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Abstract. A hyperbolic 3-manifold is said to have the spd-property if all its closed geodesics
are simple and pairwise disjoint. For a 3-manifold which supports a geometrically finite hyper-

bolic structure we show the following dichotomy: either the generic hyperbolic structure has
the spd-property or no hyperbolic structure has the spd-property. Both cases are shown to
occur. In particular, we prove that the generic hyperbolic structure on the interior of a handle-

body (or a surface cross an interval) of negative Euler characteristic has the spd-property. Sim-
plicity and disjointness are consequences of a variational result for hyperbolic surfaces.
Namely, the intersection angle between closed geodesics varies nontrivially under deformation
of a hyperbolic surface.
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1. Introduction and Basics

All Riemannian manifolds are assumed to be complete and orientable. A Rieman-

nian manifold M is said to have the spd-property if all the closed geodesics in M

are simple and pairwise disjoint. More generally, we say that a subgroup G of isomet-

ries of hyperbolic (Euclidean) space has the spd-property if the axes are disjoint for

each pair of loxodromics (translations) a and b in G not lying in a common cyclic

subgroup. In the case that G is discrete and torsion free this is equivalent to the quo-

tient hyperbolic (Euclidean) manifold having the spd-property.

A complete Riemannian manifold of constant positive curvature cannot have the

spd-property since S
3 has great circles which intersect. Also, as a consequence of

the Bieberbach theorems, a flat Riemannian manifold with noncyclic infinite funda-

mental group cannot have the spd-property (cf. [Wf]). Trivially, any hyperbolic

3-manifold with Abelian fundamental group has the spd-property. Kerry Jones

and Alan Reid ([Jn-R]) have shown that all closed arithmetic hyperbolic 3-manifolds

have intersecting closed geodesics; in particular, they do not have the spd-property

(see also [C-R]). In this paper, we produce the first nontrivial examples of hyperbolic
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3-manifolds which possess the spd-property. This is done by showing that the generic

hyperbolic structure on the interior of a handlebody (or a surface cross an interval)

of negative Euler characteristic has the spd-property. (See Theorem 3.2 for a precise

statement.) For a general 3-manifold which admits a geometrically finite hyperbolic

structure, we show that either the generic hyperbolic structure has the spd-property

or no hyperbolic structure has the spd-property (for a precise formulation see

Theorem 2.2).

For the basics on hyperbolic geometry, hyperbolic manifolds, and Kleinian groups

the reader is referred to the following books ([Be, Mk], and [R]).

A Kleinian group is a discrete subgroup G of orientation preserving isometries of

hyperbolic 3-space, H3. The action of G on the boundary of H3 breaks up into

two sets: the limit set, LðGÞ, and the set of discontinuity, OðGÞ. The Kleinian group

is said to be of the second kind if the set of discontinuity is not empty, otherwise it

is said to be of the first kind. A Fuchsian group is a Kleinian group which keeps a

round disc invariant.

Let M be the Riemannian manifold of constant negative curvature, H3=G. The
convex core of M is CHðLðGÞÞ=G, where CHðLðGÞÞ is the convex hull of LðGÞ.
A finitely generated G is said to be geometrically finite if the convex core of M has

finite volume.

2. The Representation Space and the spd-Property

Let G be a finitely generated group. Let HomðGÞ be the space of representations of G
into PSLð2;CÞ and DðGÞ the (possibly empty) subspace of discrete faithful represen-

tations. Let HomðGÞ and DðGÞ; respectively, be the quotients of HomðGÞ and DðGÞ by
the action of PSLð2;CÞ conjugation of representations.

