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1 Introduction

The correspondence principle of quantum mechanics provides that high-energy eigenfunc-
tions of the Laplace-Beltrami operator concentrate along geodesics. The nature of the
concentration for automorphic eigenfunctions and ergodic geodesic flow is of particular
interest [2, 3, 4, 5, 6, 9, 17, 18, 20, 27, 32, 37, 38, 39, 40, 49, 50, 51, 52, 53]. For Γ a

cofinite, non-cocompact, subgroup of SL(2; R) a cuspidal automorphic eigenfunction for
the hyperbolic Laplacian D has a Fourier series expansion

ϕ(z) =
∑

n 6=0

an(y sinhπr)1/2Kir(2π|n|y)e2πinx(1.1)

for z = x+iy, y > 0, the variable for the upper half plane H, eigenvalue −λ = −(1
4
+r2) <

−1
4

and Kir the Macdonald-Bessel function [42, 45]. Also associated to an eigenfunction

ϕ are the coefficient sums

Sϕ(t, x̂) = (πr−1)1/2
∑

1≤|n|≤rt(2π)−1

ane2πinx̂;

the sums are of independent interest [8, 10, 14, 29, 41]. A theme of our investigations is
that at high-energy the concentration measure on the space of geodesics is approximately
given in terms of |Sϕ|2.

Our results have applications for general cofinite, non-cocompact subgroups, as

well as, for congruence subgroups of SL(2; Z). The first application concerns a congru-
ence subgroup Γ and unit-norm eigenfunctions; the spectral average of the sum squares
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|Sϕ(t, x̂)|2 weak* converges in x̂ to 8t(Area(Γ\H))−1. In a second application the results

of W. Luo-P. Sarnak [32] and D. Jakobson [27] for the uniform distribution for the limit
of the modular Eisenstein series are interpreted as a limit-sum formula for the elementary
summatory function. In a third application we present a lower bound for square coeffi-

cient sums and note that a mapping from eigenfunctions to coefficient sums is a uniform
quasi-isometry.

At the center of our investigation is the microlocal lift of an eigenfunction in-
troduced by S. Zelditch [48, 49, 50, 51, 52]. Zelditch first observed that a ΨDO calculus

can be based on Helgason’s Fourier transform [48, Secs.1,2], [50, Secs.1,2]. The basic
construction is the microlocal lift, a finite-order distribution that encodes the oscillation
for a pair of eigenfunctions. For u, v functions on the upper half plane H, each satisfying
the differential equation Df = −(1

4
+ r2)f , we write ũ, ṽ for the standard lifts to SL(2; R)

and consider the sequence

u0 = ũ
v0 = ṽ

(2ir + 2m + 1)v2m+2 = E+v2m

(2ir − 2m + 1)v2m−2 = E−v2m

for E+, respectively E−, the SL(2; R) raising, respectively lowering, operator; v2m is in
the weight 2m representation for the compact subgroup of SL(2; R), [30]. The microlocal

lift for the pair is defined by Q(u, v) = u0

∑
m

v2m. For σ ∈ C∞(SL(2; R)×R), a complete

symbol for a ΨDO properly supported on SL(2; R) (σ(A, τ ) is asymptotically a sum of
homogeneous terms in the frequency τ with bounded left invariant derivatives in A) the
associated matrix element is

2π〈Op(σ)v, u〉 =

∫

SL(2;R)

σrQ(u, v)dV

for σr the symbol evaluated at τ = r and dV Haar measure [48, 50]. We generalize a result

of S. Zelditch [50, Prop.2.1] and show that the microlocal lift satisfies a partial differential
equation; the equation is basic to our approach. A second microlocal lift is also considered.

The Fejér sum QM(u) = (2M +1)−1|
M∑

m=−M

u2m|2 provides a positive measure on SL(2; R);

the assignment u to QM(u) is equivariant for the left action on SL(2; R). An integration
by parts argument provides a bound for the difference of Q(u, v) and QM(u) for M large

of order O(r−1) given uniform bounds for ‖u2m‖. The Fejér sum construction provides an
alternative to introducing Friedrichs symmetrization, [9, 48]. Our initial interest is the
microlocal lift of the Macdonald-Bessel functions.

The Macdonald-Bessel functions were introduced one-hundred years ago in a
paper presented to the London Mathematical Society by H. M. Macdonald [33]. The
paper includes a formula for the product of two Macdonald-Bessel functions in terms of
the integral of a third Bessel function. We will develop formulas for the microlocal lift
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from such an identity

2Kir(βy)Kir(y) = π cschπr

∫ ∞

log β

J0(y(2β cosh τ − 1 − β2)1/2) sin rτdτ, [31, 33].

To present our main result we first describe a family of measures on SL(2; R). The square
root (the double-cover) of the unit cotangent bundle of H is equivalent to SL(2; R). A
geodesic has two unit cotangent fields and four square root unit cotangent fields. The

geodesic-indicator measure ∆ _
αβ

on SL(2; R) is the sum over the four lifts of the geodesic
_

αβ of the lifted infinitesimal arc-length element. We further write ∆
Γ∞(

_
αβ)

=
∑

γ∈Γ∞

∆
γ(

_
αβ)

for the sum over Γ∞, the discrete group of integer translations. We consider for t = 2πnr−1

the microlocal lift of

K(z, t) = (ry sinhπr)1/2Kir(2π|n|y)e2πinx,

and define the distribution

Qsymm(t) =
∑

k,m∈Z

K(z, t + k∆t)K(z, t)4m

for ∆t = 2πr−1. We show in Theorem 4.9 that for
_

αβ the geodesic on H with Euclidean
center the origin and radius |t|−1 and dV Haar measure then in the sense of tempered
distributions

Qsymm(t)dV is close to
π2

8
∆

Γ∞(
_
αβ)

uniformly for r large and |t| restricted to a compact subset of R+. At high-energy the
microlocal lift of a Macdonald-Bessel function is concentrated along a single geodesic.

Accordingly, at high-energy the behavior of the microlocal lift of a sum of Macdonald-
Bessel functions is explicitly a matter of the space of geodesics and sums of coefficients.

We introduce in Chapter 3 a coefficient summation scheme for studying quanti-
ties quadratic in the eigenfunction. The scheme provides a positive measure. In particular

for (x̂, t) ∈ R × R+ define the distribution

Ωϕ,N = dtFN ∗ |Sϕ(t, x̂)|2

for dt denoting the Lebesgue-Stieljes derivative in t and for convolution in x̂ with the
Fejér kernel FN . We use a slight improvement of the J. M. Deshouillers-H. Iwaniec co-
efficient sum bound [11] and show for a unit-norm automorphic eigenfunction that Ωϕ,N

is a uniformly bounded tempered distributions. In fact for {ϕj} a sequence of unit-norm
automorphic eigenfunctions the sequences {Q(ϕj, ϕj)} and {Ωϕj,N} are relatively com-
pact. We consider a weak∗ convergent sequence and write Qlimit = lim

j
Q(ϕj, ϕj)dV and

µlimit = lim
N

lim
j

Ωϕj,N . For(x̂, t) connoting the geodesic on H with Euclidean center x̂
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and radius t−1 the distributions Ωϕ,N and µlimit are given on G the space of non ver-

tical geodesics on H. The first application of our overall considerations is presented in
Theorem 4.11

Qlimit =
π

8

∫

G
∆ _

αβ
µlimit(1.2)

in the sense of tempered distributions on Γ∞\SL(2; R). The integral representation pro-
vides basic information. In particular that Qlimit is a positive geodesic flow-invariant

measure and that µlimit extends to a Γ-invariant measure on Ĝ the space of geodesics
on H. Vertical geodesics on H are found to be null for Qlimit. Recall that the action of
Γ on Ĝ is ergodic relative to the SL(2; R)-invariant measure. The Γ-invariance of µlimit

is a significant hypothesis for the limits of the coefficient sums Sϕ. The Γ-action has

compact fundamental sets and thus an invariant measure is compactly determined. We
further find that the equality Qlimit = dV is equivalent to the convergence of |Sϕj(t, x̂)|2
to 4π−1t. For the modular group the convergence of Q(ϕj, ϕj) to unity is found to
agree with the residue formula at s = 1 of the Rankin-Selberg convolution L-function

Lϕ(s) =
∫

SL(2;Z)\H ϕ2(t)E(z; s)dA; E(z; s) the modular Eisenstein series.
We show in Chapter 5 that the above considerations can be extended to include

the modular Eisenstein series. In particular from the Maass-Selberg relation the microlocal

lift QE(r) = E(z; 1
2
+ ir)

∑
m

E(z; 1
2

+ ir)2m has magnitude comparable to log |r|. For limits

QE ,limit = lim
j

(log |rj|)−1QE(rj)dV and µE ,limit = lim
N

lim
j

(log |rj|)−1dtFN ∗|SE(t, x̂)|2 we find

Qsymm

E ,limit =
π

8

∫

G
∆ _

αβ
µE ,limit

in the sense of tempered distributions on Γ∞\SL(2; R) for Qsymm

E ,limitthe restriction of the
distribution to functions right-invariant by ( 0 1

−1 0 ). The limit of the microlocal lift QE(r)
is analyzed in the joint work of W. Luo-P. Sarnak [32] and the work of D. Jakobson

[27]. The authors find that (log |r|)−1QE(r) weak∗ converges to 48π−1dV relative to
Cc(SL(2; Z)\SL(2; R)). Their approach uses bounds for the Riemann zeta function [43],
T. Meurman’s bounds for the L-function of a cusp form [34], the H. Petersson-N. V.
Kuznetsov trace formula [29], as well as, the work of H. Iwaniec [25] and J. Hoffstein-P.

Lockhart [23]. We find that (log |r|)−1QE(r) converging to 48π−1dV is equivalent to

(|ζ(1 + 2ir)|2|r| log |r|)−1
∣∣ ∑

1≤n≤rt

σ2ir(n)n−ireinν
∣∣2 converging to 48π−2t

weak∗ in ν for each positive t for the summatory function σα(n) =
∑
d|n

dα and r tending to

infinity. The convergence is suggestive of the Ramanujan formula [16]

∑

1≤n≤x

d(n)2 ∼ x

π2
(log x)3
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and the Ingham formula [24] for the divisor function (the additive divisor problem); the

divisor-sum formulas provide that S(t, x̂) =
∑

1≤n≤t

d(n)e2πinx̂ satisfies

|S(t, x̂)|2 ∼ t

π2
(log t)3

as a positive measure in x̂. The convergence is also suggestive of the residue formula at

s = 1 for the Ramanujan identity

∞∑

n=1

|σ2ir(n)|2

ns
=

ζ2(s)ζ(s + 2ir)ζ(s − 2ir)

ζ(2s)
, [36].

The quantum unique ergodicity conjecture postulates that in general Qlimit is a
constant multiple of dV, [37, 38]; also see [5, Chap. VIII Sec. 3] and the discussion of the
effect of the automorphic condition on the behavior of expansion coefficients. The work of
W. Luo - P. Sarnak and D. Jakobson establishes the conjecture for the modular Eisenstein

series. In a previous work [47] we used a stationary-phase analysis of an SL(2; R)-translate
of K(z, t), z ∈ H, to study the coefficient sums Sϕ [47, Theorem 5.4]. In the work [1] A.
Alvarez-Parrilla extended the stationary-phase analysis to include an SL(2; R)-translate
of (Im z)s, z ∈ H, and studied the Eisenstein coefficient sums SE . Z. Rudnick and P.

Sarnak established the result that for an arithmetic surface a Hecke-basis semi-classical
limit cannot have projection to H with nontrivial singular support contained in a finite
union of closed geodesics, [37].

The renormalization for formula (1.2) is considered in Section 5.4. In the pos-
sible absence of quantum unique ergodicity all L2-mass could escape into the cusps for
a semi-classical limit; Qlimit and µlimit could possibly be trivial. We normalize eigen-
functions to unit L2-mass on a compact set and reconsider the semi-classical limit. The

L2-norms can now be tending to infinity and the above considerations are not sufficient.
In particular it is an open question if the microlocal lifts form a uniformly bounded family
of distributions. We find though in Proposition 5.11 that the L2-norms of renormalized
eigenfunctions are bounded by log λ. In Proposition 5.12 we use Fejér summation to

construct the microlocal lift and to establish the existence of a non trivial semi-classical
limit with the expected properties. In Theorem 5.14 we show that the resulting limit of
square coefficient sums is the index zero Fourier-Stieljes coefficient of a Γ-invariant mea-
sure on the space of geodesics. The Γ-invariance has consequences for coefficient sums.

The group action on the space of geodesics has a compact fundamental set as noted in
Proposition 5.9. A positive lower bound for square coefficient sums is a consequence.
Furthermore for large eigenvalues the mapping from eigenfunctions to scaled index inter-

val linear coefficient sums twisted by an additive character is a uniform quasi-isometry
relative to the L2-norms for a suitable compact set and the unit circle (parameterizing
the character). In particular the mapping from eigenfunctions to twisted linear coefficient
sums is an injection.
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We begin our analysis in Chapter 2 by considering the geodesic-indicator mea-

sures on H and the Radon transform; the adjoint is the weight-zero component of the in-
tegral transform (1.2). From a sequence of integral identities we show in Theorem 2.4 that
suitable products of Macdonald-Bessel functions converge with rate r−1 to the Fourier-

Stieljes coefficients of the geodesic-indicator. The focus of Chapter 3 is the analysis of
sums of Macdonald-Bessel functions and the interchange of summation and spectral lim-
its. We begin by introducing measures on G constructed from the Fourier coefficients of
an automorphic eigenfunction. In Theorem 3.5 we establish (1.2) in effect for translation

invariant test functions on H. In Theorem 3.6 we give a new bound for coefficient sums
and establish (1.2) in effect for general test functions on H. The sum bound provides
for ‖ϕ‖2 = 1 that r−1

∑
1≤n≤rt

|an|2 is o(1) for t small, uniformly in r. The bound plays

an essential role in our arguments and apparently is the only available short-range sum

bound sharp in the r-aspect, [26]. In Section 3.4 we show that the adjoint Radon trans-
form is injective for translation invariant measures (the Radon transform is not surjective;
translation invariance provides a special situation). The analysis of Chapter 4 concerns
the microlocal lift on SL(2; R) and the necessary bounds for considering sums of microlo-

calized Macdonald-Bessel functions. We begin with bounds for the raisings and lowerings
of the Macdonald-Bessel functions. Then we use Zelditch’s equation and an induction
scheme on the SL(2; R)-weight to analyze the microlocal lift. Formula (1.2) is established

in complete generality in Section 4.4. Initial consequences including the connections to
limits of coefficient sums Sϕ are presented in Sections 4.4 and 4.5. Chapter 5 is devoted
to further applications. The analysis is extended to include the modular Eisenstein se-
ries; the analog of the relation (1.2) is presented in Theorem 5.6. Renormalization of the

microlocal lift is considered in the final section.
I would like to thank Robert J. Stanton and Steven Zelditch for their valued

suggestions. I would also like to thank the Institute for Physical Science and Technology
of the University of Maryland, as well as the Graduate Research Board of the University

of Maryland.

2 Products of Macdonald-Bessel functions and the

Radon transform
2.1. The hyperbolic Radon transform is defined in terms of integration over geodesics
in the upper half plane. We begin in Section 2.2 by introducing the Radon transform
and the geodesic-indicator measure. The Fourier-Stieljes coefficients of the measure are

presented in Proposition 2.1. In Section 2.3 we prescribe a test function and consider
a sequence of integral identities to relate the product of the Macdonald-Bessel functions
to the Fourier-Stieljes coefficients of the geodesic-indicator. The relation complete with
a remainder is given in Theorem 2.4. An alternate formula is presented in Section 2.4

for the square of the Macdonald-Bessel function. The bounds for the remainders will be
necessary in the consideration of sums in the following chapters.
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2.2. We consider the space Ĝ of complete geodesics on H the upper half plane. Ĝ is
naturally parameterized by considering end points on R̂ = R∪{∞}; Ĝ ' {{α, β} | α, β ∈
R̂, α 6= β}. The Radon transform R : Cc(H) → Cc(Ĝ) for compactly supported functions

is defined by

R(f) =

∫

γ

f ds for f ∈ Cc(H), γ ∈ Ĝ

for ds the hyperbolic arc-length element, [22]. The space of geodesics Ĝ has an SL(2; R)-
invariant area element ω = (α − β)−2|dα ∧ dβ|. We wish to study the adjoint of the
Radon transform. From the Riesz representation theorem the spaces M(H) and M(Ĝ) of

regular Borel measures are the corresponding duals of the spaces of compactly supported
continuous functions Cc(H) and Cc(Ĝ). The pairing for g ∈ Cc(Ĝ) and ν ∈ M(Ĝ) is

(g, ν) =

∫

Ĝ
gν. The adjoint of the Radon transform A : M(Ĝ) → M(H) is prescribed by

∫

H
fA(ν) =

∫

Ĝ×H
f(z)ν({α, β})δ _

αβ
(z)(2.1)

for f ∈ Cc(H), z ∈ H and δ _
αβ

the measure for arc-length integration along the geodesic
_

αβ.

In particular the geodesic-indicator δ _
αβ

, a section of the trivial bundle Ĝ ×M(H) → Ĝ,

is the kernel for the integral representation of the adjoint A.
We will study the kernel δ _

αβ
on G ⊂ Ĝ the subspace of non vertical geodesics;

G ' {{α, β} | α, β ∈ R, α 6= β}. First we introduce alternate coordinates for G. A

non vertical geodesic is a Euclidean circle orthogonal to R. Set t = 2|β − α|−1, the
reciprocal radius, and x̂ = (α + β)/2, the abscissa of the center. We have in terms of the
(x̂, t)-coordinates that 2ω = |dt ∧ dx̂|. Define a function on R+ × R+ by

S(t, y) =





0 for ty ≥ 1

(y(1 − t2y2)1/2)−1 for ty < 1.
(2.2)

We are ready to consider the Fourier-Stieljes expansion for the kernel δ _
αβ

, a quantity on

G valued in positive measures on H. For Γ∞ the group of integer-translations denote the

sum
∑

γ∈Γ∞

δ
γ(

_
αβ)

by δ
Γ∞(

_
αβ)

.

