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1 Introduction

The arithmetic functions of elementary number theory have statistical distributions, [7]. In
1849 Dirichlet showed that the divisor function satisfies

∑

1≤n≤x

d(n) = x log x + (2γ − 1)x + O(x1/2)

for γ Euler’s constant; more generally for σα(n) =
∑

d|n dα then for α positive, real

∑

1≤n≤x

σα(n) = ζ(α + 1)
xα+1

α + 1
+ O(xmax{1,α}).

In 1915 Ramanujan [7] presented the formula
∑

1≤n≤x

d(n)2 ∼ x

π2
(log x)3

which when combined with the formula of Ingham [4, 12] provides that the coefficient sum

S(t, x̂) =
∑

1≤n≤t

d(n)e2πinx̂

satisfies

|S(t, x̂)|2 ∼ t

π2
(log t)3
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as a positive measure in x̂. The formula will serve as our paradigm for coefficient sums. The
sums are associated with automorphic eigenfunctions. The multiplicative arithmetic function
σα(|n|) occurs as the Fourier coefficients of the modular Eisenstein series

E(z; s) =
1

2

∑

(c,d)=1

ys

|cz + d|2s
(1)

for Re s > 1 and z = x + iy, y > 0, [2]. The Eisenstein series provides a basic example
of an automorphic (non-square integrable) eigenfunction for the Laplace-Beltrami operator
associated to the upper half plane H.

We are interested in the statistical properties of automorphic eigenfunctions, particularly
of ensembles of Fourier coefficients. The statistics of a large-eigenvalue limit of eigenfunctions
presents a model for the transition between quantum and classical mechanics, [3, 6, 8, 10, 15,
17, 18, 23, 24, 25]. The geodesic flow represents time evolution for the classical mechanical
system; the flow is ergodic for quotients of hyperbolic space. The quantum ergodicity question
is to understand the transition between quantum and classical mechanics in the presence of a
classical ergodic flow, [1, 3, 9, 16, 17, 18, 23, 24].

We are intrigued by the transition mechanism on the upper half plane. The mechanism
involves automorphic eigenfunctions, coefficient sums and geodesic flow. The correspondence
principle provides that high-energy eigenfunctions of the hyperbolic Laplacian concentrate
along geodesics. Egorov’s Theorem provides that a high-energy eigenfunction on a quotient
Γ\H gives rise to an almost measure (a distribution) on the unit (co)tangent bundle of the
quotient, that is almost geodesic flow invariant, [6, 18]. For Γ a cofinite, non-cocompact,
subgroup of SL(2; R) a square integrable automorphic eigenfunction has a Fourier expansion

φ(z) =
∑

n 6=0

an(y sinh πr)1/2Kir(2π|n|y)e2πinx (2)

for z = x+iy ∈ H, eigenvalue −λ = −(1
4
+r2) < −1

4
for the hyperbolic Laplacian y2( ∂2

∂x2 + ∂2

∂y2 )

and Kir the Macdonald-Bessel function, [19, 21].
A theme of our investigations is that at high-energy the Egorov concentration measure on

the space of geodesics is approximately |Sφ|2 for the coefficient sum

Sφ(t, x̂) = r−1/2
∑

1≤|n|≤rt(2π)−1

ane
2πinx̂ (3)

for (x̂, t) certain elementary coordinates on the space of geodesics for H, [22]. We describe
applications of our results to coefficients sums.
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2 The SL(2; R) formalism

An element B ∈ SL(2; R) has the unique Iwasawa decomposition

B =

(
a b
c d

)
=

(
1 x
0 1

)(
y1/2 0
0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)

which provides for an equivalence of SL(2; R) = NAK with S∗(H)1/2 the square root (double
cover) of the unit cotangent bundle to the upper half plane by the rule

x + iy = y1/2eiθ(ai + b), y−1/2eiθ = d − ic

for z = x + iy ∈ H and θ the argument for the root cotangent vector measured from the
positive vertical, [14]. A symmetric k-tensor f(z)dzk on H is lifted to SL(2; R) by first con-
sidering the balanced tensor f(z)ykdzk/2dz̄−k/2 (the hyperbolic metric is ds = y−1dz1/2dz̄1/2)
and then associating the function f̃(B) = f̃ (z, θ) = f(z)yke2ikθ on SL(2; R). The complex
exterior differential ∂ maps forms of type dz̄k to forms of type dzdz̄k; the product ∂hyp = y2∂
maps forms of type dz̄k to forms of type dz̄k−1; ∂hyp commutes with the action of SL(2; R)
translation. A generalization of the setup is as follows. Functions or symmetric tensors on H
lift to functions on SL(2; R); SL(2; R) acts on functions on SL(2; R) by left translation, the
Lie algebra sl(2; R) (containing generalizations of ∂hyp and ∂̄hyp) acts by right translation. The

action of H =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
, W =

(
0 1
−1 0

)
, X =

(
0 1
0 0

)
and E± = H ± iV are

basic to our considerations. The infinitesimal generator of geodesic flow is H = 1
2
(E+ + E−);

