycle. The gradient V¥ has unit-length and a simple geometric
description. Let G be the pencil of geodesics tangent to the horocycle {|s|Imz = 1}.
The double-field VW, s > 0, ¢ = +1, is the rightward pointing unit tangent double-
field to G (see Figure 2.

That VU has a simple geometric description that illustrates the connection be-
tween hyperbolic geometry and eigenfunctions of the hyperbolic Laplacian. The
present F' arose from the Liouville-Green approximation (see the discussion of the
Ricatti equation in [Ovl, Chapter 6, Section 1.4, pg. 104], and of the eikonal equa-
tion in [GS, Exercise 12.1, pg. 140]). The field V¥ is intrinsically defined; for
A € SL(2;R) the phase velocity of Ks|A is (A1), V¥, the tangent double-field to
A71G (see Figure B). The phase ¥ also gives a (singular) two-sheeted Lagrangian
in the cotangent bundle of the upper half plane. In particular, the graph of the
differential, z € H — d¥, = sdx — ¢|s|((sImz)~2 —1)'/2dy, defined for |s|Imz < 1,
has two distinct sheets, e = 1, for |s|Imz < 1 which coincide (fold) for |s|Imz = 1.

e27ranew ;

3.2.  Our purpose is to analyze the phase for the product Ks(A(w))
A€ SL(2;R),w € H, s = 2rmA~"2, m,n € Z — {0}. For t = 2mnA~/2 the
phase is ® = €. F(|s|ImA(w)) + Re(sA(w) 4 tw), which can be written as ® =
e.F(ImB(u)) + Re(sgn(s)B(u) + sgn(t)u) for u = |tjw, v = |s|z, z = A(w) and
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v = B(u), B € SL(2;R). The horizontal derivative of the phase is given by
¢ = 2|t| ' Re®,,
= 2Re®,, = sgn(t)(—ea((ImB(u)) "2 — 1)Y/2ImB’(u) — e;ReB'(u) + 1)

for e = sgn(est), €1 = sgn(—st) and ImB(u) < 1. The phase derivative ¢(u, B),
u € H, B € SL(2;R), is an algebraic function. We will give a detailed analysis of
its behavior on the height-one horocycle.

We now simplify the phase by introducing a second substitution. All our consid-
erations will be for the horocycle Imu = 1. For Imu = 1 we have ImB(u) = | B (u)|.
Set B'(u) = pe=2% 0 <6 <7 and 7 =~ for

ao(* *\_(* *
T\ vy 8 ) \cst|TY?2 dlsiV2 )

We will further specialize to only consider ¢ > 0 and the quadrant Re(cw + d) > 0,
in which case p~1/2e? = (yu+6) = |ts~'|*/?(cw+d), 0 < § < 7/2. On considering
the imaginary part of yu + 6 = p~'/2¢’ we find the relation v = p~'/?sin6, or
equivalently pr = sin?#. We now have the relations
[ts= /2 (cw + d) = p~1/2e" | pT = sin? 0,

(12)

ReB'(u) = p(1 —2p1) and ImB'(u) = —2p(p7(1 — p1))'/2.
From the first two relations and an implicit differentiation we have the further
relations

(13) = Rew = [t| Y ((pr)"t = 1)2 —de!
and J
= —2ptl(pr(1 - pr))"/2,
If A= CCZ Z ), then ReA(w) = ac™! — Re(c(cw+d)) ™!, and since (cw+d) =

|st=11/2p=1/2¢% we find that Re|s|A(w) = |slac™" — p((p7)~' —1)1/2. We use the
above relations to write the phase in terms of the parameters:
(14)  ®=e.F(p)+ ((pr)" = 1)2(sgn(t) — sgn(s)p) + (sa — td)e".

We can also write the phase derivative in terms of the same parameters:

(15) q = sgn(t)p = 1 —e1p(1 —2p7) + 2e5((1 — p*)pr(1 — p7))"/*
on the domain D = {(r,p) | 7 >0, 0 < p <1, pr < 1}. We further find for the
quantities
(16) A= (1 +ep)pr)? and B = (1 - pr)(1 - e1p) /2
that
q= (.A + 623)2.

Proposition 3.2. Notation as above. The phase derivative q has domain D and
the factorization q = (A + €28)2. The phase derivative vanishes with multiplicity
two for ea = —1, p =S¢, (1) = (27 + €1)™1, and is otherwise nonzero.

Proof. The conclusions follow from the factorization of ¢ and the observation that
the equation A% = B2 reduces to p = (27 + €)% O
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3.3. We now consider the behavior of the phase on the stationary locus. We start
be defining the integral

a7) Q-=- [S ” (A B Qo1 = pr) )

Observe, for x = Rew, from ([3) and the definition of ¢ that % =q (%)71 (%) =
sgn(t)g = t~1 92 We next define the quantity (note that 7 = ¢?|st|~!)

Qo(t,s) =2(1 + 7 H)Y2 —log(21 + 1 4 2(7% + 7)1/2)
(18)
—(|s|la + td)c 1.

Proposition 3.3. Notation as above. For ¢, = —ex = 1, t > 0, the phase is
given as ® = tQ + Qo. The quantity tQ has an analytic cube-root E = (tQ)'/>
which vanishes to first-order precisely on S1(7). For p depending on © = Rew the
cube-root = is an invertible analytic function of x.