We begin with observations on the cross ratio. For a quadruple of distinct points

on P
1

½z1; z2; z3; z4� ¼
ðz1 � z3Þðz2 � z4Þ

ðz1 � z4Þðz2 � z3Þ
;

we find that

½z1; z2; z3; z4� þ
1

½z1; z2; z3; z4�
¼ p=q;

for

p ¼ ðz1 � z3Þ
2
ðz2 � z4Þ

2
þ ðz1 � z4Þ

2
ðz2 � z3Þ

2

and

q ¼ ðz1 � z4Þðz2 � z3Þðz1 � z3Þðz2 � z4Þ:

The polynomials p and q are fixed on interchanging z1 with z2 and z3 with z4. The

quantities p and q are then polynomials in the elementary symmetric functions in

fz1; z2g and fz3; z4g.

252 ARA BASMAJIAN AND SCOTT A. WOLPERT



Now for g 2 G the elementary symmetric functions in the fixed points of rðgÞ,
r 2 HomðGÞ, are actually holomorphic maps from HomðGÞ to P

1. To see this

observe that

rðgÞ ¼ �
a b
c d

� �� �
2 PSLð2;CÞ

varies holomorphically and that the fixed points of rðgÞ are the roots of

cz2 þ ðd� aÞz� b ¼ 0:

The quotients ða� d Þ=c and b=c are holomorphic maps from HomðGÞ to P
1 and are

generators for the elementary symmetric functions in the roots.

We have the following dichotomy:

LEMMA 2.1. Let G be a finitely generated group with a subset G� 
 G and a

representation f, such that the transformations fðaÞ, a 2 G�, are all loxodromic with

disjoint fixed points. For C the component of HomðGÞ containing f either:

ð1Þ there exists a generic subset V 
 C ða countable intersection of open dense subsetsÞ

such that for each r 2 V and each pair a; b 2 G�, rðaÞ and rðbÞ have disjoint axes if
they are loxodromic, or

ð2Þ there exists a pair of elements a and b in G�, such that for each r 2 C, whenever
rðaÞ and rðbÞ are loxodromic with disjoint fixed points, then their axes have an
intersection with an angle independent of the particular representation.

Proof. We start by defining a rational function Cab, the complex-distance between

representing axes. From the above considerations the rule

Cab : r 7! tab þ
1

tab
for tab ¼ arðaÞ; rrðaÞ; arðbÞ; rrðbÞ

� �

can also be expressed as a quotient pab=qab of two polynomials in the elementary

symmetric functions in the fixed points of rðaÞ and rðbÞ. Here, arðaÞ and rrðaÞ repre-

sent the attracting and repelling fixed points, respectively, of rðaÞ. Let Zab 
 C be the

union of the zero sets and polar sets of pab and qab. Zab is a subvariety (possibly C
itself) that we wish to be nongeneric. To this end consider that qab might be the con-

stant 0; this is precluded for a, b 2 G� and f (by disjointness of the fixed points). For

pab or qab the constant 1, then for all r 2 C either rðaÞ or rðbÞ would have 1 as a

fixed point; this is not possible since C includes all PSLð2;CÞ conjugates of a repre-

sentation. In brief the zero set of qab and the polar sets of pab, qab are all proper sub-

varieties. Consider next that pab is identically zero, then tab ¼ � i and the axes of the

representing transformations do not lie on a common geodesic plane, hence are

necessarily disjoint. In summary for a; b in G� then either the representing transfor-

mations always have disjoint axes, or Zab is a proper subvariety.

For the second situation consider the variety C � Zab with the restriction of Cab
(the restriction is defined and holomorphic throughout C � Zab). C � Zab is connec-

ted and thus either:
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(1) Cab does not have a constant value in ð�1;�2�, or

(2) Cab does have a constant value in ð�1;�2�.