Proposition 2.1 Notation as above. For z = x + iy ∈ H, (x̂, t) coordinates for G then
δ
Γ∞(

_
αβ)

= 2
∑
k

e2πik(x−x̂)S(t, y) cos(2πk(t−2 − y2)1/2)dxdy.

Proof. The matter is to describe the measure δ _
αβ

(z) in terms of the prescribed coordi-

nates. For a point (x, y) on the geodesic
_

αβ with coordinate (x̂, t) then (x− x̂)2 +y2 = t−2
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and the radius from the center (x̂, 0) to the point (x, y) has angle θ0 to the positive x-axis

with cos θ0 = sgn(x−x̂)(1−t2y2)1/2. Thus in terms of the parameter y on H the element of

hyperbolic arc-length along
_

αβ is simply ds = | sec θ0|y−1 |dy| = S(t, y)|dy|. Furthermore
the indicator measure of the geodesic is simply δ(x−x̂+(t−2−y2)1/2)+δ(x−x̂−(t−2−y2)1/2)
in terms of the one-dimensional Dirac delta. Thus from the Fourier-Stieljes expansion

δ(x − a) =
∑
k

e2πik(x−a)dx we find that
∑

γ∈Γ∞

δ _
αβ

(γz) =
∑
k

2e2πik(x−x̂)S(t, y) cos(2πk(t−2 −

y2)1/2)dxdy. The proof is complete.

2.3. We now show that certain products of Macdonald-Bessel functions converge to the
Fourier-Stieljes coefficients of the kernel δ

Γ∞(
_
αβ)

. Throughout our considerations we will

use the test function h(u) = 2au2e−au2
for a > 0. We write Kir(y)for the Macdonald-

Bessel function [31, Sec. 5.7] and start with an integral identity.

Lemma 2.2 Notation as above. For a > 0, r > 0, α > 0 and β ≥ 1 then
∫ ∞

0

Kir(βy)Kir(y)h(αy)y−1dy

= π cschπr

∫ ∞

0

e−Y 2/(4a) sin
(
r arccosh

(
1 +

P 2

2

))
(4 + P 2)−1/2 dP

dY
dY

where P 2 = (α2Y 2 + (β − 1)2)β−1.

Proof. We start with the standard formula [31, Chap.5 Prob. 7]

Kir(βy)Kir(y) =
π

2
cschπr

∫ ∞

logβ

J0(yQ1/2) sin rτdτ

for Q = 2β cosh τ − 1 − β2 and J0 the order zero Bessel function. Next multiply by
h(αy)y−1 and integrate to obtain

∫ ∞

0

Kir(βy)Kir(y)h(αy)y−1dy =

π

2
cschπr

∫ ∞

logβ

∫ ∞

0

J0(yQ1/2)h(αy)y−1dy sin rτdτ ;

(2.3)

the integrals are absolutely convergent since Q = βeτ + O(1) for τ large and J0(x) is

O(x−1/2) for x large positive. Now from the tables of Hankel transforms [12, pg.29(10)]

we have that

∫ ∞

0

J0(yQ1/2)h(αy)y−1dy = e−Q/(4aα2) and thus the integral on the right

hand side of (2.3) is

π

2
cschπr

∫ ∞

logβ

e−Q/(4aα2) sin rτdτ.(2.4)
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We next set α2Y 2 = Q and P 2 = (α2Y 2 + (β − 1)2)β−1 and observe that 1 + P 2

2
=

α2Y 2+β2+1
2β

= Q+β2+1
2β

= cosh τ . We accordingly have that τ = arccosh (1 + P 2

2
) and that

d arccosh (1+ u2

2
) = (4+u2)−1/2 2du. The desired integral results from (2.4) after a change

of variables, since for β ≥ 1, Q(τ ) is monotone on [log β,∞). The proof is complete.

The next matter is a simple identity for trigonometric integrals.

Lemma 2.3 For C positive then
∫ 1

0

cos(B(1 − Y 2)1/2)

Y (1 − Y 2)1/2
2CY 2e−CY 2

dY =

∫ ∞

0

e−X2/(4C) sin(X2 + B2)1/2

(X2 + B2)1/2
XdX.

Proof. We first consider the left hand integral and substitute the series representation

for the cosine and exponential to find the expansion for the integral
∞∑

p,q=0

(−1)p+q

(2p)!q!
B2pCq+12

∫ 1

0

Y 2q+1(1 − Y 2)p−1/2dY

where 2

∫ 1

0

Y 2q+1(1 − Y 2)p−1/2dY = B(q + 1, p +
1

2
) is the Euler beta function [15, Sec.

8.380]. Now for the right hand side we use the series representation of the sine function
to find

sin(X2 + B2)1/2

(X2 + B2)1/2
=

∞∑

m=0

(−1)m

(2m + 1)!
(X2 + B2)m

=
∞∑

m=0

(−1)m

(2m + 1)!

m∑

p=0

(
m

p

)
B2pX2m−2p =

∞∑

p=0

∞∑

m=p

(−1)m

(2m + 1)!

(
m

p

)
B2pX2m−2p

=
∞∑

p,q=0

(−1)p+q

(2p + 2q + 1)!

(
p + q

p

)
B2pX2q.

We evaluate the integral

∫ ∞

0

e−X2/(4C)X2q+1dX =
1

2
(4C)q+1q! and on substituting the

identity (2p + 2q +1)!p!B(q + 1, p + 1
2
) = (2p)!q!22q+1(p + q)! we have the desired equality

of the two expansions. The proof is complete.

We are now ready to present the integral formula relating products of Macdonald-
Bessel functions to the kernel δ _

αβ
.

Theorem 2.4 Notation as above. For h(y) = 2ay2e−ay2
, given t0, t1, k0 positive, for

n, r > 0 with 0 < t0 < t = 2πnr−1 < t1, 0 ≤ k ≤ k0, a > 0 and r large then

r sinhπr

∫ ∞

0

Kir(2π(n + k)y)Kir(2πny)h(y)y−1dy =

π

2

∫ t−1

0

cos(2πk(t−2 − y2)1/2)S(t, y)h(y)dy + O(r−2a2 + r−1a1/2)
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for a remainder constant depending on t0, t1 and k0.

Proof. We start with the left hand side. The integral equals

r sinhπr

∫ ∞

0

Kir((n + k)n−1y)Kir(y)h(y(2πn)−1)y−1dy

which by Lemma 2.2 is

rπ

∫ ∞

0

e−Y 2/(4a) sin(r arccosh (1 +
P 2

2
))(4 + P 2)−1/2 dP

dY
dY

for P 2 = (( Y
2πn

)2 +
(

k
n

)2

) n
n+k

. We consider the factors in the integrand. For t0 ≤ t =

2πnr−1 ≤ t1 then r2P 2 = t−2(Y 2 + (2πk)2)(1 + O(r−1)) and similarly r dP
dY

= t−1(Y 2 +

(2πk)2)−1/2Y (1 + O(r−1)). Furthermore arccosh (1 + P 2

2
) = P + O(P 3) for all positive

P and so sin(r arccosh (1 + P 2

2
)) = sin rP + O(rP 3) for all positive r and P . Finally we

have that (4+P 2)−1/2 = 1
2
+O(P 2) for all P . Gathering the expansions we have that the

original integral of Macdonald-Bessel functions is

π

2

∫ ∞

0

e−Y 2/(4a) sin(t−1(Y 2 + (2πk)2)1/2)(t(Y 2 + (2πk)2)1/2)−1Y dY

+O
( ∫ ∞

0

e−Y 2/(4a)(r2P 3 + rP 2 + 1)
dP

dY
dY

)
.

To analyze the remainder we use the coarse bounds that P is O((Y + 1)r−1) and dP
dY

is
O(r−1) valid for Y positive and t0 ≤ t ≤ t1. The remainder simplifies to the quantity

O(

∫ ∞

0

e−Y 2/(4a)(r−1Y 3 +1)r−1dY ), which is O(r−2a2 +r−1a1/2) by scaling considerations.

Now we invoke the identity from Lemma 2.3 with X = Y t−1, B = 2πkt−1 and C = at−2

to find for the principal term

π

2

∫ 1

0

cos(2πk(t−2 − Y 2t−2)1/2)(1 − Y 2)−1/2e−a(Y/t)22at−2Y dY.

The desired final integral results on substituting Y = yt. The proof is complete.

2.4. We are interested in a more detailed analysis of the large r behavior of the special
integral

I((4aα2)−1, r) = π−1r sinh πr

∫ ∞

0

Kir(y)2h(αy)y−1dy.

In the next chapter the refined analysis will be applied to the consideration of short-range

coefficient sums. From Lemma 2.2

I(A, r) = r

∫ ∞

0

e−AP 2

sin
(
r arccosh

(
1 +

P 2

2

))
(4 + P 2)−1/2dP.
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Set

G(u) = uF (u) = u e−u2

∫ u

0

ev2

dv

where F (z) = e−z2

∫ z

0

ev2

dv is the probability integral [31, Sec.2.3]. The function G(u)

is positive for u positive, O(u2) for u small, and satisfies G(u) = 1
2

+ O(u−1) for u large
positive (the method of [31, pg.20] can be used to establish the last expansion).

Lemma 2.5 Notation as above. Given A0 > 0 for A ≥ A0 and r ≥ 1 then for A1/2 ≤
r, I(A, r) = G(r(2A1/2)−1) + OA0 (A

1/2r−1) and given ε0 > 0 furthermore for A1/2 ≥ ε0r

then I(A, r) = G(r(2A1/2)−1) + OA0 ,ε0(A
−1).

Proof. For the first expansion we start with the integral and integrate by parts twice:
first with u = cos(r arccosh (1+ P 2

2
)), second with u = r−1 sin(r arccosh (1+ P 2

2
)) and then

change variables with A1/2P = Q. The resulting formula is

I(A, r) =
1

2
+

A1/2

2r

∫ ∞

0

sin
(
r arccosh

(
1 +

Q2

2A

))
d(e−Q2

Q(4 + Q2A−1)1/2).

We then note that for A ≥ A0, Q ≥ 0 it follows that 2 ≤ (4 + Q2A−1)1/2 ≤ 2 + QA
−1/2
0

and that | d
dQ

(4 + Q2A−1)1/2| ≤ QA−1
0 . It follows that the above integral is dominated by∫ ∞

0

e−Q2

(1 + Q3)dQ, which is finite. The expression for the integral I and the expansion

for the function G now give I(A, r) = G(r(2A1/2)−1) + O(A1/2r−1) for the first specified
range.

For the second expansion we start with a change of variables for the integral:
for Q2 = AP 2 then

I(A, r) =
r

A1/2

∫ ∞

0

e−Q2

sin
(
r arccosh

(
1 +

Q2

2A

))
(4 +

Q2

A
)−1/2dQ.

Now we have that arccosh (1 + P 2

2
) = P + O(P 3) for all positive P and thus for A1/2 ≥

ε0r ≥ ε0 > 0 that

r arccosh (1 +
Q2

2A
) = rA−1/2Q + O(rQ3A−3/2) = rA−1/2Q + O(A−1Q3).

We also have the coarse bound that

2(4 + Q2A−1)−1/2 − 1 is O(A−1Q2).

Combining expansions it follows that

I(A, r) = r(2A1/2)−1

∫ ∞

0

e−Q2

sin(rQA−1/2)dQ + O(A−1

∫ ∞

0

e−Q2(Q2 + Q3)dQ).
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The explicit integral is tabulated as

r2(4A)−1
1F1(1,

3

2
;−r2(4A)−1) = r(2A1/2)−1F (r(2A1/2)−1).

[13, pg.73(18) and pg.373], [31, formulas (9.9.1) and (9.13.3)]. The remainder integral is

finite and the proof is complete.

3 Measures from Fourier coefficients and sums of

Macdonald-Bessel functions
3.1. Our plan is to express the square of an automorphic eigenfunction as an integral over
the space of geodesics. We use Fejér summation to define a family of positive measures
from the Fourier coefficients of an eigenfunction. Quadratic expressions in the eigenfunc-

tions are then represented as integrals of the measures. In Section 3.2 we introduce the
measures, establish their uniform boundedness and consider their basic properties. In
the next section we consider sums of the relation given in Theorem 2.4, sums of prod-
ucts of Macdonald-Bessel functions. Our goal is to find the limits of sums of products.

Only the basic sum-square bound is available for the Fourier coefficients; to be able to
interchange the spectral and summation limit a detailed analysis of the contribution of
the Macdonald-Bessel functions is required. In Theorems 3.5 and 3.6 a high-energy limit
of eigenfunction squares is presented as the integral of the geodesic-indicator and a limit

of the constructed measures. In Corollary 3.7 we find that the high-energy limit is the
adjoint Radon transform of the limit of the constructed measures. In the final section we
use our formulation to show that the adjoint Radon transform is invertible for translation
invariant measures.

3.2. Our plan is to construct and analyze measures describing the concentration prop-

erties of automorphic eigenfunctions. Let Γ ⊂ SL(2; R) be a cofinite group with a width-
one cusp at infinity. We consider Γ-invariant eigenfunctions of the hyperbolic Laplace-
Beltrami operator with finite L2(Γ\H) norm [42, 45]. For Dϕ+λϕ = 0, λ = (1

4
+r2) > 1

4
,

ϕ has the Fourier expansion

ϕ(z) =
∑

n

an(y sinhπr)1/2Kir(2π|n|y)e2πinx(3.1)

for z = x + iy, a0 = 0, and the Macdonald-Bessel function (note the normalization of the
Fourier coefficients). We start with a bound for the Fourier coefficients

M∑

n=1

|an|2 ≤ CΓ‖ϕ‖2
2(M + r), [47](3.2)

(the bound is a slight improvement of the Deshouillers-Iwaniec bound [11]).
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Our constructions will involve the Fejér kernel, [28]. Recall that

2N∑

k=−2N

(
1 − |k|

2N + 1

)
Xk =

1

2N + 1
(X−N + · · · + XN )2(3.3)

and in particular the Fejér kernel is simply

FN =
2N∑

k=−2N

(
1 − |k|

2N + 1

)
e2πikx̂.

FN is positive and defines an operator by convolution on function spaces associated to
R, [28]. Convolution with FN converges to the identity as N tends to infinity for Cper(R)

and L1
per(R), the spaces of continuous and integrable one-periodic functions. Convolution

with FN is also a formally self-adjoint operator.
We now give function space constructions of quantities from the Fourier coeffi-

cient sequence {an}n∈Z of an eigenfunction ϕ, normalized by ‖ϕ‖2 = 1.

Definition 3.1 For an eigenfunction ϕ, with eigenvalue λ = 1
4

+ r2, r positive, (x̂, t)
coordinates on R × R, ∆t = 2πr−1, set

χϕ(x̂, t) =
{
ane

2πinx̂, (n − 1)∆t ≤ t < n∆t

furthermore for (x̂, t) coordinates on G set

σϕ,N = (2N + 1)−1π
N∑

j,k=−N

∑

ε=±1

χϕ(x̂, εt + j∆t)χϕ(x̂, εt + k∆t)

Φϕ,k(t) = π
∑

|n|≤rt(2π)−1

an+kanr
−1

(note a0 = 0) and for the Lebesgue-Stieljes derivative dΦϕ,k set

µϕ =
∑

k

dΦk(t)e
2πikx̂.

Comments and observations are in order. The quantity χϕ is akin to a proba-
bility amplitude associated to the state ϕ. For g ∈ Cc(R+) the one-dimensional integral∫

R+

gσϕ,N in t already has the form 〈Opgϕ,ϕ〉 for a self-adjoint operator, since σϕ,N is

a sum of Hermitian squares of (2N + 1)−1/2π1/2
∑

j χϕ(x̂, t + j∆t). In Section 4.4 we
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will find that the matrix elements 〈Opgϕ,ϕ〉 give the probability for observing classical

trajectories. The quantities χϕ and µϕ are x̂ → x̂ + 1 invariant; σϕ,N is a Fejér sum of
χϕ and satisfies σϕ,N ≥ 0. From (3.2) the L2-norm of χϕ on {0 ≤ x̂ ≤ 1, 0 ≤ t ≤ t0} is
bounded by CΓ(t0 + 1)1/2 and similarly |Φk(t)| is bounded by CΓ(t2 + t(|k|+2) +1)1/2. It

follows that µϕ is at least a tempered distribution for C2
per,c(G), the space of one-periodic,

compactly supported, twice-differentiable functions on G (f ∈ C2
per,c(G) has a Fourier

expansion
∑

k

fk(t)e
2πikx̂ with |fk(t)| ≤ C‖f‖(|k|+ 1)−2). The distribution µϕ represents

an elementary type of microlocalization of the eigenfunction square; µϕ encodes the con-

centration and oscillation properties of the eigenfunction. Quadratic expressions in ϕ are
integrals of µϕ.

Our analysis will require an appropriately convergent sequence of eigenfunctions.

Definition 3.2 For dA the hyperbolic area element a normalized sequence of eigenfunc-

tions {ϕj} with eigenvalues tending to infinity is ∗-convergent provided ϕ2
jdA converges

weak* relative to Cc(Γ\H) and provided for each k the Lebesgue-Stieljes derivatives dΦϕj,k

converge weak* relative to the continuous functions for each closed subinterval of [0,∞).