Proof. By definition @ vanishes on S1(7), and ®, = (tQ),. It follows that ® =
tQ + D|s,. To evaluate ®|g, combine formula ([d) for @, formula (@) for F', and
then evaluate on S; by substituting p = (27 + 1)~1; the result is ®|s, = Qo. Next
observe that the integrand for @) is nonnegative, and vanishes to second-order on
S1. It follows that () vanishes to third-order on S; and is otherwise nonzero. It
further follows that = = (tQ)'/? is analytic, vanishing to first-order on S;. We
consider the dependence on x. From (I3]) the derivative % is negative; it follows
that =, is positive on S7. On the complement of S; we have (tQ), = tq > 0, and
thus =, is positive. It now follows that = is an invertible function of x. O

4. THE STATIONARY PHASE EXPANSION
AND THE FOURIER COEFFICIENT RELATION

4.1.  We consider the stationary phase expansion of the integral of the product of
a Macdonald-Bessel function, exponentials and a test function

Ko (A(w))e?mmew (), A e SL(2;R),

over the horocycle {27|n|]A~Y2Imw = 1}. We start in Section by setting
the parameter ranges for the integration. The support of the test function & is
specified to avoid the special singular point (7,p) = (0,1) and to ensure that the
support is transverse to the stationary locus S, (7) given in Proposition By
introducing a partition of unity we can separately consider the integrals for the
different regions of the Airy function. We start in Section £3] Proposition 2]
with the region of exponential decay. In Section[Z4lwe consider the turning region.
We first use the Airy differential equation and integration by parts to obtain a
recursion among integrals of the Airy function. Then in Propositions 44 and 5
we use the recursion to obtain the desired estimate. In Section B35, Proposition E.6]
we compute the contribution to the integral from a neighborhood of the stationary
locus, the stationary phase contribution. In Section 6] Proposition[£T]we estimate
the contribution from the tail. In Section EE7] Theorem (8] we combine all our
considerations and standard bounds to derive the fundamental relation for the
Fourier coefficients of an automorphic eigenfunction.
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4.2. We will now set the parameters for the analysis of the integrals. Given
0 < to < t1, choose B > 4 and define a so that (a — 1)%/2 = 2t; + (8 — 1)'/2.
Let h(x) be a smooth function on R with support contained in (0,2). Recall the
¢ Z € SL(Z%R),c >
0, (A(c0) finite), s € R—{0}, to <t <t;, and w € H with tImw = 1. Recall the
associated parameters 7 = c?|st| 71, pe =2 = |st~1|(cw+d)~? (with Re(cw+d) > 0
and 0 < 6 < m/2) and the basic relation pr = sin? @. Introduce the shifted function
h(w) = h(Rew — (B — 1)Y/2Imw + dc™1).

setup of the previous section, and start with A =

Proposition 4.1. Notation as above. For w € H with t;' < Imw < ty;" on
the support of h(w) the associated parameters p,7,s satisfy o=t < pr < 7% and
ca1]s] < p < cals| for positive constants c1, ca.

Proof. By the specification on the support of h, for w € supp(h) we have 0 <
Rew — (3 — 1)Y2Imw + dc=* < 2. This inequality can be rewritten as

(B =12 < Re(w + de™ ) (Imw) ™" < (68— 1) +2(Imw) ™" < (a—1)1/2

with the last inequality from the restriction on «, 8 for 751_1 < Imw <t L Now
Re(w + de™ ) (Imw) =" = cot @ for § = arg(cw + d), and so we have (3 — 1)/2 <
cot® < (o — 1)'/2, which in turn is equivalent to o~ < sin?6 < 1. The first
conclusion now follows from the relation pr = sin?#. Since w and t are restricted to
compact sets, the second conclusion follows from the relation p = [st 14’ (w)|. O

Now we specify a partition of unity for the positive half-line. Select four smooth

3
non-negative functions go, g1, g2 and g satisfying > g;(p) =1 for 0 < p < 0o, with
3=0
go having support in (1, 00|, g1 having support in a neighborhood of unity (to be
further specified in Proposition EES)), g2 having compact support in (0,1) with go
identically unity on a neighborhood of [1 — 2371, 1 —2a71], and finally g3 having
support in [0, 8(2a)~1). We will henceforth write ||u|| z» for the Sobolev k-norm of
a (smooth) function u (the sum of the L?-norms of the first k derivatives).
We now introduce the principal integrals of interest. For A € SL(2;R), A(co

finite, t = 27nA~Y2 > 0, s = 2rmA~ Y2 m,n € Z — {0}, p=|st71| |A'(w)|, 5 =
0,1,2,3, set

Ti(t,s) = / Ko (A(w))2™ e i) g5 (p)dRew
tImw=1

and

it s) = 212\ [ (C(p)/ (1= p 2 )M A(AINY2C(p))

tImw=1
+)\—2/3BO (C(Y))AZ’ (Al/Bc(Y)))eQWimReA(w)-l-QTrinRew iz(w)gj (p)dRew

(see Section 23 and Definition[3I} also note that for tImw = 1 that Y = |s|ImA(w)
= |st71| |A'(w)] = p). From Proposition @I p is comparable to |s|, and thus
the above integrals are for the different |s| ranges (for example go(p), Jo, Zo are
identically zero if |s| is sufficiently small).
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4.3.  We first estimate the integral in the region of p large.

Proposition 4.2. Notation as above. There exist positive constants ¢ and ¢ such
that, for to <t <ty, s =2rmA /2, and X\ sufficiently large,

|To(t, 5)| < E|[Al| gro|m]|~ e,

Proof. The first matter is to bound Ks(A(w)). From Section the function
2(¢(p))*/? is increasing, positive for p > 1 and satisfies 2(C(p))*/% = p — 7/2 +
O(p~1) for p large. In particular, there exists a positive constant cq such that

%(C(p))?’/2 > cop on supp(gp). It follows from Theorem 2] Lemma [Z3] Defini-
tion Bl and (@) that |/ s(A(w))| < cre=2eor on supp(go) for a suitable constant
¢1. The next matter is to recall from (I3) the dependence of p on © = Rew.
From Proposition ET, on supp(iL) the product pr is bounded by o=t < pr < 7 1;
it follows that |%| > ¢op on supp(h) for ¢y a positive constant (since to < t).