W is the infinitesimal generator of K, the fiber rotations of S∗(H)1/2. In terms of the coor-
dinates (x, y, θ) for SL(2; R) the operator E+ is simply E+ = 4iye2iθ ∂

∂z
− ie2iθ ∂

∂θ
(E+ is the

raising operator and is closely related to the derivative ∂hyp). We will also consider the Casimir
operator C = E−E+ − W 2 − 2iW and the SL(2; R)-invariant volume form dV = y−2dxdydθ
(Haar measure).

3 Helgason’s Fourier representation and Zelditch’s equa-

tion

Helgason’s representation theorem for eigenfunctions of the hyperbolic Laplacian is readily
presented in terms of the Klein disc model D [11, 24]. For z in the unit disc D and b on the
boundary B let < z, b > denote the signed distance from the origin to the horocycle joining
z to b. The functions e(2ir+1)<z,b> give a complete set of generalized eigenfunctions for L2(D)
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as (r, b) ranges over R+ × B. A smooth eigenfunction u of the hyperbolic Laplacian with
eigenvalue −(1

4
+ r2) is represented as

u(z) =

∫

B
e(2ir+1)<z,b>dT (b)

for a distribution T ∈ D(B). Zelditch observed [24] that the integrand can be factored
e(2ir+1)<z,b>dT = u∞(z, b)e2<z,b>db with the distribution u∞ having special properties:

1. u∞ is A-invariant if and only if u is A-invariant for A ∈ SL(2; R);

2. Hu∞ = (2ir − 1)u∞;

3. Xu∞ = 0;

4. u∞ has the K-expansion u∞ =
∑

m u2m where Wu2m = 2imu2m, u0 = u (the original
eigenfunction) and E±u2m = (2ir ± 2m + 1)u2m±2.

The distribution u∞ encodes the oscillation of u. Modulo powers of the hyperbolic metric for
m positive the term u2m is simply the derivative ∂m

hypu with the conjugate derivative for m
negative. Motivated by considerations of the calculus of pseudo-differential operators Zelditch
introduced the following, [24].

Definition 1 For u, v eigenfunctions of the hyperbolic Laplacian on H with eigenvalue −(1
4
+

r2) set Q(u, v) = uv∞, the microlocal lift of the pair (u, v).

Zelditch discovered that Q satisfies a second-order differential equation (H2+4X2+4irH)Q(u, v) =
0, [24]. A proof based on the above properties is given in [22] (the argument does not involve
growth conditions on u or v).

Lemma 2 Q(u, v) is a distribution on SL(2; R). The geodesic flow derivative HQ(u, v) has
magnitude O(r−1).

In particular for χ ∈ Cc(SL(2; R)) from Zelditch’s equation and integration by parts

∫

SL(2;R)

HQ(u, v)χdV =
i

4r

∫

SL(2;R)

Q(u, v)(H2 + 4X2)χdV.

For the right hand integrand (H2+4X2)χ is smooth and the contribution of Q(u, v) is bounded
by ‖u‖2‖v‖2 for L2-norms over a neighborhood of supp(χ); the right hand side is O(r−1).
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4 The Macdonald-Bessel functions and the geodesic-

indicator measure

We introduce the microlocal lift of the normalized Macdonald-Bessel functions.

Definition 3 For t = 2πnr−1, n ∈ Z, set

K(z, t) = (y r sinhπr)1/2Kir(2π|n|y)e2πinx

and
K∞,even =

∑

m even

K(z, t)2m

and for ∆t = 2πr−1, set

Q(t) =
∑

k∈Z

K(z, t + k∆t)K∞,even(z, t).

Q(t) is the microlocal lift of the Macdonald-Bessel function; Q encodes the oscillation of K
by the sequence of all derivatives; Q satisfies the Zelditch differential equation.

Lemma 4 Q(t) is an order-four tempered distribution on SL(2; R). Given 0 < t0 < t1, Q(t)
is uniformly bounded for t0 ≤ |t| ≤ t1 and r large.