Note that by weak* compactness of the unit ball of measures and diagonal-

ization, a normalized sequence of eigenfunctions has a ∗-convergent subsequence. Weak*
convergence of measures on G will be considered relative to the system of spaces Cper,t0(G),
all positive t0, of continuous one-periodic functions with support contained in {(x̂, t) | 0 <
t ≤ t0}.

Proposition 3.3 Notation as above. For {ϕj} a ∗-convergent sequence then lim
j

σϕj ,N =

FN ∗ lim
j

µϕj relative to each Cper,t0(G) and in particular each lim
j

µϕj is a positive measure

on G with ‖ lim
j

µϕj‖ bounded by C(t0 + 1).

Proof. The basis of the considerations is the Fourier series expansion of a function in
Cper(G). Functions with finite Fourier expansions in x̂ are dense in Cper(G). Accordingly

measures of uniformly bounded mass converge weak* provided their sequences of Fourier-
Stieljes coefficients weak* converge. Each measure σϕ,N is positive and thus has its mass
given by its zeroth coefficient which has integral bounded by Φϕ,0(t + N∆t), which by

(3.2) is bounded by C(t + 1 + N∆t). Since as j tends to infinity, r tends to infinity and
∆t tends to zero, we have for g ∈ Cc(R+) that

lim
j

∫ ∑

ε=±1

χϕj(x̂, εt + (k + m)∆t)χϕj(x̂, εt + m∆t)g(t)e−2πikx̂dx̂dt

= lim
j

∫ ∑

ε=±1

χϕj(x̂, εt + k∆t)χϕj(x̂, εt)g̃(t − m∆t)e−2πikx̂dx̂dt

=

∫
g(t)dΦϕj,k

(t)
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since g̃(t−m∆t) tends to g(t) in Cc(R+), where g̃(τ ) is defined as g(0) for τ < 0 and g(τ )

for τ ≥ 0. The first conclusion follows and furthermore that FN ∗ lim
j

µϕj is a positive

measure with mass bounded in terms of C(t0 +1). It also follows that lim
j

µϕj is a positive

measure with mass bounded in terms of C(t0 + 1). The proof is complete.

3.3. We continue our preparations, introduce test functions and consider automorphic
integrals. Let Γ∞ ⊂ Γ be the stabilizer of the width-one cusp at infinity.

Definition 3.4 For z = x + iy ∈ H and k an integer set

hk(z) = 2ay2e−ay2−2πikx and Hk(z) =
∑

γ∈Γ∞\Γ

hk(γz).

We now review certain basic bounds for incomplete theta series. Recall first that
the Γ∞\Γ translates of a point intersect the horoball B = {z | Im z ≥ 1} at most once.

Recall also the truncation at height-one of the Eisenstein series E1(z; 2), [7]; the function
E1(z; 2) vanishes at each cusp. From the observation that h(y) ≤ 2ay2 for 0 < a ≤ 1 it
follows that H0(z) ≤ 2aE1(z; 2), provided (Γ∞\Γ)z ∩ B = ∅ and H0(z) ≤ 2aE1(z; 2) +
h(Im z∞), provided (Γ∞\Γ)z ∩B = {z∞}. Basic bounds for |Hk(z)| ≤ |H0(z)| now follow:

the restriction of Hk(z) to a compact set is bounded by a multiple of a, 0 < a ≤ 1; for
a fixed Hk(z) tends to zero as z tends to a cusp; also Hk(z) is uniformly bounded for
0 < a ≤ 1.

We begin our consideration of the ∗-convergent limit by analyzing the zeroth
coefficients. Let ν (a non negative tempered distribution on (0,∞)) be the zeroth Fourier-
Stieljes coefficient of the lift to H of the Cc(Γ\H) weak∗ limit lim

j
ϕ2

jdA and let σ (a non

negative tempered distribution on [0,∞) with possibly σ({0}) > 0) be the weak∗ limit

lim
j

dΦϕj,0 on each closed subset of [0,∞).

Theorem 3.5 With the above notation.
∫ ∞

0

h(y)ν(y) =

∫ ∞

0

G(a1/2t−1)σ(t)

Proof. We must show that sequences of integrands have uniform majorants and that
integrals converge. We begin with

J (α) =

∫

0≤x≤1
0<y≤α

hϕ2dA z = x + iy,

which can be integrated by parts for u = h and

v(y0) =

∫
0≤x≤1
y0≤y

ϕ2dA.
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The integral v is bounded as v(y0) ≤ ‖ϕ‖2
2V(y0) for V the counting function for translates

of a standard fundamental domain intersecting {z | 0 ≤ x ≤ 1, y0 ≤ y}. The counting
function V(y0) is bounded by a multiple of (y−1

0 + 1), [47]. We accordingly have that

J (α) = hv |0α +

∫ α

0

vh′dy0 is uniformly bounded by a multiple of α. Now from the

uniform bound for J (α) and the convergence of ϕ2
jdA on compact sets it follows that∫

hϕ2
jdA limits to

∫
hν.

Next consider

∫ ∞

t0

G(a1/2t−1)dΦϕ,0(t) for G as introduced in Section 2.4 and

integrate by parts to find the resulting integral

∫ ∞

t0

(Φϕ,0(t)−Φϕ,0(t0))G
′(a1/2t−1)a1/2t−2dt.

Since 0 ≤ Φϕ,0(t) − Φϕ,0(t0) ≤ Φϕ,0(t) ≤ C(t + 1) for t ≥ t0 from (3.2) and G′(u) is O(u)
for u small, it follows that the last integral is uniformly bounded by a multiple of t−1

0 .

The convergence of

∫
GdΦϕj now follows from the pointwise convergence of Φϕj .

We are ready to consider the equality of the integrals. We start with

∫

Γ∞\H
ϕ2hdA =

π
∑

n

|an|2r−1I((2πn)2/4a, r); the equation follows from Lemma 2.2 and the definition of

I given in Section 2.4. The large-r expansion of I is given in Lemma 2.5 for t = 2π|n|r−1,
A = (2πn)2/4a as I((2πn)2/4a, r) = G(a1/2t−1) +R(n, r, a) where the remainder is Oa(t)
for t ≤ a1/2 and given t0 positive the remainder is Oa,t0(n

−2) for t ≥ t0. We will now show

that the remainder sum
∑

n

|an|2r−1R tends to zero as r tends to infinity with a fixed.

First note from the basic bound (3.2) that
∑

1≤n≤M

|an|2r−1 is bounded for 2πMr−1 bounded.

Since the remainder R is Oa(2πnr−1) for 2πnr−1 ≤ a1/2 it follows that
∑

1≤n≤M

|an|2r−1|R|

is bounded by a multiple of t0 provided that 2πMr−1 ≤ t0 ≤ a1/2, a suitable bound for
the initial sum. For the tail sum observe that R is Oa,t0(n

−2) for n ≥ M0 = rt0(2π)−1 and

thus
∑

M0<n

|an|2r−1|R| is majorized by
∑

M0<n

|an|2n−2r−1. The last sum can be evaluated

by parts with U(m) =
∑

M0<n≤m

|an|2r−1, v(m) = m−2 and bounded using (3.2) to note

that |U(m)| ≤ C(mr−1 + 1). The resulting bound is by a multiple of M−2
0 which in turn

is bounded by a multiple of r−2, a suitable bound for the tail sum. The remainder sum

tends to zero as r tends to infinity. The desired equality of integrals is now a consequence

of the ∗-convergence, the existence of uniform majorants and the expansion for

∫
ϕ2hdA.

The proof is complete.
We are ready to consider the adjoint Radon transform relation between the two

positive measures Ω = lim
j

ϕ2
jdA and µlimit = lim

j
µϕj . We use the characterization of the
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transform given by formula (2.1).

Theorem 3.6 Notation as above. For σ the limit lim
j

dΦj,0 on [0,∞) then σ({0}) = 0.

For z = x + iy ∈ H, k an integer, a positive and hk(z) = 2ay2e−ay2−2πikx then

4

∫

Γ∞\H
hkΩ =

∫

Γ∞\H×Γ∞\G
hkδ

Γ∞(
_
αβ)

µlimit

Proof. The basic matter is to show for the test function hk that

4

∫

Γ∞\H
hk lim

j
ϕ2

jdA =

∫

Γ∞\H×Γ∞\G
hkδ

Γ∞(
_
αβ)

lim
j

dΦϕj,k
e2πikx̂(3.4)

Majorants for the sequences of integrands are obtained from the following simple observa-
tions: 2|anam| ≤ |an|2 + |am|2, 2|Kir(2π|n|y)Kir(2π|m|y)| ≤ Kir(2π|n|y)2 + Kir(2π|m|y)2

and from Proposition 2.1 that the absolute-value of the kth Fourier-Stieljes coefficient
of the kernel δ

Γ∞(
_
αβ)

is bounded by the 0th Fourier-Stieljes coefficient. As the first step

of the proof we wish to show that given 0 < t0 < t1 the combined contribution to
(3.4) from the Fourier coefficients an+ka−n with either 2π|n|r−1 ≤ t0 or 2π|n|r−1 ≥ t1
is bounded by o(1). We start with the left hand side. From the above observations
the contribution is bounded by the contribution considered in Theorem 3.5 from the
products |am|2, |m| ≤ rt0(2π)−1 + |k| and |m| ≥ rt1(2π)−1 − |k|. Theorem 3.5 can be
applied for the restricted range of m (the contribution for all m serves as a majorant).

The resulting contribution is simple

∫

[0,t0]∪[t1,∞)

G(a1/2t−1)σ(t). Now for the right hand

side the contribution is similarly bounded by the contribution of the restricted m range
with the zeroth Fourier-Stieljes coefficient of δ

Γ∞(
_
αβ)

. From Proposition 2.1, Lemma 2.3

and the citation of explicit integrals in the proof of Lemma 2.5 the bounding integral
is again

∫
[0,t0]∪[t1,∞)

G(a1/2t−1)σ(t). Now suitable bounds for G and σ were provided in

Theorem 3.5. For t1 large positive

∫ ∞

t1

G(a1/2t−1)σ(t) is O(t−1
1 ) and for t0 small positive

2

∫ t0

0

G(a1/2t−1)σ(t) = σ({0}) + O(t0) (see Section 2.4). Since G and σ are positive it

follows from Theorem 3.5 that σ({0}) ≤ 2

∫

Γ∞\H
H0Ω for all a; as noted for a tending

to zero then H0 is uniformly bounded and tends to zero on compact sets. The integral∫

Γ∞\H
Ω is finite by Fatou’s lemma and so it follows that σ({0}) = 0 and consequently

that the combined t-tail contribution to (3.4) is small. For t in the restricted interval
(t0, t1) the resulting contributions to (3.4) coincide by Proposition 2.1 and Theorem 2.4.
The relation (3.4) is established. From the definition of the measure µlimit the right hand

integrand can be replaced with hkδ _
αβ

µlimit. The proof is complete.
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Let Cy1+εe−εy(Γ∞\H) for ε positive denote the space of continuous functions

bounded by a multiple of y1+εe−εy. We are ready to present the formula for the high-
energy limit of eigenfunction squares.

Corollary 3.7 With the above notation

4Ω =

∫

Γ∞\G
δ
Γ∞(

_
αβ)

µlimit =

∫

G
δ _
αβ

µlimit

in the sense of Cy1+εe−εy(Γ∞\H) tempered distributions.

Proof. The matter is reduced to the equality of Fourier-Stieljes coefficients provided the

first two quantities are tempered distributions. We first consider Ω. The incomplete theta
series (the sum over Γ∞\Γ) is an operator from Cy1+εe−εy (Γ∞\H) to C0(Γ\H) and thus
since the integrals ‖ϕj‖2 are normalized it follows that Ω is tempered. By Proposition 3.3
the second quantity is a positive distribution and so it suffices to consider the pairing

of a test function and the zeroth coefficient

∫ ∞

0

y1+εe−εy(δ
Γ∞(

_
αβ)

)0. The pairing (see

Proposition 2.1) is bounded for t small and is O(t−1−ε) for t large, t the parameter for
_

αβ. It now follows from (3.2) that

∫

Γ∞\G
δ
Γ∞(

_
αβ)

µlimit is tempered.

We will use the approximation that linear combinations of y1−εeεy−ay2
for pos-

itive values of a are dense in C0(R+) ⊂ C([0,∞]). For this assertion consider a Borel
measure ν on [0,∞] with finite total mass that is orthogonal to each y1−εeεy−ay2

; since

a test function is positive it follows that

∫
y1−εeεy−ay2

ν+ =

∫
y1−εeεy−ay2

ν−. The in-

tegrals are the Laplace transforms of the positive measures y1−εeεyν± in the variable
y2. Positive measures are uniquely determined by their Laplace transforms [46]; con-

sequently ν is trivial and linear combinations of y1−εeεy−ay2
are dense in C0(R+). Now

for g ∈ Cy1+2εe−2εy (R+) linear combinations of y−1−εeεyh(y) for different values of a uni-
formly approximate y−1−εeεyg(y) in C0(R+). Equivalently linear combinations of h(y)
approximate g(y) with bounds in terms of y1+εe−εy. The linear combinations of h suit-

ably approximate g and the first equality of tempered distributions consequently follows
from Theorem 3.6. The second equality is provided by unfolding. The proof is complete.

3.4. We have in particular found that the zeroth Fourier-Stieljes coefficient of a Cc(H)
weak∗ limit lim

j
ϕ2

jdA is the adjoint Radon transform of the Cc(G) weak∗ limit lim
j

dΦϕj,0 .

In the general setting the Radon transform is not surjective and hence the adjoint is not
injective, [22]. For the sake of independent interest we show that the adjoint is injective
for translation invariant positive measures. The first matter is a formula for the Laplace
transform of G.

The error function is defined as Erf(u) = 2π−1/2

∫ u

0

e−v2

dv [13, pg.387]. The

Laplace transform of the error function is given as
∫ ∞

0

e−sae−at−2

Erf(ia1/2t−1)da = its−1/2(t2s + 1)−1 for s, t > 0 [13, pg.176(5)]
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(the current s, a and t correspond respectively to p, t and ia−1/2 in the Bateman man-

uscript). From the relation G(u) = π1/2(2i)−1ue−u2
Erf(iu) the formula for the Laplace

transform of G follows
∫ ∞

0

e−saa−1/2G(a1/2t−1) da = π1/2(2s1/2(t2s + 1))−1 for t, s > 0.(3.5)

We are ready to show that certain positive measures are determined by their

G-transforms. Let Msub1((0,∞)) be the cone of positive measures ν on (0,∞) with

cumulative distribution functions Υ(t) =

∫ t

0

ν being O(t) for t large. The bound (3.2)

and considerations in the proof of Theorem 3.6 provide that the particular measures
σ = µlimit,0 are elements of Msub1((0,∞)). An integration by parts and the bound that

G′(u) is O(u) for u small are combined to show that the G-transform

∫
G(a1/2t−1)ν(t) is

finite for ν in Msub1((0,∞)). A similar analysis provides that the G-transform is O(a1/2)

for a large. From (3.5) we have a formula for the Laplace transform of ω ∈ Msub1((0,∞))

∫ ∞

0

∫ ∞

0

e−saa−1/2G(a1/2t−1)ω(t) da = π1/2

∫ ∞

0

(2s1/2(t2s + 1))−1ω(t)(3.6)

convergent for all positive s.

Proposition 3.8 Notation as above. The elements of Msub1((0,∞)) are uniquely deter-
mined by their G-transforms.

Proof. Observe that s1/2(t2s + 1) = s3/2(τ + s−1) for τ = t2 and thus (3.6) (modulo
the factor of π1/2s−3/2) is the Stieljes transform in s−1 of ω(

√
τ ), [46, Chap.VIII]. Positive

measures on (0,∞) with convergent Stieljes transforms are uniquely determined by their
transforms [46, Chap.VIII, Theorem 5b]. The proof is complete.

Widder also provides an inversion formula for the Stieljes transform [46, Chap.VIII,
Theorem 10a]. The inversion is given as a limit of indefinite integrals of increasing order

differential expressions in the Stieljes transform.

4 The Macdonald-Bessel microlocal lift and the

geodesic-indicator measure
4.1. We introduce the formalism for the microlocal lift of the Macdonald-Bessel functions
and develop the analysis to consider automorphic eigenfunctions. The foundation for the
analysis is the norm of the raisings and lowerings of the Macdonald-Bessel functions.
An exact norm formula is presented in Lemma 4.3 with further bounds presented in

Lemma 4.4. The bounds are necessary to analyze the microlocal lift of an automorphic
eigenfunction in terms of its Fourier series expansion. In Section 4.3 the bounds are also
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used to show that the Macdonald-Bessel microlocal lifts are uniformly bounded tempered

distributions. We present the Zelditch equation for a general microlocal lift in Lemma 4.7.
In Lemma 4.8 and Theorem 4.9 the Zelditch equation, certain bounds and integration by
parts are combined to establish the approximation of the Macdonald-Bessel microlocal

lifts to the geodesic-indicator on SL(2; R). The approximation is uniform for a parameter
range and large eigenvalues. The consideration of automorphic eigenfunctions is taken up
in Section 4.4. The main result

Qlimit =
π

8

∫

G
∆ _

αβ
µlimit

is developed in Theorem 4.11. First consequences are presented in Corollary 4.12 and the
connection to coefficient sums Sϕ is presented in Corollary 4.13. In the final section we use
Zelditch’s result to study congruence subgroups. We first determine the spectral average

of coefficient sums. Then we compare the result that a full-spectral-density sequence of
modular eigenfunctions microlocally converges to a constant [52] and the residue formula
for the Rankin-Selberg convolution L-function.