We combine the above bounds to find that || < ¢s [ e~ "®0P|h(w)|go(p)p~dp.
1

From Proposition[4.1] we have that p > ¢’|s| for a positive constant ¢’. The desired
estimate for 7y follows. O

4.4.  We are ready to estimate the integral J; for the turning region of Ky. First
we consider technical results for the asymptotics of the Airy-exponential integral.
We introduce, for smooth functions f and g (with supp(g) compact and % not
vanishing on supp(g)) and X positive, the integrals

(o)
Sto)= [N IOAi a)g(o)do
— 00
and
e 70y1/3
T(g) = / eN O A (NP o) g (o) do.
—00
From the coarse estimates |Ai(p)| < cip|~"/* and |Ai'(p)] < co(1 + |p))'/%,
valid for all y, we immediately have that S(g) is O (A2 g|lg0) and T (g) is
O (AN12||g|| gr0) for A large and supp(g) C [—co, co]. There are actually relations
for § and 7 from integrating by parts. The relations involve the multiplication
operators S for multiplying by o, M for multiplying by (%)_1, and the differenti-
ation operator D = %. We integrate by parts with du = N1 () %da; for S take
v = Ai(/\l/?’a)(%)’lg(a) and for T take v = Ai’(/\l/?’a)(%)*lg(a). The resulting
relations are
S(g) = ix"Y2S(DMg) + iA~YoT (Myg)
and
T(g) = iXYSS(SMg) +ix"Y*T(DMg).

Proposition 4.3. Notation as above. There is a first-order differential operator T
such that
S(g) = S([S"M® + X"/25°T]g) + ON*/"2|g| =)
and
T(g) = ix'/°S(SMg) + O\ >/ |g]| =)
with the remainder constants being bounded in terms of cp, ||(%)_1||CO([,CO7CO])
and || flles((—co,co))-
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Proof. Start with the first relation and twice substitute in the second relation for
the resulting 7-terms. The result is the relation S(g) = S([-SM? 4+ A\~Y/2P]g) —
iNTT/ST(DMDM?g) for P =iDM —iSMDM?, a first order differential operator.
The T-term is immediately O, (A~"%/12||g||z2). Now we use this relation to sub-
stitute three times in succession for the S-terms on the right hand side. The result
is S(g) = S([-SM? + X"'2P)*g) + 0oy (A" 13/12||g|| g5). Now expand the product
to find [-SM? + \"V2P]* = SAMS + \"V283T) + A71S% Ty + A 3/28Ty + A 72Ty
for T; an order-j differential operator. The desired expansion for S now follows
on applying the general bound for the operator S. We next consider the basic
relation for 7 and substitute in for the 7-term on the right hand side. The result
is T(g) = S([IANYSSM — A\~Y/3SMDM]g) — A"'T(DMDMg). On applying the
general bounds for S and 7 we obtain the desired expansion for 7. O

Proposition 4.4. Let f(o), g(o) be smooth functions with supp(g) C [—co,co]. If
f(lo) and f(a):l:%|cf|3/2 are not stationary on supp(g), then S(g) is ON"/12| gl gs)
and T (g) is ON"5/12||g||gz5), where the remainder constants are bounded in terms
of co: 1) "M loo(—coreals | (= £ 101M2) o (—eoreony and |Lfllos(1—coco)-

Proof. The main step is to estimate the integrals S(S%g) and 7(Sg). We will
consider the integrals Sy, 7} for o positive and S_,7_ for o negative separately.
For p positive we have Ai(u) = (2W1/2M1/4)_16_%”3/2(1 — %,u_wQ +O(p™?)) and
Ai (1) = (271/2) =1 /451" (1 + O(u=3/2)), see Section E4 and [Ovl, Chap 11,
Sec. 1]; both expansions are valid for all positive p with a fixed remainder constant.
We use the expansions to evaluate Sy (S%g) and 7, (Sg). The remainder term
associated to Sy (S3g) is

OO/ [ e g ) o),
0
which is O, (A"'3/12|\g|| o). The remainder term associated to 7, (Sg) is
0012 [T e o )
0
which is O, (A~%/'2||g|| o). The explicit integrals respectively are

oo
\—1/12 / e)\l/z(if(a)—%03/2)011/49(U)d0,
0

AT/ / TN 531 () o
0

and oo
)\1/12/ ekl/z(if(a)—%03/2)05/4g(0)d0.
0

We integrate by parts with du = AP (0) =507 (z% —01/2)d0, respectively twice,

once and once (the factors of o and the compact support of g provide that the
boundary terms vanish). In consequence we find that S; (S%g) is O, (A~3/12||g]| z2)
and T (S9) is Ocy (A~5/12gl|12):

For p positive, recall from Section that

E) + iu—3/2

2 2 T
Ail—p) = (l/2,,1/4 -1 Z.3/2 _ in(Z3/2 - 2 -3
() = (2 eos(Gt? = T+ S sin(z 02 = D)+ 0
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and
Al (—p) = ﬂ’1/2u1/4(sin(§#3/2 - 1)+ 0w,

[Ov, Chap. 11, Sec. 1]; both expansions are valid for all positive p with a fixed
remainder constant. We use the expansions to evaluate S_(S3g) and 7_(Sg). The
remainder associated to S_(S%g) is

0
o2 [ (=0) 1 lg(o)do),
which is O, (A"13/12||g|| o ); the remainder associated to 7_(Sg) is
0
00 [ (o) ilg(o)ldo),
—o0
which is O, (A~%/'2||g|| o). The explicit integrals respectively are

0
1 2 :
AT/ / N cos (2N (=) — T)(=0) ! g(0)do,

0
1 2
A [ BN 0 - D) (-0 g(o)do

and

0
- 1/2
AL/12 /m G sm(%w?(—a)?’/? - %)(—0)5/4g(0)d0.