Pre compactness plays a structural role in our considerations. The way is prepared to consider
limits.

We first consider geodesic flow invariant measures. To each point of a complete geodesic on
H are associated the forward and backward directed (co)tangents. Each cotangent vector in
turn has two square roots in S∗(H)1/2 ≈ SL(2; R). The association of the four root cotangent
vectors to a point of a geodesic provides a lift of the geodesic to SL(2; R) (the lift consists of
four complete right action orbits of the subgroup A of the NAK-decomposition).

Definition 5 For
_

αβ a geodesic on H let ∆ _
αβ

be the Dirac delta measure of flow-time (lifted

arc-length) integration over the four root cotangent fields of
_

αβ.

A non-vertical geodesic on the upper half plane is a Euclidean circle. For y = (t−2−(x−x̂)2)1/2

with center (x̂, 0) and radius t−1, then (x̂, t) provides a coordinate for G the space of non-
vertical geodesics. The SL(2; R) invariant area element on Ĝ, the full space of geodesics on
H, is simply dx̂dt. We combine a sequence of integral identities and an induction argument
on the K-weight using Zelditch’s equation to obtain the main result, [22]. Denote the group
of integer translations by ΓZ = {( 1 n

0 1 ) |n ∈ Z}.
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Theorem 6 Given 0 < t0 < t1 for the geodesic
_

αβ: y = (t−2 − x2)1/2 on H

lim
r→∞

Q(t) dV =
π2

8

∑

γ∈ΓZ

∆
γ(

_
αβ)

in the sense of tempered distributions on SL(2; R). The convergence is uniform for t0 ≤ |t| ≤
t1 as r becomes large.

The Macdonald-Bessel functions with the proper scaling of parameters concentrate along a
single geodesic. The result provides an instance of the correspondence principle independent
of the calculus of pseudo-differential operators. The uniform convergence will be used to
consider sums of Macdonald-Bessel functions.

5 Applications

We consider four applications of the results to automorphic eigenfunctions. Let Γ be a cofinite
non-cocompact subgroup of SL(2; R) containing ΓZ as the stabilizer of infinity.

5.1 General equivalences

For automorphic eigenfunctions φ the coefficient sums (3) play a basic role. We begin with
a coefficient summation scheme for studying quantities quadratic in the eigenfunction. The
scheme provides a positive measure. For (x̂, t) in R × R+ introduce the measure (a tempered
distribution)

Ωφ,N = dtFN ∗ |Sφ(t, x̂)|2

for dt the Lebesgue-Stieljes derivative in t and for convolution in x̂ with the Fejér kernel FN .
The tempered distribution Ωφ,N is bounded by ‖φ‖2

2. In fact for {φj} a sequence of unit-
norm automorphic eigenfunctions the sequences {Q(φj, φj)} and {Ωφj,N} are precompact. We
can consider a convergent sequence {φj} and write Qlimit = limj Q(φj, φj)dV and µlimit =
limN limj Ωφj,N . For (x̂, t) the above described coordinates the distributions Ωφ,N and µlimit

are given on G the space of non-vertical geodesics. An application of our formula is the
following relationship

Qlimit =
π2

8

∫

G
∆ _

αβ
µlimit

in the sense of tempered distributions on Γ\SL(2; R), [22]. A consequence of the construction
of Ωφ,N is that µlimit is positive; ∆ _

αβ
is positive and it follows that Qlimit is a positive measure.

Qlimit is Γ-invariant; it follows that the extension (by vertical geodesics forming a null set) of
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µlimit to Ĝ is Γ-invariant. The action of Γ on Ĝ is ergodic relative to the SL(2; R)-invariant
measure; the Γ-invariance of µlimit is a strong condition on the limits of coefficient sums. The
equality Qlimit = dV is equivalent to the weak∗ convergence of |Sφj(t, x̂)|2 to 4π−2t. The
quantum unique ergodicity conjecture poses that every Qlimit is indeed a constant multiple of
dV [17]; in particular that high-energy microlocal approximate the uniform density.

Good has a related result on coefficient sums for a fixed automorphic form, [5]. For Ra-
manujan’s function τ (n) defined by the weight 12 modular form

∆ = (2π)12q
∞∏

n=1

(1 − qn)24 = (2π)12

∞∑

n=1

τ (n)qn, q = e2πiz

Good considered the coefficient sums

S(t, x̂) =
∑

1≤n≤t

τ (n)e2πinx̂

and found an explicit form of weak∗ convergence involving the Petersson inner product
∫ x̂2

x̂1

|S(t, x̂)|2dx̂ =
3

12!π13
< ∆,∆ >P (x̂2 − x̂1)t

12 + O(t12−1/3+ε).