4.2. We review the formalism for SL(2; R), [30]. An element B ∈ SL(2; R) has the
unique Iwasawa decomposition

B =

(
a b
c d

)
=

(
1 x
0 1

)(
y1/2 0
0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)

which provides for an equivalence of SL(2; R) with S∗(H)1/2 the square root of the unit
cotangent bundle to the upper half plane by the rule

x + iy = y1/2eiθ(ai + b), y−1/2eiθ = d − ic

for z = x + iy ∈ H and θ the argument for the root cotangent vector measured from the
positive vertical. The equivalence will play a basic role throughout the chapter. The bi-

invariant volume form (Haar measure) for SL(2; R) is dV = y−2dxdydθ. The Lie algebra
acts on the right of SL(2; R) with

H =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
, W =

(
0 1
−1 0

)
, X =

(
0 1
0 0

)
and E± = H ± iV.

The infinitesimal generator of geodesic-flow is H = 1
2
(E+ + E−); W is the infinitesimal

generator of K, the fiber rotations of S∗(H)1/2.

A function u on H satisfying the differential equation Du + (1
4

+ r2)u = 0 lifts
to a K-invariant function on SL(2; R) satisfying Cu = (2ir + 1)(2ir− 1)u for the Casimir
operator C = E−E+−W 2−2iW . The Casimir operator is in the center of the enveloping

algebra. A ladder of functions, the raisings and lowerings of u, is determined by the
scheme

u0 = u
(2ir + 2m + 1)u2m+2 = E+u2m

(2ir − 2m + 1)u2m−2 = E−u2m

(4.1)
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for m integral. The function u2m is in the weight 2m irreducible representation for K

as demonstrated by Wu2m = i2m u2m. The sum u∞ =
∑

m

u2m is a distribution that is

N -invariant and an eigendistribution of H [50, pg.44;][49, Prop. 2.2].

Elements of the Lie algebra sl(2; R) preserve the volume form and can be in-
tegrated by parts. In particular consider B in the Lie algebra with corresponding flow
on Γ∞\SL(2; R) either periodic, or with forward and backward flows converging to the

one-point-compactification infinity. Examples of such elements are H,V and X. The

resulting integral

∫

Γ∞\SL(2;R)

BκdV vanishes for smooth functions κ vanishing at the one-

point infinity with |Bκ| integrable. The vanishing of the integral is the consequence of
the Fundamental Theorem of Calculus applied along the trajectories of the flow.

We will consider Γ∞-invariant solutions u, v of the equation Cu = (2ir+1)(2ir−
1)u and a smooth function χ. Provided the product κ = u2jv2kχ vanishes at infinity and
|E+(u2jv2kχ)| is integrable we have the relation

0 =

∫

Γ∞\SL(2;R)

((E+u2j)v2kχ + u2jE−v2k)χ + u2jv2kE
+χdV.(4.2)

In terms of the coordinates (x, y, θ) for SL(2; R) the operator E+ is simply E+ = 4iye2iθ ∂
∂z
−

ie2iθ ∂
∂θ

and the operator X is simply y cos 2θ ∂
∂x

+ y sin 2θ ∂
∂y

+ y sin2 θ ∂
∂θ

, [30].
We are ready to study the normalized Macdonald-Bessel solutions for the equa-

tion Cu = (2ir + 1)(2ir − 1)u.

Definition 4.1 For r ∈ R, n ∈ Z, t = 2πnr−1 and z = x + iy ∈ H set

K(z, t) = (ry sinhπr)1/2Kir(2π|n|y)e2πinx.

To investigate the integrals of K we introduce a pairing and semi-norm. For
suitable functions f and g on SL(2; R) define

〈f, g〉\ =

∫ ∞

0

f(z, θ)g(z, θ)y−1dy and ‖f‖\ = 〈f, f〉1/2
\ .

As a preparatory matter to considering ‖K‖\ we recall that
(
y d

dy

)k

(y1/2Kir(y)) is O(y1/2)

at zero and O(e(ε−1)y) at infinity for each positive ε and integer k. To establish the

vanishing first note that the product y1/2Kν (y) is given as Re y1/2+νf(y) for an entire
function f , [31]. The function yµ is an eigenfunction of the operator y d

dy
; the vanishing at

the origin follows from the two observations. Now for z large the function (2zπ−1)1/2Kν(z)
has the asymptotic expansion e−z(1 + O(|z|−1)) in a sector about the positive real-axis,
[31]. From the Cauchy estimates it follows that |(y1/2Kν(y))(j)| is O(e(ε−1)y) for each
integer j, positive ε and appropriate constants. The vanishing of (y d

dy
)k(y1/2Kir(y)) at

infinity is a consequence.
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Lemma 4.2 Notation as above. 〈K2m,K2m+2〉\ = (2ir − 2m − 1)−1|t−1r|πe−2iθ.

Proof. We proceed by induction and first consider m = 0. For K = f(y)e2πinx then
E+K = e2iθ2iy((2πin)f(y)− if ′(y))e2πinx and

〈K,K2〉\ = e−2iθ(−2ir + 1)−1

∫ ∞

0

((−4πn)f2(y) +
d

dy
f2(y))dy

with f vanishing at zero and infinity. The first integrand has a tabulated integral which
gives the desired expression [12, (49) Sec. 10.3 ], [15, 4. Sec. 6.576]. The second

integrand has a vanishing integral. We next establish a recursion. The product K2mK2m

is a function of y alone and as such E− acts simply as 2ye−2iθ d
dy

and since K2m vanishes at

zero and infinity then the integral

∫ ∞

0

y−1E−(K2mK2m)dy vanishes. Now E−(K2mK2m) =

(2ir−2m+1)K2m−2K2m+(−2ir+2m+1)K2mK2m+2 and thus (2ir−2m+1)〈K2m−2,K2m〉\ =
(2ir − 2m − 1)〈K2m,K2m+2〉\. The induction step follows. The proof is complete.

Lemma 4.3 Notation as above.

‖K2m‖2
\ =

|m|∑

k=1

2|t−1r|πsgn(m)

(2k − 1)2 + 4r2
+

π2

4
|t−1 tanh πr|

and in particular for |r| ≥ 1 then ‖K2m‖2
\ ≤ 6|t|−1.

Proof. For m = 0 the integral is tabulated as already noted. We next derive a recur-

sion relation. From y−1E+(e−2iθf(y)) = −2y−1f(y) + 2 d
dy

f(y) and the vanishing at zero

and infinity we have the formula that

∫ ∞

0

E+(K2mK2m+2)y
−1dy = −2e2iθ〈K2m,K2m+2〉\.

On the other hand expanding the derivative E+(K2mK2m+2) and substituting gives the

relation 2e2iθ〈K2m,K2m+2〉\ = (2ir + 2m + 1)(‖K2m‖2
\ −‖K2m+2‖2

\ ). Lemma 4.2 now com-
bines with the relation to provide the induction to establish the formula for ‖K2m‖2

\ . The
resulting sum is bounded by an integral comparison. The proof is complete.

Our considerations will require further majorants for the integral of K2m(z, t).

Lemma 4.4 Notation as above. For σ positive and m an integer the integral∫

Γ0\SL(2;R)

y2e−σyK2mK2mdV is bounded independent of t and |r| ≥ 1. For σ negative, t0

positive and m an integer the integral

∫

Γ0\SL(2;R)

y2e−σyK2mK2mdV is bounded independent

of |t| ≥ t0 and |r| large.

Proof. First consider the cases for σ positive and negative with m = 0. We start with
the basic formula [31, Chap.4 Prob.7] to find

2 sinh πr

∫ ∞

0

e−σyyKir(2π|n|y)2dy = π

∫ ∞

0

∫ ∞

0

e−σyyJ0(4π|n|y sinh τ/2) sin rτdτdy.
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The right hand side is absolutely convergent and so the Laplace transform [15, pg.712,

6.621,4] can be applied to obtain

π

∫ ∞

0

σ(σ2 + (4πn sinh τ/2)2)−3/2 sin rτdτ.

Now we integrate by parts with v = r−1 cos rτ and u = σ(σ2 +(4πn sinh τ/2)2)−3/2. Since

u(0) = σ−2 and u vanishes at infinity the result is the quantity πr−1σ−2+πr−1

∫ ∞

0

cos rτ
du

dτ
dτ .

Since u(τ ) is decreasing and vanishes at infinity the last integral is bounded by u(0). In

particular given σ positive the integral

∫
e−σyKKdy is bounded independent of t and

r ≥ 1. The integral bound for σ negative will be based on the WKB-asymptotics for

the Macdonald-Bessel functions. From Section 2.4 esp. Theorem 2.2 and Lemma 2.3 of
[47] we have for λ = 1

4
+ r2, Y = Lλ−1/2y, L, y > 0 and ζ(Y ) the analytic solution of

ζ
(

dζ
dY

)2
= (1 − Y −2) the bound

(y sinh π|r|)Kir(Ly)2 ≤ CL−1

{
Y (1 − Y )−1/2 , Y ≤ 1

(1 − Y −1)−1/2e−4/3λ1/2ζ3/2
, Y ≥ 1.

The bound follows from the cited theorem and the given bounds |Ai(µ)|, |ME(µ)| and
|µ−1/2(Ai′(µ) − Ai′(0))| ≤ C|µ|−1/4 for µ < 0; |Ai(µ)|, |ME(µ)| and |µ−1/2(Ai′(µ) −
Ai′(0))| ≤ C|µ|−1/4e−2/3µ3/2

for µ > 0 and |B0(µ)| ≤ C(1 + |µ|)−2, [47]. From the
reference for Y large positive 2

3
(ζ(Y ))3/2 = Y − π

2
+ O(Y −1) with ζ(Y ) increasing and

thus given ε positive there exists Y0 > 1 such that e−2/3λ1/2ζ3/2
is bounded by unity for

1 ≤ Y ≤ Y0 and by e−λ1/2(2−ε)Y for Y ≥ Y0. We have for |t| ≥ t0 that K2dy is bounded by
CY (1− Y )−1/2dY for Y ≤ Y0 and Ce−λ1/2(2−ε)Y dY for Y ≥ Y0. Since y = λ1/2L−1Y with

L = 2π|n|, λ1/2L−1 ≤ t−1
0 it follows that

∫
e−σyK2dy is bounded independent of r large

for σ negative. The bounds for m = 0 now follow.

We proceed by induction and assume that I(m,σ) =

∫

Γ0\SL(2;R)

y2e−σyK2mK2mdV

is suitably bounded for a particular m. From the preparatory discussion for Lemma 4.2
each normalized derivative K2k is O(e(ε−1)|t|ry) at infinity and thus each I(k, σ) is con-

vergent for r large. We start with

∫

Γ0\SL(2;R)

y2e−σy(E−E+K2m)K2mdV and integrate by

parts to find the expression

2e−2iθ

∫

Γ0\SL(2;R)

y2e−σy(yσ − 2)E+K2mK2mdV −
∫

Γ0\SL(2;R)

y2e−σyE+K2mE+K2mdV.

The first resulting integral from Hölder’s inequality is bounded by Cε|2ir + 2m + 1|(|σ|+
1)I(m + 1, σ)1/2I(m,σ − ε)1/2. From (4.1) the second resulting integral is simply |2ir +
2m+1|2I(m+1, σ). Now from the Casimir equation we have (E−E+ +4m2 +4m)K2m =

−(4r2 +1)K2m and thus the integration by parts can be recast as an approximate relation
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|2ir+2m+1|2|I(m,σ)−I(m+1, σ)| ≤ Cε|2ir+2m+1|(|σ|+1)I(m+1, σ)1/2I(m,σ−ε)1/2.

It follows that I(m + 1, σ) is bounded for σ positive independent of t and |r| ≥ 1 and for
σ negative independent of |t| ≥ t0 and |r| large. The proof is complete.

4.3. We are ready to prescribe the microlocal lift of the Macdonald-Bessel functions to
SL(2; R). The construction is motivated by S. Helgason’s eigenfunction representation
theorem [21, 35] and is based on the ladder of raisings and lowerings [50, Sec.1] [52,
Sec.1]. The analysis will be based on the double Fourier-Stieljes expansion for quantities

on SL(2; R) : Γ∞\N will act on the left and K will act on the right (Γ∞ is the group of
integer translations and N the full group of translations).

Definition 4.5 For j, k, n ∈ Z, r ∈ R and z ∈ H let t = 2πnr−1, ∆t = 2π|r|−1 and set
K(z, t)∞ =

∑
m∈Z

K(z, t)2m, Qk(t) = K(z, t+ k∆t)K(z, t)∞, Qj
k(t) = K(z, t+ k∆t)K(z, t)−2j

and Q(t) =
∑
k∈Z

Qk(t).

Let C4
y (Γ∞\SL(2; R)) denote the space of four-times differentiable functions

with derivatives bounded by a multiple of y. We are ready to prepare the way for consid-
ering limits of the microlocal lift.

Proposition 4.6 Notation as above. Given t0 positive for |t| ≥ t0 the quantities Qk(t)
and Q(t) are uniformly bounded tempered distributions for C4

y (Γ∞\SL(2; R)).

Proof. A function χ ∈ C4
y (Γ∞\SL(2; R)) has a Γ∞\N × K Fourier expansion χ =∑

k,m

χ(k,m) with |χ(k,m)| ≤ Cy((1 + |k|)(1 + |m|))−2. The pairings with Qk(t) and
∑
k

Qk(t)

are given respectively as

∑

m

∫

Γ∞\SL(2;R)

Qm
k (t)χ(k,2m)dV and

∑

m,k

∫

Γ∞\SL(2;R)

Qm
k (t)χ(k,2m)dV.

The quantities |χ(k,m)|dV are bounded by C((1 + |k|)(1 + |m|))−2y−1dxdydθ; it follows

from Lemma 4.3 that the (k,m)th summands are bounded by a fixed multiple of |t|−1((1+
|k|)(1 + |m|))−2. The distributions are uniformly bounded. The proof is complete.

S. Zelditch discovered that the essential properties of the microlocal lift are
given by an exact differential equation. The following is an extension of Zelditch’s result
[50, pg.44].

Lemma 4.7 For u and v weight zero eigenfunctions of the Casimir operator with eigen-
value −(4r2 + 1) then (H2 + 4X2 + 4irH)uv∞ = 0.

Proof. We recall from Helgason’s eigenfunction representation theorem it follows that
Xv∞ = 0 and Hv∞ = (2ir − 1)v∞ [50, pg.44]. We also note for the Casimir operator

C = H2 + (2X − W )2 − W 2 = H2 + 4X2 − 4XW − 2H and the eigenequation Cu =
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(2ir +1)(2ir− 1)u. Now on K-weight zero vectors C is equivalent to H2 +4X2 − 2H. We

are ready to calculate (H2 + 4X2 + 4irH)uv∞ = ((H2u) − 2(2ir + 1)Hu + (2ir + 1)2u +
4X2u + 4irHu− 4ir(2ir + 1)u)v∞. On substituting 4X2u = (C −H2 + 2H)u the desired
differential equation results. The proof is complete.

We review the setup from Chapter 2. G is the space of non vertical geodesics

on the upper half plane; a non vertical geodesic is prescribed by coordinates (x̂0, t0).
Associated to each point of a geodesic are the four square-root unit cotangent vectors

based at the point. The association provides a lift of
_

αβ to S∗(H)1/2 ≈ SL(2; R) and a
lift ∆ _

αβ
of δ _

αβ
. The measure ∆ _

αβ
is the sum over the four lifts of the lifted infinitesimal

arc-length elements. The family of measures ∆ _
αβ

on SL(2; R) is parameterized by the

points of G : ∆ _
αβ

has the tensor-type of a function on G and line-element on SL(2; R).

We will notate the sum
∑

γ∈Γ∞

∆
γ(

_
αβ)

by ∆
Γ∞(

_
αβ)

. The geodesic-indicator ∆ _
αβ

is a section

of the trivial bundle Ĝ ×M(SL(2; R)) → Ĝ.
We are ready to compare the Fourier-Stieljes coefficients of Q(t) and ∆

Γ∞(
_
αβ)

dV−1.

Let ∆
(k,2m)

Γ∞(
_
αβ)

dV−1 be the left-Γ∞\N index k, right-K index 2m Fourier-Stieljes coefficient.

For m ≥ 2, k given, let

F = ymf(y)e2πikz+2imθ = Qm
k (t) − π2

8
∆

(k,2m)

Γ∞(
_
αβ)

dV−1

be the difference of Fourier-Stieljes coefficients and define

G = g(y)e−2πikx−2i(m−1)θ

for (x + iy, θ) the coordinates for SL(2; R), parameter value a and

g(y) = ay−m+1e2πky

∫ y

0

τme−aτ2−2πkτdτ.

From the remarks after Definition 4.1 the function F is O(e(ε−2)|rt|y) for y large and
O(y) for y small. The function G is O(e2πky) for y large and O(y2) for y small. For

the test function h(y) = 2ay2e−ay2
set h = h(y)e−2πikx−2imθ and we have the important

equations E−F = 2ym+1 df
dy

e2πikz+2i(m−1)θ, E−G = h and E+G = ((4πky+2(1−m))g(y)+

2y dg
dy

)e−2πikx−2i(m−2)θ. In particular since F and G vanish at infinity we find for |t| ≥ t0
that ∫

Γ∞\SL(2;R)

E−FGdV = −
∫

Γ∞\SL(2;R)

FE−GdV = −
∫

Γ∞\SL(2;R)

FhdV.

We begin the comparison of Qk and ∆
Γ∞(

_
αβ)

for SL(2; R) weights congruent to zero

modulo four.
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Lemma 4.8 Notation as above. Given 0 < t0 < t1 for integers m, nonnegative, even,

and k, let h = h(y)e−2πikx−2imθ; for t = 2πnr−1 and
_

αβ the geodesic with coordinate
(0, |t|) the integral ∫

Γ∞\SL(2;R)

(Qk(t)−
π2

8
∆

Γ∞(
_
αβ)

dV−1)hdV

is close to zero uniformly for |r| large, t0 ≤ |t| ≤ t1 and a bounded.