We express the cosine and sine as a sum of exponentials and integrate by parts with
du = e“‘m(f(")i%(*g)sm)(% + (—0)'/?)do respectively twice, once and once. Note
that by hypothesis f(o) + %(—0)3/2 is non-stationary on supp(g), hence bounded
away from zero, and note that the boundary terms vanish given the factors of o and
the compact support of g. We find that S_(S%g) is O, (A\"3/12||g| z2) and T_(Sg)
is Ocy(A™%/12||g||z1). On combining the bounds for positive and negative integra-
tion regions with the expansions from Proposition B3] and the first relation, we
find that S(g) is O(A~'3/12||g|| ) and T (g) is O(A~5/12||g|| =) with the remainder
constants with dependence as claimed. ([

Proposition 4.5. Notation as above. There exists a neighborhood U of unity dis-
joint from [1 —2B67Y, 1 —2a71] such that if supp(g1) C U and to < t < t1, then
Ji(t,x) is OONTY|h||gs) for X large, with the remainder constant depending on
A, ﬁ, t() and t1.

Proof. We start by considering the remainder in the approximation of Theorem Z2]
From the coarse estimate ME(u) < c.|u|~'/* we find that W(p) = MS(p)+
O\ 13121 — p=2|=Y/4). From Lemma 3 and Definition Bl we find that

o0

Fit9) =Ta(t:5) + OO [ L= p [ ikl (p)dRew);
the integral [* _[1— p 2|74 h(w)g; (p)dRew is in turn bounded in terms of ||A|| 2.
It remains to bound Z; (¢, ).

The quantity ( is an invertible analytic function of p, which in turn is an invertible
analytic function of x = Rew. Thus the integrand of Z; can alternately be expressed
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as a function of ¢. Specifically, for o = ((p(x)), f = sReA(w) + tRew, (o) =
. —1 "
(CP)/ (1= p=2) Y 4h(w)g (p) (“4=L) ", and j(o) = Bo(0)g(), we have that

To(t, 5) = 21/2mAL/12 / N2 (@) (Ai()\l/%)g(a)+/\_2/3Ai’()\1/3a)§(0)) do

— 0o
with §(o), ﬁ(a) of compact support and the norms of §, § comparable to the norm
—1
of h, since (((p)/(1 — p~2))1/4 (%) , Bo(¢) and ((p(x)) are analytic on
supp (¢1), which is compact.
We wish to show that f(o) and f(o) £ §|0|3/2 are not stationary on supp(g)

and supp(g) (in preparation for applying Proposition[Z4). It is equivalent to show
that f = sReA(w) + tRew and f + %|C|3/2 are not stationary in © = Rew on

supp(h(w)g1(p)). Now from Section B2,

T terpt —27p) +1)

and
d 2 3/2 2 2 21\1/2
%(fﬂ%*gm ) =t(1 —e1(p — 27p%) + 2e2(7(p — 7p%)[1 — p°[) /%)

for e, = 1, €1 = sgn(—st), and eo = sgn(e.t(l — p)). From Proposition 4T}, on
supp(h) we have 0 < 1—-24"1 < 1—27p < 1—2a~! < 1, and thus %, € = =+1, s
bounded away from zero for p sufficiently close to unity (this is a further restriction
for supp(g1)). We likewise have that

d 2
(eI = 1 = arlp = 27p%) + O(p — 1]')

with0 <1-2rp<1—-2a"t<1; %(f + e*§|C|3/2) is also bounded away from
zero for p sufficiently close to unity. In summary, for supp(g1) C U, a specified
neighborhood of unity, the hypotheses of Proposition EE4 are satisfied for Z; (¢, z).
The desired estimate for the integral follows. O

4.5.  We consider the integral in the region where the phase is stationary. We
start with definitions of the quantities that appear in the expansion; set
(19)

Glomt) =~ (20ltl(or (1 — pr) 22 — 1))

(1 gt Y R (o) = Y2 — (5 - 1))

k
d=\"" d
Gi(r,1) = ((d_p> d_p> G(p, 1) [p=(2r41)—1

for =% = Q with ¢ = —e3 = 1 (see Proposition [33).

and

Proposition 4.6. Notation as above. Fortg <t <ty, s <0, and X large,

ik Ai*) (0)Gr (T, 1)
k!(g)\l/2)k/3

4
Ja2(t, s) = 21/271_3/261‘)\1/2Qo+i7r/4(3>\1/2)_1/3 Z
k=0

+ O A7),
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The coefficients Gi(,t) are supported in the interval 3 < 77! +2 < «a. For
to <t <t1, s >0, the function J2(t,s) is O(AN7!|h| g2). The remainder constants
depend on A, B,ty and t;.

Proof. First note that the support of g2(p) is a compact subinterval of (0,1). It
follows from Theorem B2 that the remainder term for A'/'?W(p) is O(A~') on
supp(g2). Now from Theorem 2.2, Lemma 2.3] (8) and Definition Bl we have

_ _ 2 T
Falts) = @02 [ (o 1) A eos(A A - )
tImw=1
o 2 . -
_24>\1/2(p—(23f1;2(17p2)3/2 Sm(%)\l/2|<|3/2 - z))

XeQﬂ'imReA(w)+27rinRewﬁ(w)QQ (p)dRew + O(”hHHO )\—1).

If we express the cosine and sine as a sum of exponentials then following the setup
of Section 3 for ® = €, 2[¢|3/2 + sReA(w) + tRew, s = 2rmA~Y/2, t = 2rnA~1/2,
we can write the above integral as

Z (71_/2)1/2671'5*71'/4

ex==+1

: 2
2 \—1/4 ie«(3p° +2) /257
X /ﬂmw:l(ﬁ 1) (1 + SINT2(1 = p2)iT2 e h(w)g2(p)dRew.