Observe that Cab has a value in ð�1;�2� if and only if the axes of rðaÞ and

rðbÞ intersect. For alternative (1) the preimage C�1
ab ðð�1;�2�Þ is a real semi-algebraic

set with real codimension at least one. It follows that Gab ¼ C � Zab � C�1
ab ðð�1;�2�Þ

is an open dense subset of C. The generic set is simply the intersection of the Gab, for

all distinct pairs a, b 2 G� having a representation in C with intersecting axes. The

alternative is given by (2). &

THEOREM 2.2. Let G be a finitely generated torsion-free group with a discrete

faithful geometrically finite representation f. Let CðGÞ be the interior of the component
ðin HomðGÞÞ containing f of the discrete faithful geometrically finite representations of
G where for r 2 CðGÞ, rðgÞ is parabolic if and only if fðgÞ is parabolic. Then either:

ð1Þ there exists a subset V 
 CðGÞ, a countable intersection of open dense sets, such
that for r 2 V, H3=rðGÞ has the spd-property, or

ð2Þ there exist a pair of elements a and b in G, so that rðaÞ and rðbÞ are loxodromic
elements whose corresponding closed geodesics have an intersection in H3=rðGÞ
with angle constant for all r 2 CðGÞ. In particular, for no r 2 CðGÞ, does
H3=rðGÞ have the spd-property.

Proof. Set M ¼ H3=fðGÞ and note that all representations in CðGÞ are geome-

trically finite, since this is a quasiconformal deformation space ([Md]). IfM has finite

volume, Mostow–Prasad rigidity provides that the hyperbolic structure on M is

unique and the conclusion trivially follows.

Consider the situation for M having infinite volume. Since the representation f is

discrete faithful geometrically finite, the subset G� 
 G of primitive nonparabolic ele-

ments is represented by loxodromic transformations with disjoint fixed points.

Lemma 2.1 provides for a generic subsetV of the f-component of HomðGÞ or the exis-
tence of a pair of elements with axes having fixed intersection angle. In the first case

the subset V \ CðGÞ is generic in CðGÞ (a countable intersection of open dense sets)

since CðGÞ is open in HomðGÞ and it thus follows that the projection of V \ CðGÞ to
CðGÞ is likewise generic. Thus one of the two alternatives must occur. &

3. Manifolds with the spd-Property

Clearly the spd-property is inherited by covers. For the converse we have,

PROPOSITION 3.1 A geometrically finite hyperbolic 3-manifold finitely covered by a

manifold with the spd-property has the spd-property. In particular, having the spd-

property is a commensurability invariant.

Proof. Let G be a finite index subgroup having the spd-property in the Kleinian

group G, and let g and b be loxodromic elements in G. Since loxodromic elements
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have infinite order, it must be that powers of g and b lie in G. Since a power of a

loxodromic element has the same axis as the loxodromic element, the hypothesis

provides that g and b have disjoint axes. &

THEOREM 3.2. Let f : G ! PSLð2;RÞ be a finitely generated torsion free faithful

Fuchsian representation with no parabolic elements. Let CðGÞ be the interior of the
component of discrete faithful representations containing f. There exists a subset
V 
 CðGÞ, a countable intersection of open dense sets, so that for any r 2 V, H3=rðGÞ
has the spd-property.

In the case of G a cocompact surface group, CðGÞ is quasi-Fuchsian space and in

the case of G a free group, then CðGÞ is Schottky space. Theorem 3.2 provides that a

generic representation in quasi-Fuchsian or Schottky space has the spd-property.

In order to prove the theorem, we consider plane hyperbolic geometry. In the follo-

wing, by a triangle in H2, we will mean a three sided polygon with geodesic sides and

possibly ideal vertices.

LEMMA 3.3. Let a and b be ð possibly the sameÞ closed geodesics on a compact

hyperbolic surface S which transversally intersect at the point p. There exists a simple

closed geodesic g which intersects a and b such that either g passes through p or
there exist geodesic subarcs of a, b, and g which bound a ð possibly non embedded Þ

triangle on S.

We remark that the lemma would be immediate if the tangent directions to the set

of simple closed geodesics were dense in the unit tangent bundle of S. However, for

closed hyperbolic surfaces, the totality of simple closed geodesics are nowhere dense

even on the surface S, [Jr].