Proof. The argument will be by induction on the even integer m. For m = 0 the result
follows from Proposition 2.1, Theorem 2.4 and the observation that ∆ _

αβ
= δ _

αβ

∑
j

δ(θ −
θ0

2
+ j π

2
+ π

4
) for θ0 the radial-angle given in Proposition 2.1. The constant is determined

by integration over K. The induction step will involve the generator H of geodesic-flow.
We have from the flow equations (H2 + 4X2 + 4irH)Qk = 0 and H(∆

Γ∞(
_
αβ)

dV−1) = 0

the combined equation

∫

Γ∞\SL(2;R)

2(E−F )GdV =

∫

Γ∞\SL(2;R)

(−2E+(Qk −
π2

8
∆

Γ∞(
_
αβ)

dV−1) + ir−1(H2 + 4X2)Qk)GdV.

(4.3)

We shall analyze the magnitude of the second integral. The operator E+ is weight-
graded with weight two; H and X are sums of graded-operators with weights −2, 0, 2 and

H2 + 4X2 a sum with even weights −4 · · · 4. For the second integral since G has weight

2−2m the distribution Qk(t) can be replaced with the smooth function Q̂(t) =
m+1∑

j=m−3

Qj
k(t)

and ∆
Γ∞(

_
αβ)

replaced by ∆
(k,2m−4)

Γ∞(
_
αβ)

. We wish to integrate by parts. To that end we must

determine the order of magnitude for the derivatives of Q̂k and G. The derivatives E+,H

and X are each a linear combination of y ∂
∂x

, y ∂
∂y

, and ∂
∂θ

with coefficients depending only

on θ. The operator H2 + 4X2 is likewise quadratic in the operators y ∂
∂x

, y ∂
∂y

and ∂
∂θ

. The

E+,H,X and H2 + 4X2 derivatives of Q̂k(t) are each O(y) at zero and O(e(ε−2)r|t|y) at

infinity. The derivatives ∂G
∂y

and ∂2G
∂y2 have order respectively O(y) and O(1) at zero and

O(e(2πk+ε)y) at infinity. It follows that the derivatives E+,H,X and H2 + 4X2 of Q̂kG
are at least O(y3) at zero and O(e(ε−2)r|t|y) at infinity for r large. It further follows that

the operators acting on Q̂k can be integrated by parts and likewise for ∆
(k,2m−4)

Γ∞(
_
αβ)

giving

∫

Γ∞\SL(2;R)

2(Q̂k −
π2

8
∆

(k,2m−4)

Γ∞(
_
αβ)

dV−1)E+GdV − ir−1

∫

Γ∞\SL(2;R)

Q̂k(H
2 + 4X2)GdV

(4.4)

for the second integral of (4.3).
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The final matter is to bound the integrals (4.4). Consider the first integral;

from the definition E+GdV is bounded for y small and has order O(e2πky) for y large.
Now let χ be a smooth approximate characteristic function vanishing on R− and unity on
R++1. From Lemma 4.4 with −σ = 2πk+1 it follows that

∫
(Q̂k− π2

8
∆

(k,2m−4)

Γ∞(
_
αβ)

dV−1)χ(y−

b)E+GdV is O(e−b) uniformly in r for |t| ≥ t0. From the considerations of Corollary 3.7

(1 − χ)E+GdV is approximated on [0,∞) by linear combinations of hdV with bounds in
terms of y1+εe−εy . It now follows by the induction hypothesis (and Lemma 4.3 to bound
the approximation contribution) that the first integral of (4.4) tends to zero as r tends
to infinity, uniformly for t0 ≤ |t| ≤ t1. For the second integral from the given bounds

(H2 + 4X2)G has order O(y2) at zero and O(e(2πk+ε)y) at infinity. From Lemma 4.4 the
contribution of the second integral is O(r−1), uniformly for t0 ≤ |t| ≤ t1. In conclusion
the right hand side of (4.3) tends to zero as r tends to infinity. As already noted the left

hand side is the pairing of F and h. The proof is complete.

We are now ready to present the main result on semi-classical convergence
of products of Macdonald-Bessel functions. We write Qsymm(t) for the restriction of the
distribution to functions invariant by the right action of ( 0 1

−1 0 ), equivalently the restriction

to functions with non trivial K components only for weights congruent to zero modulo
four.

Theorem 4.9 Notation as above. Given 0 < t0 < t1 for t = 2πnr−1 and
_

αβ the geodesic
with coordinate (0, |t|) the C4

y (Γ∞\SL(2; R)) tempered distribution Qsymm(t)dV is close to

the positive measure π2

8
∆

Γ∞(
_
αβ)

uniformly for r large and t0 ≤ |t| ≤ t1. Furthermore for

integers m, j and k with m − j even let h = h(y)e−2πikx−2i(m−j)θ; the integral

∫

Γ∞\SL(2;R)

(K(z, t + k∆t)2mK(z, t)2j −
π2

8
∆

Γ∞(
_
αβ)

dV−1)hdV

is close to zero uniformly for r large, t0 ≤ |t| ≤ t1 and a bounded.

Proof. We first consider the pairings of products with h and extend Lemma 4.8 to
the case of m negative. From the definition (4.1) we have that u2m = (−1)m(ū)−2m +
O(r−1|u2m|) and further from Definition 4.1 that K(z, t) = K(z,−t). In consequence from

Definition 4.5 we have that Qm
k (t) = (−1)mK(z,−t − k∆t)K(z,−t)2m + O(r−1|Qm

k |) =
(−1)mQ−m

−k (−t)+O(r−1|Qm
k |). The pairing of the remainder with h is O(r−1) by Lemma 4.4.

The result of Lemma 4.8 is now extended to the case of m negative by simply considering

conjugates. The result further extends to the products K(z, t + k∆t)2mK(z, t)2j by suc-
cessively applying the relation (4.2) for K(z, t + k∆t)K(z, t)2j−2mh and using Lemma 4.3
to bound the resulting remainder terms.

We are ready to consider the sums Qsymm(t). Since the sums are uniformly

bounded distributions by Proposition 4.6 weak∗ convergence is provided for by the term-
wise convergence of Fourier-Stieljes expansions. We will follow the argument for Lemma 4.8.
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In particular consider g(y) in Cy(R+) and χ a smooth approximate characteristic func-

tion vanishing on R− and unity on R+ + 1. From Lemma 4.4 the integral

∫
(Qm

k (t) −

π2

8
∆

(k,2m)

Γ∞(
_
αβ)

dV−1)χ(y− b)g(y)dV is O(e−b) uniformly in r for |t| ≥ t0. From the considera-

tions of Corollary 3.7 (1−χ)g(y) is approximated on [0,∞) by linear combinations of hdV
with bounds in terms of y1+εe−εy. The Fourier-Stieljes coefficients of Qsymm(t) paired with
the combinations of h converge by the extension of Lemma 4.8 and the approximation

contribution is bounded by Lemma 4.3. The proof is complete.

4.4. We are ready to study the semi-classical limits of microlocal lifts of automorphic

eigenfunctions. Again let Γ ⊂ SL(2; R) be a cofinite group with a width-one cusp and ϕ
an L2(Γ\H) eigenfunction with unit-norm. The function ϕ lifts to a K-invariant function
on SL(2; R) satisfying Cϕ = (2ir + 1)(2ir − 1)ϕ. We will consider the ladder {ϕ2m} of

raising and lowerings, as well as the distribution ϕ∞ =
∑
m

ϕ2m. The ladder {ϕ2m} is an

orthogonal basis for an irreducible principal continuous series representation of SL(2; R),

[30]. For the L2(Γ\SL(2; R)) Hermitian product 〈ϕ2m, ϕ2m〉 = 2π is satisfied and from
integration by parts 〈E+ϕ2j, ϕ2kχ〉 + 〈ϕ2j , E

−(ϕ2kχ)〉 = 0 for a Γ-invariant test function
χ.

Definition 4.10 Set Q(ϕ) = ϕϕ∞.

The microlocal lift Q(ϕ) is a basic quantity of the ΨDO-calculus based on
Helgason’s Fourier transform [50, Section 1];[52, Section 1]. The quantity Q(ϕ) gives

a Γ-invariant C2(Γ\SL(2; R)) distribution, bounded independent of ϕ. We are ready to
extend the considerations of Theorem 3.6 to the context of SL(2; R) and present the main
result for automorphic eigenfunctions. Let {ϕj} be a ∗-convergent sequence (see Section

3.2) with limiting measure µlimit = lim
j

µϕj on the space of non vertical geodesics G.

Theorem 4.11 Notation as above. For ε positive the sequence Q(ϕj)dV converges with
limit

Qlimit =
π

8

∫

G
∆ _

αβ
µlimit

in the sense of tempered positive distributions relative to C∞
y1+εe−εy(Γ∞\SL(2; R)).

Proof. First we show that the terms ϕϕ2m with m odd do not contribute to the limit.
From (4.1) we have that u−2m = (−1)m(ū)2m + O(r−1|u2m|). Since ϕ is real we have that
ϕϕ−2m = −ϕϕ2m + O(r−1) in the sense of tempered distributions. Now by a repeated

application of (4.2) we have for m = 2q +1 that 4iϕϕ2m = (−1)qr−1E+((ϕ2q)
2)+O(r−1).

The leading-term E+((ϕ2q)
2) is itself a bounded distribution; for m odd ϕϕ2m and ϕϕ−2m

have magnitude O(r−1) and thus do not contribute to the limit.
We next show that Qlimit is a positive distribution in order to simplify a later

argument. From integration by parts we have the relation ϕ2j+2ϕ2k = ϕ2jϕ2k−2 + O(r−1)
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in the sense of tempered distributions. For M a positive integer we introduce the Fejér

sum QM(ϕ) = (2M + 1)−1
∣∣ M∑

m=−M

ϕ4m

∣∣2. From the relation we find that lim
j

QM(ϕj) =

lim
j

2M∑
m=−2M

(1 − |m|
2M+1

)ϕjϕj,4m and consequently that lim
M

lim
j

QM(ϕj)dV = Qsymm
limit = Qlimit

is a positive distribution.
We are ready to consider the general situation. Since the distributions Q(ϕj)

are uniformly bounded it is enough to examine the limit of their Γ∞\N × K Fourier-

Stieljes coefficients. To this purpose we will establish the convergence of the index-k
Γ∞\N Fourier-Stieljes coefficient of ϕjϕj,2mdV. To this purpose for h = h(y)e−2πikx+2imθ

we first consider the convergence of
∫

Γ∞\SL(2;R)

ϕjϕj,2mhdV =

2πe2imθ

∫

Γ∞\H

∑

n

an+kanr
−1K(z, t + k∆t)K(z, t)2mh(y)dA

(4.5)

for t = 2πnr−1 and the Fourier expansion (3.1). The n-sum will be considered in three
ranges in terms of the parameter t. We first show that given 0 < t0 < t1 the combined

consideration from terms with |t| ≤ t0 or |t| ≥ t1 is bounded by o(1) for t0 small and t1
large. For terms with |t| ≤ t0 we first note from Lemma 4.4 and Hölder’s inequality that

the integrals

∫
|KK2m|hdA are uniformly bounded in t and r. The total contribution

for |t| ≤ t0 is bounded by a multiple of
rt0/2π+k∑

n=1

|an|2r−1. The result on lim
j

dΦj,0 from

Theorem 3.6 provides that the sum is o(1), as desired. Now for |t| ≥ t1, from Lemma 2.5

then

∫
|K|2hdV is O(|t|−2) and since h(y) is dominated by y then

∫
|K2m|2hdV is O(|t|−1)

by Lemma 4.3. It follows from Hölder’s inequality that the n-sum for terms |t| ≥ t1
is bounded by r1/2

∑
n=rt1/2π

|an|2n−3/2. This last sum is evaluated by parts for u(t) =

rt/2π∑
n=rt1/2π

|an|2r−1 and from (3.2) is found to be O(t
−1/2
1 ), a suitable bound.

We are ready to compare (4.5) to

π

8

∫

Γ∞\SL(2;R)×Γ∞\G
h∆

Γ∞(
_
αβ)

µlimit

The Fourier-Stieljes coefficient of ∆
Γ∞(

_
αβ)

are dominated by the m = 0, k = 0 coefficient;

it follows from Theorem 3.6, (3.2) and (2.2) that the contribution to the integral from the
Γ∞\G−region |t| ≤ t0, t1 ≤ |t| is o(1). For the principal range t0 ≤ |t| ≤ t1 the convergence
of terms of (4.5) for m even to the indicated integral is provided by Theorem 4.9 and the

bound (3.2). The equality of integrals is established for the test function h.
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We are ready to extend the result to a larger class of test-functions. From

the approximation considerations of Corollary 3.7 for g ∈ Cy1+2εe−2εy (R+) linear combi-
nations of h(y) approximate g(y) with bounds in terms of y1+εe−εy. Now the positiv-

ity of Qlimit and the bound

∫

y0≤y

Qlimit ≤ C(y−1
0 + 1) from the proof of Theorem 3.5

can be combined with integration by parts to give that Qlimit is a tempered distribu-
tion for Cy1+εe−εy(Γ∞\SL(2; R)). Similarly (2.2) can be combined with (3.2) to give that∫

∆ _
αβ

µlimit, a positive distribution, is tempered for Cy1+εe−εy(Γ∞\SL(2; R)). It follows

that linear combinations of the pairings of Qlimit and

∫
∆ _

αβ
µlimit with h approximate the

pairings with g. The formula is established in the sense of tempered positive distributions
relative to Cy1+εe−εy (Γ∞\SL(2; R)). The proof is complete.

Theorem 4.11 has immediate applications for semi-classical limits.

Corollary 4.12 Notation as above. The vertical geodesics form a null set for Qlimit and
µlimit is Γ-invariant.

Proof. We begin with simple observations. Geodesic flow provides a fibration by trajec-
tories SL(2; R) → SL(2; R)/{etH | t ∈ R}. A geodesic has four lifts to SL(2; R) and thus
the space of geodesic-flow trajectories is a four-fold cover of Ĝ. Correspondingly a measure

κ on G corresponds to a geodesic-flow invariant measure on SL(2; R) by κ̃d` =

∫

G
∆ _

αβ
κ

for d` the infinitesimal flow time. We trivially extend µlimit to a measure on Ĝ; the formula
of Theorem 4.11 remains valid. It follows that the vertical geodesics form a null set for
Qlimit. The Γ-invariance of µlimit follows from the Γ-invariance of Qlimit and the formula

for κ̃d`. The proof is complete.

The next result gives the equivalence between convergence of microlocal lifts
and convergence of coefficient sums.

Corollary 4.13 Notation as above. Let {ϕj} be a sequence of eigenfunctions with bounded
L2-norms: ϕj with Fourier coefficients {an} and microlocal lift Q(ϕj). The following con-
ditions are equivalent:

i) the microlocal lifts Q(ϕj) converge C∞
c (Γ\SL(2; R)) weak∗ to unity;

ii) the coefficient distributions µϕj converge C2
c (Ĝ) weak∗ to 8π−1ω for ω the natural

measure on Ĝ;

iii) |Sϕj(t, x̂)|2 converges to 4π−1t weak∗ in x̂ for each positive t for (t, x̂) coordinates
for R+ × R.

Proof. It will suffice to consider subsequences since in each instance the actual limits

are predetermined. Consider a ∗-convergent subsequence with limits Qlimit on SL(2; R)
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and µlimit on Ĝ. The first equivalence follows from Theorem 4.11 and the relation

dV =

∫

G
∆ _

αβ
ω. We are ready to consider the equivalence of the second and third condi-

tions. From the bounds following Definition 3.1 the weak∗ limit µlimit has Fourier-Stieljes
coefficients lim

j
dΦϕj ,k. Since 2ω = dtdx̂ the second condition specifies lim

j
dΦj,k as 4π−1

for k zero and as zero for k nonzero. Furthermore from Theorem 3.6 each limit lim
j

Φϕj ,k

is o(1) for t small. It follows that the second condition is equivalent to the pointwise
convergence in t of lim

j
Φϕj,k as 4π−1t for k zero and as zero for k nonzero. From Section

3.2 for each t positive |Sϕj(t, x̂)|2 is positive with a uniformly bounded integral in x̂. In

this setting convergence of Fourier-Stieljes coefficients is equivalent to weak∗ convergence.
The proof is complete.

4.5. We consider two applications for SL(2; Z). A. Selberg showed for congruence sub-
groups that the cumulative spectral distribution is in effect given by the counting of
point-spectrum, [19, 45]. In particular for {(ϕj, λj)} an orthonormal basis for L2(Γ\H)-
eigenpairs then NΓ(R) = #{j | λj ≤ R2} = Area(Γ\H)R2/4π + O(R log R), [19, 45]. S.

Zelditch showed for R tending to infinity that

R−2
∑

0≤rj≤R

∣∣Q(ϕj) −
2π

Area(Γ\H)

∣∣ converges to zero(4.6)

for Q(ϕj) and unity denoting the associated C2
c (SL(2; R)) functionals given by integration

[52, Theorem 5.1]. An application of the result and the current considerations is the
spectral average of coefficient sums.

Corollary 4.14 Notation as above. For a congruence subgroup and an orthonormal basis

of eigenfunctions R−2
∑

0≤rj≤R

∣∣|Sϕj(t, x̂)|2 − 8t

Area(Γ\H)

∣∣ converges to zero weak∗ in x̂ for

each positive t as R becomes large.