We need to understand the support of the integrand. By Proposition[@d]the product
p7 is bounded as ™! < pr < 7! on supp(fz), and supp(gz) is compact in (0, 1).
For €1 = e3 = —1 the stationary locus S_;(7) is separated from supp(iz(w)gg (p));
for e =1,¢; = +1, ® is non-stationary. For these three cited cases %, z = Rew,

is bounded away from zero on supp(h(w)gz2(p)). We can integrate by parts twice
with du = e“‘l/zq’%dm to show that the integrals are O(A " ||R| 2 ).

The remaining case is the integral for ¢4 = —e; = 1 (for ¢ > 0,5 < 0 and
€« = —1). From Proposition 33, ® = =% + Qo with: =3 = tQ, = having a simple

zero on S1(7) (a segment of S1(7) is contained in supp(h(w)gz(p))) and = being an
invertible analytic function of x. The remaining integral can now be written as

/2 , 1o
(g) oA /2Q0+z7r/4/ piN/?E? (pfz _ 1)71/4

tImw=1
i(3p% +2) d=N\ L _
g (1 ~ oz ) \ag ) wleale)dE.

We will now consider the stationary phase expansion for the integral. As already
noted, a~! < pr < 371 on supp(h) and supp(gs) is compact in (0,1); and

. 2 =\ —1
(p2—1) V(1= i(3p” +2) d=
240\1/2(1 — p2)3/2 ) \ dz
is analytic on a neighborhood of supp(h(w)g2(p)) and thus has bounded derivatives
of all orders. We apply Proposition to obtain a five-term expansion with a

remainder O(A~1||h|| 7).




AUTOMORPHIC FOURIER COEFFICIENT RELATIONS 447

It remains to calculate the expansion. The stationary phase expansion is given
in terms of the =-derivatives of

70 (1= 5B DY () bt

evaluated on the stationary locus S; (7). On supp(h(w)) we have a=' < pr < 71
the stationary locus S1(7) = (274 1)1 lies in the region o~ < pr < 37! precisely
for p € (1 —2687% 1 —2a71); ga(p) is identically unity on a neighborhood of
[1—2871, 1—2a71. The function ga(p) can effectively be replaced by unity in
calculating the expansion; the expansion terms are given by the Z-derivatives of

- 2 —\ —1
—_92 _1/4 Z(gp +2) d.: ~
-1 1-— — h(w).
(o ) ( 221 — 232 ) \ da (w)
In particular, the support of the expansion terms is contained in supp(ﬁ). The
parameters p, T satisfy a=! < pr < 71 and p = (27 + 1)7}; it follows that the

expansion terms are supported in the interval (o —2)™! < 7 < (8 —2)"!. Now
from (I3) and the definition of h, we have

—_ <2p|t|(p7(1 — pr))/? (Z—i))l (It~ (o)~ = )Y = (8- 1)Y2)).

N1
The definition and role of G are now established. And finally since % = (Z—;) 4
the proof is complete. ([

4.6. We are ready to estimate the integral in the region p small.

Proposition 4.7. Notation as above. Fortyg <t <ty, s= 2emA~ Y2 and A large
the function J3(t, ) is O(A"Ys|'/2||h||2), with the remainder constant depending
on A, Bty and t;.

Proof. First we look at the remainder terms for the approximation to g. The
support of g3(p) is contained in [0,1 — 2371). From Theorem 2.2 and (8) we have

N2V (p) = = Y/2(p2 = 1)~ 4 cos(2AV2|([¥? — 3)

2 . - T _
~ s e sin(AA(C2 — 5)) + O ),

From Proposition [Tl we have p < ca|s|, and thus the remainder can also be written
as O(A\[s|*/?). Now we have, again in the setup for Section 3, on expressing the
cosine as a sum of exponentials,

it = 3 G el [ g )dRen
Pl tImw=1
+ O3] /2I|h | 10)

for v(p) = (p72 — 1)—1/4 (1—|— %). Since h has compact support,

provided % is bounded away from zero, we can integrate by parts twice with
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du = e“‘lmq’%dx to obtain the new integrand

It d ((g) o’ ((%)_1v<p>ﬁ<w>gg<p>>> dr

for = Rew. We express the integrand in terms of ¢ = p7 and 7 in order to analyze
its magnitude. We have as in Proposition 46l that

h(w) = (|t (07" = D2 = (6-1)1/?)

and from Proposition BTl that a~! < o < 37" on supp(h). It follows that the
product h(w)gs(p) is a C*-bounded function of o for 7 bounded away from zero.
Next observe that

d do d d
- T (9 1—o))V/2)—
4 _ 00 (alo(o1 - o))
do
e tg=t(1 —eyor (1 — 20) + 262((1 — 0?77 2o (1 — 0))'/?)

and

; 2, —2
1/2 -2 __2\_1/4 1€.(30477% + 2)
T u(p) = (o ) <1 + 24\1/2(1 — g27-2)3/2

Now from supp(gs) C [0,8(2a)71) and o™ < o < 71 < 1/4 it follows that
2371 < 1 and furthermore that %, % and 71/21}(/)) are uniformly C*-bounded as
functions of o. For 7 large q is close to 1+ 2ex(0(1—0))/? = (612 + e3(1—0)'/?)?,
which is bounded away from zero on supp(iz), since 0 < 37! < 1/4. For 7 bounded
q is bounded away from zero on supp(ﬁ), since ! < pr < 37! is separated from
the stationary locus S, (7). Now on combining all of the considerations we see that

% <<cczl_<1>> di ((g)lammw)gg(p)))

is bounded by a multiple of 77'/2||h||¢= for to < |t| < t;, the desired bound, since
771 = |st|c™2 O

4.7.  We are ready to consider the Fourier coefficients of a cuspidal automorphic
eigenfunction. Let I' C SL(2;R) be a cofinite subgroup with a cusp at infinity. We
conjugate the group to arrange that the cusp has width one. An eigenform v for
T is a I-invariant eigenfunction of the hyperbolic Laplacian with finite L?(H/T")
norm. For Dy + Ap =0, A > 1/4, ¢ has a Fourier expansion

(20) Y(w) =Y amy' 2K 2nlmly)e? ™ = 37 ap[2mm| 2™ 2 (w)
m##0 m#0

forw =x 41y, A = % + 72, s = 2rmA Y2, K;, the Macdonald-Bessel function
and ICs as in Definition B (the factor e™"?/2 normalizes the Macdonald-Bessel
function).