The form is fixed and so the limit in the sum length t is the analog of the high-energy limit.
The limit of |S|2 is the uniform density in x̂.

5.2 The modular Eisenstein series

Luo and Sarnak followed by Jakobson considered the high-energy limit of the analytic con-
tinuation of the modular Eisenstein series on the spectral line, [13, 15]. Even though the
Eisenstein series is not square integrable the analysis can be effected. From the Maass-

Selberg relation the microlocal lift QE(r) = E(z; 1
2

+ ir)E(z; 1
2

+ ir)∞,even has magnitude
log |r|. Luo-Sarnak and Jakobson used the hard-analysis estimates available for L-functions
and for Kloosterman (exponential) sums to obtain their results. The authors found that
(log |r|)−1QE(r) weak∗ converges to 48π−1dV. For limits QE,limit = limj(log |rj|)−1QE(rj) dV

and µE,limit = limN limj(log |rj|)−1dtFN ∗ |SE(t, x̂)|2 we find the relationship

Qsymm
E,limit =

π2

8

∫

G
∆ _

αβ
µE,limit.

We then find that (log |r|)−1QE(r) converging to 48π−1dV is equivalent to

(|ζ(1 + 2ir)|2|r| log |r|)−1|
∑

1≤n≤rt

σ2ir(n)n−ire2πinx̂|2 converging to 48π−2t
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weak∗ in x̂ for each positive t. The normalization of the sum by the Riemann zeta function is
significant since |ζ(1+2ir)| is known to at least vary between (log log |r|)−1 and log log |r|, [20].
The formula can be compared to the Ramanujan and Ingham formulas. The convergence is
also suggestive of Good’s formula and of the residue formula at s = 1 for the Ramanujan
identity [20]

∞∑

n=1

|σ2ir(n)|2

ns
=

ζ2(s)ζ(s + 2ir)ζ(s − 2ir)

ζ(2s)
,

5.3 The spectral average of modular eigenfunctions

Zelditch considers for Γ a cofinite, non-cocompact subgroup of SL(2; R) with orthonormal
basis for L2(Γ\H)-eigenfunctions {(φj, λj)} and a basis of Eisenstein series {Ek} the joint
spectral average

σT =
∑

0≤rj≤T

Q(φj, φj) +
1

4π

∑

k

∫ T

−T

QEk
(r)dr [25].

From the Selberg-Weyl law the spectral contribution in the interval [−T, T ] is given as
(4π)−1Area(Γ\H)T 2. Zelditch shows that

σT ∼ T 2

in the sense of distributions [25, Theorem 5.1]. For the case of congruence subgroups the
spectral contribution of the Eisenstein series has a smaller order of magnitude and thus ef-
fectively σT is given by the sum

∑
rj≤T Q(φj, φj). It follows from Zelditch’s result and our

considerations that for congruence subgroups the spectral average of the coefficient sums

T−2
∑

0≤rj≤T

|Sφj(t, x̂)|2 converges to
4t

π2

weak∗ in x̂ for each positive t. The spectral average of the coefficient sums is the uniform
density in x̂.

5.4 Renormalization of semi-classical limits

It is an open question if high-energy limits are necessarily non trivial; in the absence of unique
quantum ergodicity all mass could in the limit escape into the cusps resulting in Qlimit and µlimit

being trivial. To investigate this possibility we renormalize the eigenfunctions to unit L2-mass
on a compact set and consider the limit of corresponding microlocal lifts [22, Chapter 5]. The
first matter is to compare normalizations: we show that the resulting L2-norms are bounded
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by log λ. The bound is used to establish pre compactness for a sequence of renormalized
microlocal lifts and that a high-energy limit has the expected basic properties. The limit is
necessarily non trivial. The limit of square coefficient sums is found to be the zeroth Fourier-
Stieljes coefficient of a Γ-invariant measure on the space of geodesics. The action of Γ on the
space of geodesics is noted to have a compact fundamental set. A lower bound for square
coefficient sums results. Given Γ there exist positive constants t0 < t1 such that for large
eigenvalues the mapping φ → (Sφ(t1, θ) − Sφ(t0, θ)) from eigenfunctions to linear coefficient
sums twisted by an additive character is a uniform quasi-isometry relative to the L2-norms
for a suitable compact set and the unit circle. In particular the mapping from eigenfunctions
to twisted linear coefficient sums Sφ(t1, θ) is an injection.
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