Proof. We first observe that the association χ →
∫

SL(2;R)

χ∆ _
αβ

defines a surjective map-

ping from C2
c (SL(2; R)) to C2

c (Ĝ). It follows from Theorem 4.11 that
π

8

∫

Ĝ
∆ _

αβ
µϕj can

be substituted in (4.6) for Q(ϕj) to obtain that

R−2
∑

0≤rj≤R

∣∣µϕj −
16ω

Area(Γ\H)

∣∣ converges to zero

for R large and µϕj , ω denoting the associated C2
c (Ĝ) distributions. The desired conclusion

now follows from the considerations of Corollary 4.13. The proof is complete.
Zelditch further found for a congruence subgroup that there is a subsequence

of unit-norm eigenfunctions {ϕjk
} with full spectral density (#{jk | λ

1/2
jk

≤ R} ∼ NΓ(R))
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such that ϕ2
jk

converges to ((Area(Γ\H))−1 relative to Cc(Γ\H), [52]. We apply our con-

siderations for the special sequence {ϕjk
} to find the mean-square Fourier coefficient.

From Corollary 4.13 the coefficient partial-sums Φk,0(t) = πr−1
jk

∑
|n|≤rjk

t(2π)−1

|an(ϕjk
)|2 con-

verge pointwise in t to 4(π(Area(Γ\H))−1 for λjk
= 1

4
+ r2

jk
. It follows for sums of length

proportional to the square root of the eigenvalue that the mean-square Fourier coefficient

(as given in (3.1)) converges to 4(π(Area(Γ\H))−1.
A heuristic calculation with the Rankin-Selberg convolution L-function for a

congruence subgroup will give the same value. The Eisenstein series E(z; s) =
∑

γ∈Γ∞\Γ
(Im γ(z))s

is convergent for Re s > 1 and has a meromorphic continuation with a simple pole
at s = 1 with residue ((Area(Γ\H))−1, [7]. Thus for ϕ a Γ eigenfunction the integral

I(s) =

∫

Γ\H
ϕ2(z)E(z; s)dA has a simple pole at s = 1 with residue ((Area(Γ\H))−1. For

Re s > 1 we can unfold the Eisenstein sum to find

I(s) = 2 sinh πr
∑

n>0

|an|2

(2πn)s
IMB(s; r)

where IMB(s; r) =

∫ ∞

0

us−1(Kir(u))2du = 2s−3Γ(
s

2
+ir)Γ(

s

2
−ir)Γ(

s

2
)2Γ(s)−1 for Re s > 0

and the Euler Γ-function [15, Sec.6.576, 4.]; for s = 1 then IMB(1, r) = π24−1sechπr. At
this point we proceed only formally: for r large, s close to unity, replace the sum I(s)

with π4−1 mean(|an(ϕ)|2)
∑

n>0

n−s. Since the residue of the Riemann zeta function is unity

we formally find that mean(|an(ϕ)|2) = 4(π(Area(Γ\H))−1 in agreement with the above
result.

5 Applications to coefficient sums
5.1. We begin with considerations of the modular Eisenstein series. The analysis of
the previous chapters will be extended to again analyze the microlocal lift in terms of a

measure constructed from Fourier coefficients. The Maass-Selberg relation is employed
in Section 5.2 to bound the square-coefficient sum as well as the microlocal lift of the
Eisenstein series. Then the approach of Chapter 3 is used to obtain a short-range co-

efficient sum bound. In Section 5.3 we combine our analysis to establish the analog of
Theorem 4.11 for the Eisenstein series; the limit of the Eisenstein microlocal lifts is given
as an integral of the limit of the coefficient measures. The representation has immediate
consequences. The Luo-Sarnak and Jakobson results are shown to be equivalent to a

limit-sum formula for the elementary summatory function.
The second topic concerns the normalization of the quantities Qlimit and µlimit

of Theorem 4.11. In fact a semi-classical limit is trivial if the entire L2-mass escapes to
infinity. By comparison a non trivial limit is necessarily obtained if the micolocal lifts

are renormalized to have unit mass on a prescribed compact set. For the renormalization
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the L2-norms can be tending to infinity and the analysis of the preceeding chapters does

not directly apply. In Section 5.4 we modify the considerations and develop an analog of
Theorem 4.11 for the index zero Fourier-Stieljes coefficients. The focus is a refined analysis
of the mass distribution of the square of the Macdonald-Bessel functions. The resulting

formula is presented in Proposition 5.13. In Theorem 5.14 we show that the mapping from
eigenfunctions to coefficient sums with an additive character is a uniform quasi-isometry
relative to L2-norms respectively on a suitable compact set and the unit circle. The proof
entails a consequence for coefficient sums of the transitivity of the geodesic flow.

5.2. We wish to study the modular Eisenstein series, [7]. We first consider the bounds
for the norm and the square-coefficient sum. The Eisenstein series for SL(2; Z) is defined
by

E(z; s) =
∑

γ∈Γ∞\Γ

(Imγ(z))s =
1

2

∑

(c,d)=1

ys

|cz + d|2s
(5.1)

for Re s > 1 and z = x + iy ∈ H; E(z; s) admits an entire meromorphic continuation in s.
The Fourier expansion is

E(z; s) = ys + ϕ(s)y1−s +
∑

n 6=0

ϕn(s)y
1/2Ks− 1

2
(2π|n|y)e2πinx(5.2)

where

ξ(s) = π−s/2Γ(s/2)ζ(s), ϕ(s) =
ξ(2s − 1)

ξ(2s)

and

ϕn(s) =
2|n|s−1/2σ1−2s(|n|)

ξ(2s)

with σν(m) =
∑
d|m

dν for m positive.

The first matter is to apply the Maass-Selberg relation to find an analog for
the Eisenstein series of the coefficient bound (3.2). Recall the definition of the truncated
Eisenstein series for SL(2; Z) : EY (z, s) is the SL(2; Z) invariant function given in the
fundamental domain F = {z | |Re z| ≤ 1/2, |z| ≥ 1} by

EY (z; s) =

{
E(z; s) for z ∈ F , Im z ≤ Y
E(z; s) − ys − ϕ(s)y1−s for z ∈ F , Im z > Y.

The Maass-Selberg relation [7, 45] gives the norm of EY , for r real
∫
F |EY (z; 1

2
+ ir)|2dA = 2 log Y + i d

dr
log ϕ(1

2
+ ir)

−r−1 Im(ϕ(1
2

+ ir)Y −2ir).

From the ζ-functional equation ϕ is given as

ϕ(1
2

+ ir) = π2ir Γ(1
2
− ir)ζ(1 − 2ir)

Γ(1
2

+ ir)ζ(1 + 2ir)
, [7, 19]
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where from the Weyl-Hadamard-de la Vallée Poussin bound we note that d
dr

log ζ(1+2ir)

is O((log |r|)/ log log |r|), [43] and from the Stirling approximation d
dr

log Γ(1
2

+ ir) =
i log |r|+O(1), [31]. On combining the considerations we find the standard expansion for
the Eisenstein norm ‖EY (z; 1

2
+ ir)‖2

2 = 2 log Y |r| + O((log |r|)/ log log |r|).

Proposition 5.1 Notation as above. The Fourier coefficients of the modular Eisenstein

series satisfy

N∑

n=1

|ϕn(
1
2

+ ir)|2 ≤ C sinhπ|r|(N + |r|)(log N + O((log |r|)/ log log |r|))

for |r| large.

Proof. We set Y = 4πN |r|−1. Observe that since the SL(2; Z) images of {Im z ≥ Y } are
contained in {Im z ≤ Y −1} then EY (z; 1

2
+ ir) = E(z; 1

2
+ ir) on {Y −1 ≤ Im z ≤ Y } and

EY (z; 1
2

+ ir) = E(z; 1
2

+ ir) − y1/2+ir − ϕ(1
2

+ ir)y1/2−ir on {Im z > Y }. In particular on

the entire horoball {Im z ≥ Y −1} the Fourier expansions relative to Γ∞ of E and EY agree
except for the zeroth Fourier coefficient. We can apply the arguments of [47, Lemmas 6.1

and 6.2] to conclude that
N∑

n=1

|ϕn(
1
2

+ ir)|2 ≤ C sinhπ|r|‖EY (z; 1
2

+ ir)‖2
2(N + |r|). The

conclusion now follows from the above norm expansion. The proof is complete.

We are now ready to consider the raisings and lowerings of the Eisenstein
series as prescribed by (4.1). For m an integer from Emys = 2|m|e2imθs|m|ys (here

Em = (Eε)|m|, ε = sgn(m)) we observe that (y1/2+ir)2m =
|m|−1∏
k=0

(2ir + 2k + 1)−1(2ir +

1)|m|e2imθy1/2+ir = (1 + O(|r|−1))e2imθy1/2+ir. The present raisings and lowerings E2m

of the Eisenstein series satisfy E2m = (1 + O(|r|−1))Eclassical,−2k where Eclassical,−2k is the
classical weight −2k Eisenstein series, [27, 52]. We introduce the truncation EY

2m as the

SL(2; Z) invariant function given in the fundamental domain by

EY
2m =





E2m for z ∈ F , Im z ≤ Y

(EY )2m for z ∈ F , Im z > Y.

A recursion formula for the norm of the truncation is obtained from integration by parts.
For s = 1

2
+ ir we find

〈EY
2m+2(z; s), EY

2m+2(z; s)〉 =

2(2ir + 2m + 1)−1e2iθ

∫

S1

((Y s)2m + ϕ(s)(Y 1−s)2m)((Y s)2m+2 + ϕ(s)(Y 1−s)2m+2)

Y −1dθ + 〈EY
2m(z; s), EY

2m(z; s)〉.

(5.3)

Since |(Y s)2k +ϕ(s)(Y 1−s)2k| ≤ 2Y 1/2 for k an integer and s = 1
2
+ir, it follows for each m

an integer that |‖EY
2m+2‖2

2−‖EY
2m‖2

2| ≤ 16π|2m+1|−1. We now proceed with the approach

of Chapter 4 (see also [27]).



35

Definition 5.2 For r real set QE(r) = E(z; 1
2

+ ir)E(z; 1
2

+ ir)∞.

Proposition 5.3 Notation as above. For each positive ε the quantities (log |r|)−1QE(r)
are uniformly bounded tempered distributions for C3

y1+εe−εy (Γ∞\SL(2; R)).

Proof. The matter is to understand the norm of the Eisenstein series. The expansion

for the norm and the above recursion give the bound ‖EY
2m‖2

2 ≤ 3 log Y |r| + 16π(2 +
log |m|) ≤ c1 log(Y |rm|)+c2 for Y ≥ 1. We use this estimate to bound the integral I(Y ) =∫ Y

1

∫ 1

0

|EE2m|dA. In fact I(Y ) is bounded by

∫ Y

1

∫ 1

0

|EMEM
2m|dA, M = max{Y, Y −1},

since E = EM for {M−1 ≤ Im z ≤ M}. The integral

∫ Y

1

∫ 1

0

|EMEM
2m|dA is bounded

by the product of ‖EM‖2 ‖EM
2m‖2 and the count of fundamental domains intersecting

the integration region. Combining considerations we find the overall bound I(Y ) ≤
(Y −1 + 1)(c1 log((Y −1 + Y )|rm|)+ c2) for Y positive and generic positive constants given
the bound [47] for counting fundamental domains.

We are ready to bound the pairing with a test function. We integrate by parts

to find

∫

Γ∞\H
|EE2m|χdA = −

∫ ∞

0

I(y)
d

dy
χdy for χ ∈ C1

y1+εe−εy((0,∞)) (the bounds

for I and χ provide for the vanishing of the boundary terms). A test function η ∈
C3

y1+εe−εy (Γ∞\SL(2; R)) has a K-Fourier expansion η =
∑
k

ηk with

∫ ∞

0

(y−1 +1) log(y−1 +

y)|dηk

dy
|dy ≤ cη(1 + |k|)−2. It now follows from the bound for I(y) that the pairing

(QE(r), η) is O(log |r|). The proof is complete.

We are ready to consider the large-r limit of the Eisenstein coefficient sum. Akin
to Definition 3.1 we define a measure from the Fourier coefficients of E(z; 1

2
+ir);−(1

4
+r2)

is the eigenvalue for the Laplace-Beltrami operator and t is the variable for the measure.

Definition 5.4 For t positive set

Φr(t) = (|r| log |r|)−1π cschπ|r|
∑

1≤|n|≤|r|t/2π

|ϕn(
1
2

+ ir)|2.

We have the initial bound for the square-coefficient sum from Proposition 5.1
Φr(t) ≤ C((log |r|t)/ log |r| + O((log log |r|)−1))(t + 1). The sums Φr(t) are bounded for
t bounded and thus for a sequence of r-values tending to infinity there is a subsequence
with the Lebesgue-Stieljes derivatives dΦ∗ converging weak∗ relative to Cc([0,∞)). Let σ

(a nonnegative tempered distribution on [0,∞)) denote the limit; σ satisfies the bound
σ([0, t)) ≤ C(t + 1).

Proposition 5.5 Notation as above. The limit satisfies σ({0}) = 0.
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Proof. First we wish to establish the analog of Theorem 3.5 for ν a C3
y1+εe−εy (Γ∞\H)

weak∗ limit of (log |r|)−1|E|2dA and σ a limit of dΦr. By hypothesis (log |r|)−1

∫
|E|2hdA

converges to

∫
hν while the bound and pointwise convergence of Φr provide for the

convergence of

∫
GdΦr to

∫
Gσ. We are ready to consider the integral

(log |r|)−1

∫

Γ∞\H
|E|2hdA =

2π
∑

n>0

(|r| log |r|)−1 cschπ|r| |ϕn(
1
2

+ ir)|2I((2πn)2/4a, |r|)

+(log |r|)−1

∫ ∞

0

|y1/2+ir + ϕ(1
2

+ ir)y1/2−ir|2h(y)y−2dy

(using the definition of I from Section 2.4). We again have from Lemma 2.5 for t =
2π|n|/|r|, A = (2πn)2/4a that I((2πn)2/4a, |r|) = G(a1/2t−1) + R(n, |r|, a) where the
remainder is Oa(t) for t ≤ a1/2 and given t0 positive the remainder is Oa,t0(n

−2) for t ≥ t0.
The convergence argument from Theorem 3.5 can now be applied to establish the desired

formula

lim
r∗

(log |r|)−1

∫

Γ∞\H
|E(z; 1

2
+ ir)|2h(Im z)dA =

∫ ∞

0

G(a1/2t−1)σ(t).

The final matter is to show that

∫ ∞

0

hν tends to zero with a and consequently

that σ({0}) = 0, since 2

∫ t0

0

G(a1/2t−1)σ(t) = σ({0}) + O(t0). We will consider H0 the

incomplete theta series of h. By Minkowski’s inequality we have that

∫

R
|E|2H0dA ≤

2

∫

R
|EY |2H0dA+2

∫

R∩{Im z≥Y }
|y1/2+ir +ϕ(1

2
+ ir)y1/2−ir|2H0dA for R a region contained

in F , the SL(2; Z) fundamental domain. Since the integral of (log |r|)−1|EY |2 over F is

bounded it now follows that lim
r∗

(log |r|)−1

∫

F∩{Im z≥Y }
|E|2H0dA tends to zero as Y tends

to infinity (since the limit of (log |r|)−1|EY |2dA is a regular Borel measure). Since the
function H0 is bounded independent of a and tends to zero on compact sets with a (see

Section 3.3) it further follows that lim
r∗

(log |r|)−1

∫

SL(2;Z)\H
|E|2H0dA and

∫ ∞

0

hν tend to

zero with a. It now follows that σ has no mass at the origin. The proof is complete.

5.3. We are ready to consider the analog of Theorem 4.11 for the Eisenstein series.
The first matter is the analog of ∗-convergence. Introduce from Definition 3.1 the tem-

pered distributions ΦE ,k and µE for the generalized eigenfunction E(z; 1
2

+ ir). Now by a
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diagonalization argument given a sequence of r-values tending to infinity there is a sub-

sequence {rj} such that: dΦE ,k converges weak∗ relative to the continuous functions for
each closed subinterval of [0,∞); the distributions µE converge weak∗ and (from Propo-
sition 5.3) the tempered distributions (log |r|)−1QE(r) converge. We will denote limits as

follows QE ,limit = lim
j

(log |rj|)−1QE(rj)dV and µE ,limit = lim
j

µE . We further write Qsymm
E ,limit

for the restriction of the distribution to functions invariant by the right action of ( 0 1
−1 0 ),

equivalently the restriction to functions with nontrivial K components only for weights
congruent to zero modulo four. Qsymm

E ,limit descends to a geodesic flow invariant, time-reversal
invariant, distribution on the unit cotangent bundle of H.

Theorem 5.6 Notation as above. For ε positive

Qsymm
E ,limit =

π

8

∫

G
∆ _

αβ
µE ,limit

in the sense of tempered positive distributions relative to C∞
y1+εe−εy(Γ∞\SL(2; R)).

Proof. The argument for Theorem 4.11 can be adapted to the current situation.

We first show that Qsymm
E ,limit is a positive distribution. From integration by parts and

Proposition 5.3 we have that E2j+2E2k = E2jE2k−2 + O(r−1 log |r|) in the sense of tem-
pered distributions. For M a positive integer we introduce the Fejér sum QE ,M(r) =

(2M + 1)−1(log |r|)−1
∣∣

M∑

m=−M

E4m

∣∣2. From the above relation lim
M

lim
j

QE ,M(rj)dV = QE ,limit

is a positive distribution.
The tempered distributions (log |r|)−1QE on C∞

y1+εe−εy (Γ∞\SL(2; R)) are uni-

formly bounded; to establish the formula it is enough to establish the convergence of the
Γ∞\N × K Fourier-Stieljes coefficients. In particular for h = h(y)e−2πikx+2imθ consider

∫

Γ∞\SL(2;R)

EE2mhdV

= 2πe2imθ

∫

Γ∞\H

∑

n

an+kanr
−1K(z, t + k∆t)K(z, t)2mh(y)dA

(5.4)

for t = 2πnr−1 and the Fourier expansion (5.2) with an = ( cschπr)1/2ϕn(1
2

+ ir) (the
special terms n = 0,−k have a modified form). The n-sum will be considered in three

ranges in terms of the parameter t. For terms with |t| ≤ t0 the integrals

∫
|KK2m|hdA

are uniformly bounded in t and r. For k = 0 the special term n = 0 is bounded in terms

of

∫
y1/2|(y1/2+ir)2m|hdA which is bounded. For k nonzero the special terms n = 0,−k

are bounded in terms of

∫
|(y1/2+ir)2mK|hdA and

∫
y1/2|K2m|hdA, which are bounded
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by (

∫
|K∗|2hdA)1/2(

∫
yhdA)1/2, which by Lemma 4.4 are also uniformly bounded. The

total contribution for |t| ≤ t0 is bounded by a multiple of (log |r|)−1
rt0/2π+k∑

n=1

|ϕn|2r−1.