We review the setup from the previous sections. Let h(u) be a smooth function
with support in (0,2). Recall the definition of Gi(7,t) from (@) and of Qq(¢, s)

from (IF)).
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Theorem 4.8. Situation as above. Given 0 < ty < t1, choose 3 > 4 and define

a by (a—1)Y2 =2t + (B —1)2 Let s = 2omA~Y2 t = 2mn\~Y2 and, given
A= (‘; g) €T, ¢>0, let 7= c?|st|~L. Forty <t <t and X large, we have

/ Y(w)e?™ MR (w)d Rew
tImw=1

— 91/23-1/3,3/2)—5/12 Z ame—ml/z/2|s|—1/2
m<0

4 (k)
iIAY2Qp i /4 i Ai'™M(0)G(r,t) _3/4
xeX TRy sty T 0N I lalkl ),

k=0

where the coefficients Gy (,t) are supported in the interval 3 < 771 + 2 < «; the
remainder constant depends on A, B,ty and ty.

Proof. We will use the automorphy of 1 to obtain the evaluation for the integral

J = Y(w)e?™ " Eevh (w)dRew.

tImw=1

In particular, ¥ (w) = ¥(A(w)), and the integral becomes

J = Y(A(w))e*m e h(w)dRew.

tImw=1

Now from Section B2 the functions {g;}%_, give a partition of unity for [0, c0), and
thus for the integral of an exponential and the Macdonald-Bessel function we have

3
/H B Ks(A(w))e2™mfew h(w)dRew = Z T;(t,5).

j=0

3
It follows that J = ) J;, where J; = > am|27rm|*1/26’”)‘1/2/2\7j(t, s) for t =
j=0 m#0
2rnA~Y2 and s = 2rmA /2.
We proceed and analyze the sums J;. Since |s| is comparable to p from Propo-
sition EIland go has support in (1, 0o}, we have from Proposition 42 the estimate

_3/9 _aa\l/2/9 _ . .
ol <cr S am||m|73/2e=™ " /2e=2lml for appropriate positive constants.
[m|>coAl/2

Now from Hecke’s trivial estimate |a,| < é|m|1/2/\1/4e”)‘1/2/2||¢H2 we have that
— — _I\1/2
ol et D0 Im e gy = O(em N ),
|m|>coAl/2
a suitable bound for Jy. Next we consider J; and J3. From Propositions and £
we have, since p is comparable to |s],
|J1] < c2 Z |@m| |m|*1/2/\*le’”’\1/2/2
coA/2<|m|<c A/2

and
sl <er 3 lamate ™2

[m|<csAl/2



450 SCOTT A. WOLPERT

for appropriate positive constants. The next step is to apply Holder’s inequality.
We find that |J1| is bounded in terms of

1/2 1/2

— —rAl/2 —
AL Z |am|2e A Z |m| 1 7

coA/2<Im|<c1 A1/2 coA/2<|m|<c1A1/2
which from Lemma B.1] is O(/\—3/4||1p||2), the desired bound for J;. In the same
fashion |J3| is bounded in terms of
1/2

A e

[m|<cgAl/2

From Lemma [51] it follows that |J3| is also O(A™3/4||)]|2), the desired bound for
Js.

We proceed and consider Jo. First we express the result of Proposition d.6lin the
form Ja(t, s) = G(t, 8)+O(A™1), where G is the explicit sum. The contribution to Jo
from the remainder term is O(A™! > |@m] |m|_1/26_’”\1/2/2), where

coA/2< | m|<c1A1/2
the summation range is again determined from Proposition EE6. The sum has the
same form as the estimating sum for J;. The contribution from the remainder term
to Ja is O(A=3/4||b||2). The expansion for the integral J is established with the
summation range given in Proposition E6. O

Corollary 4.9. Situation as above. For s = 2rmA~ /2, t = 27n\~1/2, to <t <t
and X large, the Fourier coefficients of the automorphic eigenfunction v satisfy the
following:

ap e~/ — 91/63-1/3,1/2\~1/4 (Ai(O) + ﬂAi(l)(ODﬂ

70\2/3
A2 —1/2,1/2 —iAY2Qo—in /4 ! Ai(k)(O)Gk(T,t)
x 3 ame ™22 2 2 EENE
m>0 k=0

+ON 2Nl 12] 1r7),

where the coefficients Gy(T,t) are supported in the interval 3 < 77! +2 < a.
The Fourier coefficients a,, to < t < ti, are bounded as ONY*|[¢||2||h||57). The
remainder constants depend on A, 3,ty and ty.

Proof. The coefficient relation will result from equating two evaluations of the in-
tegral

J = Y(w)e? e (1) d Rew

tImw=1

for t = 2rnA~1/2 > 0. First note that since ¥ (w)e?™"Fe® is unit-translation invari-
ant, the integral can be replaced by an integral over 0 < Rew < 1, provided ?L(w) is
replaced by the sum ), h(w + k). Provided h satisfies the summation condition
> kez (w4 k) = 1, then by the orthogonality of exponentials, Definition 3.1 and
Lemma the integral is simply @,21/2mt=1/2A=1/6e=mA"2/2)(1)(1 + O(A~1)).
The expansions of Chapter 2 can be combined to show that

W(1) = 27Y5(4i(0) + A=2/3By(0)Ai' (0)) + O(A 1)
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and so for n > 0, after noting that By(0) = 2/3/70, we find that
T = an23mt =120\ 1/06 =212 43(0) + A~2/321/3 4§/ (0) /70 + O(A™1)),
the desired first evaluation of the integral.