Proof of Lemma. Let m be a measured geodesic lamination which is complete,

that is, the complementary regions are ideal triangles, [B-C]. A point of S lies

either interior to a complementary triangle or on a leaf of the lamination. We

consider the two possibilities for the intersection point p. Consider first that p is

interior to a triangle D. Arcs of a and b enter and leave D by crossing distinct

boundary edges of the triangle. It follows that there are subarcs of a and b (with

vertex angle in ð0; pÞ) which begin at p and cross a common boundary edge of D.
Recall that each leaf of m can be geometrically approximated by simple closed

geodesics (no leaf is a closed curve; each leaf ‘ recurs infinitely often on some

transverse arc; simple closed curves are formed by taking large subarcs of ‘ and

suitable connectors along the transverse arc; by the closing lemma if the connectors

are small the constructed curves are close to closed geodesics). A triangle is formed

by the arcs along a, b and an arc along an approximating simple closed geodesic.

The remaining possibility is that p lies on a leaf ‘ of the lamination. A totally

degenerate triangle is given by the sequence of trivial arcs along a; b then ‘.
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Approximate ‘ in a neighborhood of p by a simple closed geodesic g. A triangle is

given by arcs along a; b and g. &

PROPOSITION 3.4. Let G be a finitely generated torsion free Fuchsian group with no

parabolic elements, and A, B hyperbolic elements in G with intersecting axes. There

exist Fuchsian deformations of G for which the corresponding angle of intersection is

arbitrarily close to zero.

Proof. If G is not cocompact double the Nielsen convex core to obtain Ĝ,

cocompact, with G 
 Ĝ. From Lemma 3.3 we can find a simple closed geodesic on

H2=Ĝ which transversally intersects the geodesics corresponding to A and B. Lifting

the configuration to the hyperbolic plane we find a simple hyperbolic element C in Ĝ

whose fixed points separate the fixed points of A and B. We will deform Ĝ by

Fenchel–Nielsen twisting (earthquaking) along C. Write Dt for the deformation of

an element D in Ĝ. The fixed points of At and Bt necessarily move relative to the

fixed points of Ct, [K, Wp]. Choose the sense of the deformation so that the angle (in

the triangle) between the axes of At and Ct increases. As the deformation parameter

tends to infinity the configuration of fixed points for At and Ct degenerates; the

intersection angle approaches p. Since the sum of angles of a triangle is bounded by

p, the intersection angle between the axes of At and Bt must tend to zero. The family

fDt jD 2 Gg, a deformation of the subgroupG, provides the desired deformation. &

The torsion-free assumption in the proposition is required; in the paper [Mt],

Martin shows that there exist quite general Fuchsian groups with even-order torsion

having hyperbolic elements whose axes intersect at an angle which remains constant

in the PSLð2;RÞ deformation space.

Proof of Theorem 3:2: Fix a and b in G. If the axes of fðaÞ and fðbÞ do not

intersect then we are done. Suppose that fðaÞ and fðbÞ have intersecting axes. Then

the holomorphic function Cab restricted to the locus of PSLð2;RÞ representations is

given by the angle of intersection between the axes. (The PSLð2;RÞ representations

are not contained in the polar set of Cab.) Proposition 3.4 provides that Cab is not

the constant function. Alternative (1) occurs in Theorem 2.2 and the conclusion

follows. &

4. Manifolds Without the spd-Property and an Application

We remark that there exist geometrically finite Kleinian groups of the second kind

having the property that no discrete faithful deformation in the component contain-

ing the identity representation is spd. The construction of such a group involves

starting with an infinite volume geometrically finite hyperbolic 3-manifold contain-

ing a totally geodesic thrice punctured sphere whose ends are contained in Zþ Z

cusps of the ambient manifold. Since thrice punctured spheres have no moduli,

any quasiconformal deformation of our manifold would not alter the totally
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geodesic character of the thrice punctured sphere. Hence, the deformed structure

would continue to be non-spd.

The current considerations have consequences for Poincaré series. In general, the

variational differential of the complex-distance between axes is represented by the

Poincaré series of the rational function with poles at the axes ends. The nontrivial

variation of the complex-distance provided in Proposition (3.4) provides for the

generic nontriviality of the associated corresponding Poincaré series, [Kr,Wp].
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