Proposition 5.5 provides the bound that the sum is o(1) as desired. Now we consider

the terms with |t| ≥ t1. We already have from Lemma 2.5 that

∫
|K|2hdV is O(|t|−2)

and from Lemma 4.3 that

∫
|K2m|hdV is O(|t|−1). These bounds are combined with

Proposition 5.1 and summation by parts to bound the tail segment of the right hand side

of (5.4) by O((1 + log t1)t
−1/2
1 ), a suitable bound.

We are now ready to compare (5.4) to

π

8

∫

Γ∞\SL(2;R)×Γ∞\G
h∆

Γ∞(
_
αβ)

µE ,limit.

The first matter is the contribution of the zeroth coefficient of E; from (5.1) for s = 1
2
+ ir

the zeroth coefficient is bounded by y1/2 and so will not contribute to the limit QE ,limit =
lim(log |r|)−1QEdV. Now from the argument of Theorem 4.11 given Theorem 3.6, Propo-
sition 5.1 and (2.2) the contribution to the integral from the Γ∞\G-region |t| ≤ t0 and

t1 ≤ |t| is o(1) for t0 small, t1 large. For the principal range t0 ≤ |t| ≤ t1 the convergence
of terms of (5.4) to the indicated integral is provided by Theorem 4.9 and Proposition 5.1.
The desired equality of integrals is established for the test function h.

Now given the positivity of µE ,limit (established from the considerations of Sec-

tion 3.2), the positivity of Qsymm
E ,limit, Propositions 5.1 and 5.3 the argument from Theo-

rem 4.11 can be applied to give equality in the sense of tempered distributions relative to
Cy1+εe−εy (Γ∞\SL(2; R)). The proof is complete.

Corollary 5.7 Notation as above. The vertical geodesics form a null set for Qsymm
E ,limit and

µE ,limit is SL(2; Z)-invariant.

The limit of the microlocal lift QE(r) was analyzed in the work of W. Luo-P.
Sarnak [32] and D. Jakobson [27]. The authors used the explicit analysis available for
modular functions to obtain the result that (log |r|)−1QE(r) converges to 48π−1 weak∗

relative to Cc(SL(2; Z)\SL(2; R)) [32, Theorem 1.1], [27, Proposition 4.4].

We now present a reinterpretation of the Luo-Sarnak and Jakobson result.

Corollary 5.8 Notation as above. The convergence of (log |r|)−1QE(r) to 48π−1 in the
sense of distributions is equivalent to the convergence of∣∣SE(t, ν)

∣∣2 = (|ζ(1 + 2ir)|2|r| log |r|)−1
∣∣ ∑

1≤n≤rt

σ2ir(n)n−ireinν
∣∣2 to 48π−2t

weak∗ in ν for each positive t for r tending to infinity and (t, ν) coordinates for R+ × R.

Proof. The considerations will involve a number of reductions. It will suffice to con-

sider subsequences since the actual limits are predetermined. Furthermore since each



39

limit QE ,limit is SL(2; Z)-invariant, it will suffice to consider pairings with elements of

C∞
y1+εe−εy (Γ∞\SL(2; R)). We first apply Theorem 5.6 and the relation dV =

∫

G
∆ _

αβ
ω to

find that (log |r|)−1Qsymm

E (r) converging to 48π−1 is equivalent to µE ,limit = 384π−2ω. We
will consider the measure µE ,limit which from the given bounds has Fourier-Stieljes coef-
ficients lim

j
dΦE ,k. In comparison the square sum |SE(t, ν)|2 has index k Fourier-Stieljes

coefficient (8π)−1ΦE ,k(2π(t−|k|max{0, k∆t})), where the terms arise from different para-
meterizations. From Proposition 5.5 the limits limj ΦE ,k are also o(1) for small t and hence
the equality µE ,limit = 384π−2ω is equivalent for each positive t to the convergence of each

Fourier-Stieljes coefficient in ν of |SE(t, ν)|2 to 48π−2t . For each positive t the square sum
|SE(t, ν)|2 is positive with a uniformly bounded integral in ν by Proposition 5.1. In this
setting convergence of Fourier-Stieljes coefficients is equivalent to weak∗ convergence, the
stated condition. In summary Qsymm

E ,limit = 48π−1 is equivalent to the prescribed convergence

of |SE|2.
It only remains to show that the prescribed convergence of |SE|2 implies the

equality Qsymm

E ,limit = QE ,limit. We do not have an explicit general formula in terms of µE ,limit

for the component of QE ,limit with SL(2; R) weights congruent to two modulo four. An

argument for the equality will be made using several general properties of the limit. We
begin and recall from Theorem 4.11 that u2m = (−1)m(ū)−2m + O(r−1|u2m|). In combi-
nation with (4.2) we have that K(z, t)K(z, t)2m = (−1)mK(z, t)K(z,−t)−2m + O(r−1) =

(−1)mK(z,−t)K(z,−t)2m+O(r−1) relative to C∞
y1+εe−εy(Γ∞\SL(2; R)) from the bounds of

Lemmas 4.3 and 4.4. Now the modular group is normalized by the transformation z → −z̄
and in consequence the modular Eisenstein series has Fourier coefficients ϕn(s) = ϕ−n(s).
Referring to (5.4) we find that the Γ∞\N × K index (k,−2m) contribution is a sum of

terms |an|2(K(z, t)K(z, t)2m + K(z,−t)K(z,−t)2m). For m odd from the above relation
the contribution has magnitude O(|an|2r−1). It follows from the approach of Theorem 5.6
for m odd that the index (0,−2m) terms of QE ,limit are trivial.

We show as the final step that the Γ∞\N × K index (k, 2m) with k nonzero

contribution of QE ,limit is an integral of a distribution continuous in the parameter t and
the Lebesgue-Stieljes measure limj dΦE ,k(t); the contribution to QE ,limit is trivial provided
the measure is trivial. Given the approach of Theorem 5.6 it suffices to show that a limit
of Qm

k (t) (see Definition 4.5) is continuous in the parameter t. We begin and consider

Qm
k (t′) − Qm

k (t) =

(K(z, t′ + k∆t)−K(z, t + k∆t))K(z, t′)−2m

+ K(z, t + k∆t)(K(z, t′)−2m −K(z, t)−2m).

For the test function h = h(y)e−2πikx−2imθ the pairings with the terms of the right hand
side are bounded from Lemmas 4.3 and 4.4. The derivatives of h are suitably bounded
and thus for the second summand we can integrate by parts. Now from Hölder’s in-

equality we have that Qm
k (t′)−Qm

k (t) can be bounded in terms of integrals

∫

R+

|K(z, t′′)−
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K(z, t′′′)|2h(y)y−2dy with |t′′−t′′′| = |t−t′|. From Theorem 2.4 such integrals are bounded

in terms of |t−t′| and r−1. We have in summary that a weak∗ limit of Qm
k (t) is continuous

in the parameter t. The proof is complete.

5.4. We now consider the semi-classical limit for L2 automorphic eigenfunctions nor-
malized on a large compact set. Let Γ ⊂ SL(2; R) be a general cofinite group with Γ∞
the stabilizer of a width-one cusp at infinity. We first prescribe a compact set in the

space of geodesics that contains a representative of each complete geodesic on Γ\H. The
prescription follows the highest point condition for specifying a fundamental domain.

Proposition 5.9 Notation as above. Given Γ there exists a compact set R ⊂ H such
that each complete geodesic on H has a Γ-translate a non vertical geodesic with highest
point in R.

Proof. We begin with considerations for a fundamental domain. A standard cusp is
a region isometric to the quotient Γ∞\{z|Imz > 1}. Mutually disjoint standard cusps

are associated to the distinct cusps of Γ\H. Accordingly a fundamental domain can be
decomposed into a cuspidal region and its complement the body. A particular fundamental
domain F is determined by selecting from each Γ-orbit a representative z0 with 0 ≤
Re z0 < 1 and Imz0 maximal (if the maximum is not uniquely assumed the point with

minimal real part can be chosen). The fundamental domain F is a disjoint union of its
cuspidal region Fc and its relatively compact body Fb. The body plays a specific role
for geodesics since a complete geodesic cannot be entirely contained in a standard cusp
region. In particular each complete geodesic on H has (at least one) translate intersecting

Fb. There is accordingly a trichotomy since F contains the standard cusp at infinity:
either a geodesic is vertical, or has a translate with highest point in the closure of Fb, or
has a translate with highest point greater than unity.

We will transform the vertical geodesics and the geodesics with Euclidean radius

greater than unity. Choose B =

(
a b
c d

)
in Γ with B−1(∞) negative; the product cd is

positive. For a geodesic which is vertical or has radius greater than unity translate by an

element of Γ∞ to obtain a representative γ0 connecting points p and q with 0 ≤ p < 1
and 2 < q ≤ ∞. The quantity (B(q)− B(p)) = (q − p)(cq + d)−1(cp + d)−1 has q-partial
derivative (cq + d)−2 which is nonnegative. In particular for p fixed then (B(q)−B(p)) is
increasing in q and thus (2c+ d)−2 ≤ (B(2)−B(p)) ≤ (B(q)−B(p)) ≤ (B(∞)−B(p)) ≤
(cd)−1. It follows that a Γ∞-translate of Bγ0 has highest point z1 with 0 ≤ Re z1 < 1 and
(2c + d)−2 ≤ 2Imz1 ≤ (cd)−1. The desired compact set is now provided by the union of
the closure of Fb and the prescribed region. The proof is complete.

The next item, a refinement of Theorem 2.4, Lemma 2.5 and Lemma 4.4, con-
cerns the mass distribution for the square of the Macdonald-Bessel functions. Set for µ
positive

A(µ) = arccosh (max{1, µ−1});
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recall for τ ≥ 1 that arccosh τ = log(τ + (τ 2 − 1)1/2); A(µ) is strictly decreasing for µ on

the interval (0, 1] and near the origin is asymptotic to log 2µ; further set for L, α, and β
positive, α < β

I(α, β) = r sinhπr

∫ β

α

Kir(Ly)2y−1dy.

Proposition 5.10 Notation as above. For L, α, β and r positive with α < β and
r large then I(α, β) = π(A(αLr−1) − A(βLr−1)) + O(r−1/6) with a uniform constant
for L ≥ 2π. Furthermore there exists a strictly increasing positive analytic function
η on (0,∞) such that given Y0 > 1 there exist positive constants c0, c1 with c0 ≤(
rY 2

1 er η(Y1)
)
I(L−1λ1/2Y1,∞) ≤ c1 for Y1 ≥ Y0.

Proof. We again refer to the WKB-asymptotics from Section 2.4 esp. Theorem 2.2 and
Lemma 2.3 of [47]. We have for λ = 1

4
+ r2, Y = Lλ−1/2y, L, y > 0 and ζ(Y ) the analytic

solution of ζ( dζ
dY

)2 = (1 − Y −2) the expansion

2r sinhπrKir(Ly)2 = π(1 − Y 2)−1/2(1 + cosΘ + O(r−1/2))(5.5)

for Y ≤ 1 − λ−1/6, Θ = 4
3
λ1/2|ζ|3/2 − π

2
and dΘ

dY
= −2λ1/2(Y −2 − 1)1/2; we also have the

upper bound

r sinhπrKir(Ly)2 ≤ C

{
(1 − Y 2)−1/2 , Y ≤ 1

(Y 2 − 1)−1/2e−4/3λ1/2ζ3/2
, Y ≥ 1

and for a positive constant depending on Y0 > 1 the lower bound

r sinh πrKir(Ly)2 ≥ C ′(Y 2 − 1)−1/2e−4/3λ1/2ζ3/2

, Y ≥ Y0.

The bound follows from the cited theorem, the expansion Ai(µ) = |µ|−1/4(cos(2
3
|µ|3/2 −

π
4
)+O(|µ|−3/2)) for µ negative, the asymptotic Ai(µ) ∼ µ−1/4e−2/3µ3/2

for µ large positive,

and the given bounds |Ai(µ)|, |ME(µ)| and |µ−1/2(Ai′(µ)−Ai′(0))| ≤ C|µ|−1/4 for µ < 0;
|Ai(µ)|, |ME(µ)| and |µ−1/2(Ai′(µ)−Ai′(0))| ≤ C|µ|−1/4e−2/3µ3/2

for µ > 0 and |B0(µ)| ≤
C(1 + |µ|)−2, [47].

We begin and bound the contribution to the integral I = r sinh πr

∫
Kir(Ly)2Y −1dY

from the interval [1, Y0]. For 1 ≤ Y ≤ Y0 then ζ dominates a positive multiple of (Y − 1)

and for τ = (Y − 1) the integral is dominated by

∫ ∞

0

e−λ1/2τ3/2

τ−1/2dτ , which is O(r−1)

by scaling considerations. For the interval [Y1,∞), Y1 ≥ Y0, the integrand is bounded
above and below by positive multiples of (Y 2 − 1)−1e−4/3λ1/2ζ3/2

ζ1/2dζ, which can be in-

tegrated by parts twice with u = λ−1/2e−4/3λ1/2ζ3/2
to obtain upper and lower bounds by

positive multiples of λ−1/2Y −2
1 e−4/3λ1/2ζ(Y1)

3/2
, as claimed on setting η = 4/3 ζ3/2. We note

in particular that the contribution from any interval [1, βLr−1] is uniformly O(r−1).
The next step is to use the expansion (5.5) to find the contribution to I from

the range Y ≤ 1 − λ−1/6. The leading term contributes the inverse hyperbolic cosine.
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The contribution from cos Θ can be evaluated by parts with u = sinΘ and v = ((1 −
Y 2)1/2Y dΘ

dY
)−1 = (−2λ1/2(1 − Y 2))−1. Given the bound Y ≤ 1 − λ−1/6 the contribution

is O(λ−1/3) a suitable bound. The remainder contribution from (5.5) is bounded by
O(λ−1/12). For the final range 1−λ−1/6 ≤ Y ≤ 1 we simply use the majorant (1−Y 2)−1/2

for the quantity r sinhπrKir(Ly)2 to find that the contribution is also O(λ−1/12). All
possible ranges have been considered. The proof is complete.

We are ready to compare the L2(Γ\H)-norm for an automorphic eigenfunction
to its L2-norm relative to a large compact set. Provided Γ\H has p inequivalent cusps,

let Fj, j = 1, . . . , p, be the highest point fundamental domains for the conjugates B−1
j ΓBj

obtained by successively representing the inequivalent cusps by width-one cusps at infinity.
For τ > 1 let Hτ denote the quotient horocycle region Γ∞\{z|τ−1 < Im z < τ}. Choose
a positive value τ0 to provide that {z|τ−1

0 < Im z < τ0} ⊂ H contains the body regions

BjFj,b (see the proof of Proposition 5.9) as relatively compact subsets. For ϕ an L2(Γ\H)
eigenfunction we now denote by ‖ϕ‖τ the L2(Hτ )-norm of ϕ; we continue to denote the
L2(Γ\H)-norm by ‖ϕ‖.

Proposition 5.11 Notation as above. There exist positive constants c0, c1 such that for
an L2(Γ\H) eigenfunction ϕ with eigenvalue 1

4
+ r2, r ≥ 1, then c0‖ϕ‖2

τ0
≤ ‖ϕ‖2 ≤

c1 log r ‖ϕ‖2
τ0

. For each τ > τ0 there exists a positive constant cτ such that ‖ϕ‖τ ≤ cτ‖ϕ‖τ0.

Proof. The first inequality is straightforward. For the second inequality the essential

matter is to bound the integral of ϕ2 in each cusp. Since for each cusp Hτ0 con-
tains the region between two horocycles it is enough for y∗ < y∗∗ to establish the

basic inequality

∫

Γ∞\{y∗∗<Im z<y∗∗∗}
ϕ2dA ≤ c′ log min{y∗∗∗, r}

∫

Γ∞\{y∗<Im z<y∗∗}
ϕ2dA for

y∗∗∗ > y∗∗. Given Parseval’s formula it is enough to establish the inequality I(y∗∗, y∗∗∗) ≤
c′ log min{y∗∗∗, r}I(y∗, y∗∗) for the Macdonald-Bessel functions for all L ≥ 2π and a con-

stant depending on y∗ and y∗∗. To this purpose we consider the two cases for Y∗∗ =
Lλ−1/2y∗∗ in comparison to ρ = (y∗∗y

−1
∗ )1/3. For Y∗∗ ≤ ρ2 then Lλ−1/2y∗ ≤ ρ−1 < 1

and the formula of Proposition 5.10 provides that I(y∗, y∗∗) is bounded below by a pos-

itive constant for all appropriate L, a suitable bound. We next consider I(y∗∗, y∗∗∗).
For y∗∗∗ ≤ ry∗∗ Proposition 5.10 and the observation that A(y∗∗Lr−1) − A(y∗∗∗Lr−1)
is bounded by log y∗∗∗y

−1
∗∗ provide that I(y∗∗, y∗∗∗) is bounded by a positive multiple of

log y∗∗∗; for y∗∗∗ > ry∗∗ observe that Lλ−1/2y∗∗ ≥ 2πλ−1/2y∗∗ and the formula of Propo-

sition 5.10 provides that the majorant I(y∗∗,∞) is bounded by log r. The inequality for
I is established for Y∗∗ ≤ ρ2. For Y∗∗ ≥ ρ2 and the choice Y0 = ρ the inequality from
Proposition 5.10 provides that I(y∗∗,∞) is already exponentially small in comparison
to I(ρ−1y∗∗, y∗∗), a suitable bound. The integral I is suitably bounded. The proof is

complete.
We are ready to consider limits of eigenfunctions normalized by their L2-norm

on a compact set. The convergence considerations will differ from those of Chapter 4 since
possibly the L2(Γ\H)-norms are tending to infinity. At the center of the considerations
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is the Fejér sum QM(ϕ) = (2M + 1)−1|
M∑

m=−M

ϕ4m|2 for an eigenfunction ϕ. We will

employ the lifts H̃τ to Γ∞\SL(2; R) of the quotient horocycle regions Hτ ⊂ Γ∞\H. From
Proposition 5.11 we can now renormalize each L2(Γ\H) eigenfunction to have L2(Hτ0)-
norm (2π)−1.