The second evaluation of the integral is given in Theorem The coefficient
relation is the consequence of equating the two evaluations. The coefficient bound
is a further consequence of Lemma Bl O

We consider the evaluation of % and the first term of Go. We start by evaluating
9 on Sy (7). From (I7) observe that for t > 0 and €; = —ez = 1, we have

dr3
°Q 1/2y-1 4
8 lsi= ~(otpr(1 = pr) ) (A= B) |5,

We further find that

dA .
o = (L)) 2 (2pr +7)/2
and 5
d _
2, ~ (@ =pm)(1=p)) V2 (2pr — 7 —1)/2.
For p = S1(7) we combine the formulas and find that
d*t - -
L1 | = 220 4 1) )

Furthermore, for p = S1(7) we have

= 1830\ "?
Ccll_ _ <6ddt§2) — 6B 2 (27 4 1)3 (22 4 )13,
1) K

Now from ([9) we have for the cutoff function h that the first term of Gy is
—@2pt(pr(1 = p7)) 2 (p™2 = VL) h g, (1)

-\ !
= — (2212 + )22 4 TPAE) hs

=271615¢ 7127 + D)3 (72 + 1) 2R [ gy (1) -

We consider the nature of the coefficient relation. The relation has the general
form of a matrix equation 7 = RS for 7, respectively S, the transpose vector of the
coefficient sequence (a,,) for ty < 2rnAT/2 < t1, respectively for sg < 2rmA~1/2 <
s1, and R the matrix (g(t,s))\’l/‘le’”‘lm@o(t’s)). The nature of R is suggested
by considering the matrix (/\_1/4e_i)‘1/2Q0(t78)) with the parameter ¢ indexing the
row vector ()\71/467“‘1/2620“’5)), so < s < s1. The row vectors have Euclidean
norm ~ ((27)7'(s1 — s0))*/2. The Hermitian pairing of the index ¢ and index
t rows is given by the exponential sum A~%/2 e~ (Qo(¥',9)=Qo(t:5) | The

s0<s<
behavior of the sum is foreshadowed by the dergiov_agti_\fé of the phase with respect to
the summation parameter m. In particular for s = 2rmA~'/2 we have that

(27‘(‘)_1/\1/2% =s 11+ HY2 gt
m
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and

(2m)” W/Q —(Qo(t';5) = Qolt,5) =5~ (L +07 )2 = (1+77H)12)

for 07! = t'sc™2 and 77! = tsc”2. Now in Corollary for a given t-range
and parameter § the parameter « is determined and the s-range is determined by
B < 77142 < a+2 or equivalently by ¢?t~1(3—2) < s < ¢*t~1(a—2). It follows that
(140712 and (1+7-")Y? are bounded, and furthermore for ¢ large that s; — s¢
is large while the indicated derivative is small. It is also necessary to consider the

convexity properties of QQg. The first derivative

(277)_1)\1/2% =(s2+ s_ltc_2)1/2 —ac !

is an increasing function of s~ with the rate of increase increasing with ¢. The
phase Qo(t',s) — Qo(t,s) is convex in s for ¢ > t. We recognize that there are
two situations to consider for A\ tending to infinity. First, for the difference ¢’ — ¢
tending to zero the exponential sum will exhibit the behavior of a stationary-phase
sum [Tml, Chap. 4] and is expected to have magnitude O(A~1/4). Second, for
the difference ¢’ — ¢t bounded away from zero and for an appropriate choice of the
parameter ¢ the sum is found to be bounded by O(A~'/2) on applying the van der
Corput lemma [Tm| Chap. 4]. The rows of R become pairwise orthogonal, and
it appears that a consecutive sequence of rows spans a parallelepiped with volume
tending to zero.

4.8.  'We are ready to consider an application of our results to integrals of eigen-
functions along vertical lines in the upper half plane. Let I' C SL(2;R) be a cofinite
subgroup with a width one cusp at infinity, and v a I'-invariant eigenfunction with
finite L?(H/T) norm. For x € C$°(H), v a complete geodesic on H, and ds the
hyperbolic arc length element, consider the Radon integral

R(¥x;v) = / Yxds, [HI.

For the vertical geodesics Proposition 227 provides an expansion for R.

Theorem 4.10. Situation as above. For an eigenform 1 with eigenvalue A and
Fourier expansion (4.2), and for g(y) a smooth function with support a compact
subinterval of (0,00), we have

/wxﬂy g(y)y~dy

_ 7T)\—1/46—7r/\1/2/2 Z am|27rm|_1/262”im”g(|27rm|_1)\1/2)

m

+ 0\ log A [|9|2).

Proof. The considerations are based on substituting the Fourier expansion (20) for
1 and analyzing the resulting integrals. In the case |27m| > ¢oA'/? by Proposi-
tion27the Macdonald-Bessel integrals are O(e~“I™!) for a positive constant. Then
by Hecke’s trivial coefficient estimate the sum of such terms is bounded by a multi-
ple of 3715 a2 |m|t/2 AV Ae=elml|ah|y = O(e*“’"\l/2|\1/)||2), a suitable bound for
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the sum. The next consideration is the contribution to the remaining sum of the
remainder term from Proposition 2271 The contribution is bounded in terms of

_ _\1/2 _
AT famle T2 2mm T2 o

Im|<coAl/2

We apply Holder’s inequality to find the bound O(A~%/%log) ||4)||2). The desired
expansion now follows from Proposition 2.7 O

5. APPENDIX

Let I" be a cofinite group with a width one cusp at infinity. A fundamental
domain F is standard for a cusp ¢ for I' provided that for C' € T" generating the
stabilizer of ¢ there exists an A € SL(%R) with ACA™" = (%) such that
AF € {0 € Rew < 1} and AF N {Imw > 1} = {0 < Rew < 1, Imw > 1}.
Introduce the rectangle Rect(yg) = {0 < Rew < 1, Imw > yo} and the counting
function Nr(yo) = #{A € T | AF N Rect(yo) # 0}. We present a refinement of the
estimate of Deshouillers and Iwaniec [DI, Corollary 1, pg. 62]. Let ¥ be a cuspidal
automorphic eigenfunction with Fourier expansion (20).

Lemma 5.1. Notation as above. There exists a positive constant Ct such that, for
A sufficiently large and all positive integers M,

3 JamlPe™ < Cr(M + AV 13,

|m|<M

Proof. The approach is to estimate the integral of 1)? over R = Rect(A\Y/?(4xM)~1).
First we integrate in x, use orthogonality of exponentials, and take a partial sum
as a lower bound, to find that

o0
/ GdA> S famf? / (Ko (2mlmly)) %y~ dy.
AL/2 (8 M)~ 1

\m|<M

The y-integrals are bounded below by CA~ Y2~ from Corollary Now,
since ¢ is T-invariant, [}, 1)2dA is bounded by the product [|¢[|3NT (A2 (4mM)~1).
By Lemma[5.2 (proved below), Np(AY2(47M)~1) is bounded by Cr(A~Y/2M + 1).
The desired estimate follows on combining inequalities. ([

We wish to introduce a decomposition of a fundamental domain F that is stan-
dard for all of its cusps. Suppose as above that F is standard for the cusp é with
stabilizer generated by C' and ACA™! = ((1) ill) Define the cuspidal neighborhood
Fo=A"YH0 < Rez < 1, Imz > 2} and the cuspidal region Fcusp = U]—' Fur-

ther define Fruyick = F — Fcusp. Fruick is relatively compact, thus has finite
diameter §. We are ready to prove the following.

Lemma 5.2. Notation as above. There exists a positive constant Cr such that
Nr(yo) < Crlyy ' +1).

Proof. The issue is to count the number of translates of F intersecting Rect(yo).
First count the number of translates of Fruick intersecting Rect(yo). Observe
that if a translate intersects Rect(yo), then it is contained in Rect(yoe2%), since
points of Rect(yoe™2°)¢ are at least 20 away from Rect(yo). Thus, by considering
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areas, Rect(yoe_%) contains at most Cry, L complete translates of Fruick; at
most C'ryg ! translates of Fruick intersect Rect(yo).

It remains to count the number of translates of Fcusp intersecting Rect(yo).
The first step will be to count horocycles. Every horocycle bounds a horodisc HD.
We will refer to horocycles for cusps of I by the area of the quotient HD/T'. Tt is
standard that the area one horocycles for distinct cusps on H of I are disjoint. In
fact the area % horocycles for distinct cusps on H of I are uniformly separated. A
curve connecting two area % horocycles has length at least twice the distance from
an area % to an area 1 horocycle, at least 2log2. Fix p positive, p < log 2.

For each area % horocycle h on H of a cusp of I" (other than infinity), consider
the metric disc D}, with radius p and center the highest point of kA (with maximal
imaginary part). We are ready to use the discs to count the number of area %
horocycles intersecting a given Rect(yo). Each area % horocycle (other than infinity)
is disjoint from the area 1 horodisc at infinity {Imw > 1}; the center of each Dy
lies below {Imw = 1}. Decreasing p if necessary, we can arrange that if Dy N
{0 < Rew < 1} # 0, then D), C {—1 < Rew < 2}. Thus, for an area & horocycle,
if Dy, N Rect(yo) # 0, then Dy, C {—1 < Rew < 2, Imw > ype ?}. By considering
areas we have that the number of such horocycles is bounded by

Area({—1 < Rew < 2, Imw > yoe "})(Area(Dy)) ™' = Cry;

the desired bound for area % horocycles intersecting Rect(yo).

Finally we consider the count for Rect(yo) intersecting a given horocycle. Con-
sider Rect(yo) and an intersected horocycle h with highest point h,, and let d =
dist(ORect(yo), hs). By an auxiliary transformation B, conjugate I' and map h to
the height two horocycle (area %) at infinity and dRect(yp) to a horocycle at the
origin. The horocycle at the origin has highest point (0,2e?) (at distance d from
{Imw = 2}). The horocycle at the origin has Cartesian equation 224 y? —2e%y = 0
and intersects the height two line at (+2(e? —1)'/2,2) Now the stabilizer in B B~!
of the cusp at infinity is generated by a unit translation. Thus the horocycle at the
origin intersects at most 4(e? — 1)'/2 4 2 translates of BF above height two (i.e.
Rect(yo) intersects at most 4(e? — 1)1/2 + 2 translates of F inside k), the desired
estimate.

We are ready to combine our estimates and obtain the overall count. Let N(yo)

be the counting function for the number of area % horocycles of T’ (other than
1

infinity) intersecting Rect(yo); we found that / —dN(y) < Cryy "(dN is nega-

Yo
tive). The total number of translates of Fcysp intersecting Rect(yp) is bounded by

counting translates in a given horodisc and then counting distinct horodiscs. Thus

a bound is 1—/ (4(e? - 1)1/2 +2)dN(y), for e? = yyal. Integration by parts gives
Yo

1

1+ 2N(yo) + yo_l/ 2(yyy ' — 1) N(y)dy,
Yo

and using the inequality N(y) < Cry~! and the substitution 7 = yyo_1 for the

integral gives

-1
Yo

1+2ny0—1(1+/ (1 —1)"Y2r7Ydr) <14 Clyyt.
1
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In summary, the counts for Fruyick and Fcousp are each bounded by multiples of

(yo ' + 1), as desired. O
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