Proposition 5.12 Notation as above. For a sequence of L2(Γ\H) eigenfunctions, nor-

malized on Hτ0, with eigenvalues tending to infinity there exists a subsequence {ϕj}
such that the limit µren = lim

M
lim

j
QM(ϕj) exists in the sense of σ-finite measures on

Γ∞\SL(2; R). The positive measure µren has unit mass on H̃τ0, is Γ-invariant, right
( 0 1
−1 0 ) invariant and geodesic-flow invariant.

Proof. The first considerations are the consequences of integration by parts. From (4.1)
and (4.2) we find ϕ2k+2ϕ2m = ϕ2kϕ2m−2+O(r−1(‖ϕ2k+2‖+‖ϕ2k‖)(‖ϕ2m‖+‖ϕ2m−2‖)). The

basic bound that ϕ2k+2ϕ2m − ϕ2kϕ2m−2 is O(r−1 log r) as a distribution for C1
c (SL(2; R))

follows now from Proposition 5.11. Furthermore by Proposition 5.11 the sequence of eigen-
function squares can be considered as a family of positive measures uniformly bounded
on compact sets. Select a subsequence {ϕ2

j} that converges on each compact set. The

products ϕj,2kϕj,2k are positive, thus also determine measures, and from the basic bound
the sequences ϕ2

j and ϕj,2kϕj,2k have a common limit. There are additional consequences.
In particular for each k,m the products ϕj,2kϕj,2m determine uniformly bounded σ-finite
measures. Select a subsequence (to simplify notation we continue to write {ϕj} for the

subsequence) to provide that for each k,m the products ϕj,2kϕj,2m converge in the sense
of σ-finite measures. From the basic bound the limit lim

j
ϕj,2kϕj,2m depends only on the

difference k − m.

We are ready to consider the limit µM = lim
j

QM(ϕj). The index zero K Fourier-

Stieljes coefficient of µM is lim
j

(2M + 1)−1
M∑

m=−M

ϕj,4mϕj,4m which as already noted is the

σ-finite positive measure lim
j

ϕ2
j . Given the normalization for the eigenfunctions it follows

that each µM is a probability measure for H̃τ0 and by Proposition 5.11 that {µM} is
a sequence of σ-finite measures uniformly bounded on compact sets. For a convergent
subsequence of {µM} the index 4m K Fourier-Stieljes coefficient of the limit is simply

lim
j

ϕjϕj,−4m, independent of the choice of subsequence; the sequence {µM} converges to

a probability measure on H̃τ0.

We set µren = lim
M

lim
j

QM(ϕj) and note that µren has K Fourier-Stieljes co-

efficients µ
(4m)
ren = lim

j
ϕjϕj,−4m with |µ(4m)

ren | ≤ µ
(0)
ren. We consider the invariance prop-

erties. The Fejér sum QM(ϕ) is Γ-invariant with non trivial K components only for
weights congruent to zero modulo four. The measure µren is consequently Γ-invariant

and right ( 0 1
−1 0 ) invariant. Geodesic-flow invariance is equivalent to the triviality of the
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C1
c (SL(2; R)) distribution Hµren. It will suffice to establish triviality relative to the dense

subspace C∞
c (SL(2; R)). We will show for χ ∈ C∞

c (SL(2; R)) that the pairing of Hχ

and µren is arbitrarily small by approximating µren by QP (ϕj) =
2P∑

k=−2P

ϕjϕj,−2k and then

using Zelditch’s relation to show that HQP (ϕj) is small. The test function χ has first and
second derivatives (with respect to elements of the enveloping algebra) with K Fourier co-

efficients bounded by multiples of (1+ |k|)−2; for example Hχ has K expansion
∑
k

(Hχ)(k)

with |(Hχ)(k)| ≤ C(1 + |k|)−2. We begin the approximation given ε positive by observing

for P sufficiently large that

∫

SL(2;R)

(Hχ)(µren −
P∑

k=−P

µ(4k)
ren ) dV is bounded by ε given the

bounds for the expansion of Hχ and that |µ(4k)
ren | ≤ µ

(0)
ren. We next recall from the proof of

Theorem 4.11 for m = 2q + 1 the relation 4iϕϕ2m = (−1)qr−1E+((ϕ2q)
2) + O(r−1‖ϕ‖2

∗)
for ‖ϕ‖∗ the sum of the L2(Γ\H)-norms of ϕ, . . . , ϕ4q. We apply the basic bound, Propo-

sition 5.11 for the norm ‖ϕ‖∗, and the convergence of lim
j

ϕjϕj,−2k to uniformly bounded

σ-finite measures to find for j sufficiently large that

∫

SL(2;R)

(Hχ)(
P∑

k=−P

µ(4k)
ren −QP (ϕj)) dV

is also bounded by ε. Furthermore since for P fixed QP (ϕj) is a uniformly bounded
distribution for Z = H + (4ir)−1(H2 + 4X2), the operator from Lemma 4.7, and j suffi-

ciently large the difference ((H −Z)χ)QP (ϕj) is also bounded by ε. Since χ has compact
support we can integrate by parts and consider −χZQP (ϕj) in place of (Zχ)QP (ϕj); we

have in summary that |
∫

SL(2;R)

(Hχ)µren + χZQp(ϕj) dV| < 3ε for each P and j ≥ j0(P )

sufficiently large.
The last step is provided by Lemma 4.7. As already noted H and X are sums of

graded-operators with weights −2, 0, 2 and thus Z is a sum
2∑

m=−2

Z2m of graded-operators

with even weights −4 . . . 4. Zelditch’s relation is equivalent to a system of relations, one

for each K weight; for the complete microlocal lift Q(ϕ) (see Definition 4.10) the weight

2k term of ZQ(ϕ) is
2∑

m=−2

Z2mϕϕ−2k+2m = 0. For the truncated sum QP (ϕ) the individual

weight relations provide vanishing for the terms of ZQP (ϕ), except at the ends of the sum.
There are a fixed number of terms not canceled by the relation; the terms have the form

Z2m(ϕϕ4εP−2εk) for m = −2, . . . , 2, ε = ±1 and k = 0, . . . , 3. Again bounds for χ(k) and

|µ(2k)
ren | ≤ µ

(0)
ren provide that for P and j sufficiently large the combined contribution of the

cited terms is bounded by ε. We have in summary that Hµren is the trivial distribution

for C∞
c (SL(2; R)). The proof is complete.

We are ready to consider the analog of Theorem 3.5 for eigenfunctions normal-
ized on the compact set Hτ0. For a normalized ϕ with eigenvalue λ = 1

4
+ r2, Fourier
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expansion (3.1), and t positive set

Φϕ(t) = π
∑

|n|≤rt(2π)−1

|an|2r−1.

For a sequence of normalized eigenfunctions with squares Cc(Γ\H) weak∗ convergent let
νren be the index zero left-Γ∞\N Fourier-Stieljes coefficient of the lift to Γ∞\H of the limit
lim

j
ϕ2

jdA. We wish to relate the large-r limit of Φϕ(t) to νren. For this purpose consider

for a σ-finite positive measure ω on [0,∞) the integral transform

A[ω](y) =
1

2

∫ ∞

0

(1 − t2y2)−1/2ω(t);

by an application of the Tonelli Theorem the integral is convergent almost everywhere
in y and the result is a locally-integrable function; A is the Abel transform of ω(

√
τ ) for

τ = t2, [44]. The Abel transform is injective for σ-finite measures.

Proposition 5.13 Notation as above. There exists a positive constant c0 such that for
t > 1 then Φϕ(t) ≤ c0‖ϕ‖2

4t. The sequence of Lebesgue-Stieljes derivatives {dΦϕj} has a

Cc([0,∞)) weak∗ limit σren with νren(y) = (A[σren](y))y−1dy.

Proof. The first matter is to provide uniform bounds for the sums Φϕ. Observe that
the expression from Proposition 5.10 A(t(4t′)−1) − A(t(2t′)−1), 0 < t ≤ t′, is bounded
below by a positive constant independent of t′. The simple bound Φϕ(t′) ≤ c′‖ϕ‖2

4t′ for
t′ > 1 now follows from Parseval’s formula and Proposition 5.10. The Lebesgue-Stieljes

derivatives {dΦϕj} are consequently uniformly bounded; we can consider Cc([0,∞)) weak∗

convergent subsequences. Let σ∗ be the limit of a convergent subsequence. We will show
that νren = A[σ∗]y

−1dy.
We consider the analog of Theorem 2.4 (the test function h(y) will now be

replaced by χ ∈ C1
c ((0,∞)) and the range will be expanded to all t). Consider the quantity

r sinhπr

∫ ∞

0

Kir(2π|n|y)2χ(y)y−1dy for χ ∈ C1
c ((0,∞)). We can integrate by parts for

dv = Kir(2π|n|y)2y−1dy to obtain the integral −
∫ ∞

0

I(1, y)χ′(y)dy. Proposition 5.10

provides for the uniform convergence of the integrand and the integral; integration of the
resulting expression by parts provides the desired result. In summary for χ ∈ C1

c ((0,∞))

the integral r sinhπr

∫ ∞

0

Kir(2π|n|y)2χ(y)y−1dy converges to the integral
π

2

∫ t−1

0

(1 −

t2y2)−1/2χ(y)y−1dy uniformly in t = 2π|n|r−1.
We are ready to consider sums and the convergence for the sequence {ϕj}.

For χ ∈ Cc((0,∞)) associate the function on the upper half plane with values χ(y) for

z = x + iy ∈ H and consider
∫

Γ∞\H
ϕ2

jχdA =
∑

n

|an|2 sinhπr

∫ ∞

0

Kir(2π|n|y)2χ(y)y−1dy.
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Choose α positive such that the support of χ is contained in the interval (α,∞). We

first show that the contribution to the n-sum from terms with |t| ≥ α−1 is O(r−1 log r)
as j tends to infinity. For |t| ≥ α−1 then Y ≥ Y0 > 1 on the support of χ and the
above integrals are bounded by a multiple of n−2 from the bounding factor r−2Y −2

1 from

Proposition 5.10. By (3.2) the sum Φϕj(t) is bounded by a multiple of ‖ϕj‖2(t + 1)
and since the ϕj are normalized on Hτ0 we have by Proposition 5.11 that ‖ϕj‖2 is
bounded by a multiple of log r. The total contribution from the range |t| ≥ α−1 is
bounded by a multiple of log r

∑
n=r(2πα)−1

|an|2n−2; from summation by parts the n-sum is

O(r−1 log r), a suitable bound. For the principal range |t| ≤ α−1 the uniform convergence

of terms and convergence of the selected subsequence of {dΦϕj} to σ∗ provides the result∫ ∞

0

A[σ∗](y)χ(y)y−1dy. Finally since the Abel transform is injective the original sequence

{dΦϕj} also converges to σ∗. The proof is complete.
We consider again the geodesic-indicator measure. We wish to parameterize the

index zero left-Γ∞\N Fourier-Stieljes component of δ _
αβ

on Ĝ, the space of all complete

geodesics (including the vertical geodesics). The non vertical geodesics can alternately be
parameterized by the ordered pair (ρ, t)∗ for t the reciprocal radius and ρ = x̂ + t−1 the
abscissa of the right end point. The parameters (ρ, t)∗ extend to continuous coordinates

for Ĝ; the vertical geodesics are the locus {t = 0}. By Proposition 2.1 for a non vertical

geodesic
_

αβ with coordinate (x̂, t) the index zero Fourier-Stieljes component of δ _
αβ

is

(1−t2y2)−1/2y−1dy; for a vertical geodesic the index zero component is y−1dy. In summary
the index zero component of δ _

αβ
, a σ-finite measure on R+, is continuously parameterized

on Ĝ by the values 0 ≤ t < ∞.
Given the parameter value τ0 of Proposition 5.11 we choose τ1 ≥ τ0 to provide

that each complete geodesic on Γ\H has a lift with Euclidean radius in the range (τ−1
1 , τ1);

a choice is guaranteed by Proposition 5.9. We now use the value τ1 to prescribe a linear
map from the direct sum of eigenspaces of the hyperbolic Laplacian to the space of
continuous functions on the unit circle. In particular for an L2(Γ\H) eigenfunction ϕ

with eigenvalue λ = 1
4

+ r2 and Fourier expansion (3.1) define

S[ϕ] = r−1/2
∑

τ−1
1 ≤2πnr−1≤τ1

ane
inθ.

Further for an eigenvalue λ let Vλ be the associated eigenspace endowed with the L2(Hτ1)
inner product.

Theorem 5.14 Notation as above. For all large eigenvalues λ the linear map S is a

uniform quasi-isometry from Vλ into L2(S1). In particular there exist positive constants
c0, c1 and c2 such that for ϕ with large eigenvalue λ = 1

4
+ r2 and Fourier coefficients

{an} then c0(log r)−1‖ϕ‖2 ≤ c1‖ϕ‖2
τ1
≤ r−1

∑
τ−1
1 ≤2πnr−1≤τ1

|an|2 ≤ c2‖ϕ‖2
τ1
. Furthermore the
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measure σren is the index zero Γ∞\N Fourier-Stieljes coefficient of a Γ-invariant measure

on Ĝ.

Proof. The first step is to show that ‖ϕ‖2
τ1

is uniformly comparable to Φϕ(τ1) for large
eigenvalues. The considerations of the proof of Proposition 5.13 provide the expansion

∫

Γ∞\H
ϕ2χdA =

1

2

∫ ∞

0

A[dΦϕ]χy−1dy + O(Φϕ(α−1)r−1/6 + ‖ϕ‖2
τ0

r−1 log r)

for χ ∈ C1
c ((0,∞)) with supp(χ) ⊂ (α,∞). From (3.2) and Proposition 5.11 we find that

Φϕ(α−1) is bounded by Cχ‖ϕ‖2
τ0

log r, a suitable quantity. We further observe in particular

for χ ≥ 0, somewhere positive, with support [β, β ′] then

∫ ∞

0

(1 − t2y2)−1/2χy−1dy has

support [0, β−1] and is bounded below by a positive constant on each proper subinterval

[0, η] of [0, β−1]. Now choose a first test function χ to have support (τ−1
2 , τ2) for τ2 < τ1.

It follows that

∫ ∞

0

A[dΦϕ]χy−1dy is bounded below by a positive multiple of Φϕ(τ1) and

that

∫

Γ∞\H
ϕ2χdA is bounded above by a multiple of ‖ϕ‖2

τ2
, which by Proposition 5.11

is bounded by a multiple of ‖ϕ‖2
τ1

. Choose a second test function χ identically unity
on (τ−1

0 , τ0) and with support contained in (τ−1
1 , τ1). From the first property for the

support we have that ‖ϕ‖2
τ0

≤
∫

Γ∞\H
ϕ2χdA and from the second property we have that

∫ ∞

0

A[dΦϕ]χy−1dy is bounded above by a multiple of Φϕ(τ1). It now follows for large

eigenvalues that the sum Φϕ(τ1) is uniformly comparable to the norm squared ‖ϕ‖2
τ1

.
We next in effect use Proposition 5.9 to show that the sum Φϕ(τ1) is bounded

above by a positive multiple of Φϕ(τ1)−Φϕ(τ−1
1 ). We proceed by contradiction. Consider

then that there exists a sequence of eigenfunctions {ϕk}, normalized on Hτ1, with the
associated sequence of Lebesgue-Stieljes derivatives {dΦϕk

} converging to a measure σren

that is trivial on the interval (τ−1
1 , τ1]. The bound Φϕk

(τ1) ≥ c‖ϕk‖2
τ1

and normalization
provide that σren is not the trivial measure. By Proposition 5.12 we can further assume

that the quantities QM(ϕk) on SL(2; R) converge to an invariant measure µren with index
(0, 0) Γ∞\N × K Fourier-Stieljes coefficient νren. A (right ( 0 1

−1 0 ) invariant) geodesic-
flow invariant measure µ on SL(2; R) has a unique representation as a geodesic-indicator
integral of a measure κ on Ĝ; from the preparatory discussion the index (0, 0) coefficient of

µ is given by the transform 2A[σ] for σ the index zero Γ∞\N Fourier-Stieljes coefficient of
κ. Since the A-transform is injective it follows for the present circumstance that σren is the
index zero Γ∞\N Fourier-Stieljes coefficient of a Γ-invariant measure on Ĝ. The vanishing
of the non trivial measure σren on the region τ−1

1 < t ≤ τ1 contradicts Proposition 5.9.

The proof is complete.
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