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THE FUNDAMENTAL GROUP OF A
COMPACT FLAT LORENTZ SPACE FORM

IS VIRTUALLY POLYCYCLIC

WILLIAM M. GOLDMAN & YOSHINOBU KAMISHIMA

A flat Lorentz space form is a geodesically complete Lorentzian manifold of

zero curvature. It is well known (see Auslander & Markus [3]) that such a space

M may be represented as a quotient Rw/Γ, where R" is an ^-dimensional

Minkowski space (n equals the dimension of M) and Γ is a group of Lorentz

isometries acting properly discontinuously and freely on Rn. In particular the

universal covering of M is isometric to Rn and the fundamental group ττλ{M) is

isomorphic to Γ.

Theorem. Let M be a compact flat Lorentz space form. Then πλ{M) is

virtually poly cyclic.

Recall that a group is virtually polycyclic if it can be built by iterated

extensions from finitely many finite groups and cyclic groups. This result

affirms a conjecture of Milnor [13] in a special case. For discussion of this

conjecture as well as another special case, we refer to Fried & Goldman [8].

The importance of this result is that it reduces the classification of compact

flat Lorentz space forms to fairly elementary problems concerning Lie algebras

and lattices in solvable Lie groups; we hope to pursue this classification in a

future publication. For a description of this reduction and the classification in

dimension 3, see Fried & Goldman [8]; in dimension 4 the classification is

worked out in Fried [7]. One immediate consequence of the structure theory

developed in Fried & Goldman [8, §1] and Kamishima [12] is the following

Corollary. Let M be the compact flat Lorentz space form. Then M has a

finite covering which is diffeomorphic to a solvmanifold.

The outline of this paper is as follows. In the first section we collect some

basic facts about the group E(n — 1,1) of isometries of ^-dimensional

Minkowski space. In the second section we prove the theorem in the special
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case that the linear holonomy group of M is discrete. Finally, in the third
section we remove this discreteness assumption, thereby concluding the proof
of the theorem.

1. Some algebraic lemmas

1.1. We give R" with the Lorentzian inner product ω = dx\ + +d%l_λ

— dx\. Denote by E(n — 1,1) the group of all Lorentz isometries Rn -> Rπ. It
is well known that E(n — 1,1) is a semidirect product, T XI O(n — 1,1) is
where T = R" denotes the group of translations and O(n — 1,1) is the homo-
geneous Lorentz group (orthogonal group) consisting of all linear mappings
preserving ω. Let L: E(n — 1,1) -><?(« — 1,1) denote the projection homo-
morphism with kernel Γ. Let E°(n — 1,1) denote the identity component of
E{n - 1,1); then E°(n - 1,1) is the semidirect product T X SO+ (n - 1,1)
where SO + (n — 1,1) is the identity component of O(n — 1,1) (consisting of
orientation-preserving, causality-preserving Lorentz-orthogonal transforma-
tion).

A group is virtually polycyclic if it has a polycyclic subgroup of finite index.
It is well known (see Milnor [3, 2.2]) that a discrete subgroup Γ of a connected
Lie group which contains a solvable subgroup of finite index is virtually
polycyclic. Recall that a connected Lie group G is amenable if it splits as a
semidirect product S X K, where S is a solvable normal subgroup and K is
compact. Then it is also well known that a discrete subgroup of a connected
amenable Lie group G is virtually polycyclic (Milnor [13, 2.2]). Thus, if
Γ C E(n — \,\) is a discrete subgroup and L(T) lies in an amenable subgroup of
O(n — 1,1) which has finitely many components, then Γ is virtually polycyclic.

1.2. In order to apply this observation, we must understand the structure
of the connected subgroups of O(n — 1,1). A thorough discussion is given in
Greenberg [10, §4] as well as Chen & Greenberg [6, §4].

Let V C E be a linear subspace of dimension k < n and let Gv be its
stabilizer. Then the quadratic form on Rn defining O(n — 1,1) restricts to a
quadratic form qv on V which may be positive definite, indefinite (or negative
definite), or degenerate. If qv is positive, then there exists q E O(n — 1,1) such
that gV = Rk X {0} C Rn and Gv is conjugate by g to the subgroup O(k) X
O(n — k — 1,1) of O(n — 1,1). In case qv is indefinite (or negative definite if
k = 1), then Fis equivalent to subspace {0} X R* C R" and Gv is conjugate to
O(n - k) X O(k - 1,1) C O(n - 1,1). .If qv is degenerate, then the kernel of
qv consists of all null vectors in V and is one-dimensional. It is easy to see that
the stabilizer of a null ray is an amenable Lie group (it is isomorphic to the
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group of Euclidean similarities R"~2 XI (R* X SO(n - 2))). Thus, it follows

from 1.1 that if T C E(n — \,\) is a discrete subgroup such that L(T) normal-

izes a linear subspace of Rw upon which the Lorentzian metric is degenerate, then

Γ is virtually poly cyclic.

1.3. These ideas play a key role in the proof of the following lemma, which

although known, is difficult to find stated in the literature.

Lemma. Let G C O(n — 1,1) be a nontrivial closed connected amenable

{e.g. solvable) subgroup of O(n — 1,1) andN(G) its normalizer. Then:

(a) IfGis noncompact, then N(G) is amenable.

(b) // G is compact, then either N(G) is compact or there exists k, 1 ̂  k ^

n — 1, and ag E O(n — 1,1) such that

g~ιN(G)g C O(k) X O(n - k - 1,1) C O(n - 1,1)

and

g-'GgCO(k)X {1} C O ( Λ - 1 , 1 ) .

Proof. Let q(xl9 -,*„) = *? + ••• + * 2 _ 1 — x\ be the quadratic form

invariant under O(n - 1,1) andjet L= {x E R": xπ > 0, q{x) < 0} be the

positive half of the light cone, L its closure and ΘL = ^ ( O ) Π (xM > 0} its

boundary. Since G is amenable it preserves at least one ray in the compact

convex cone L (Greenleaf [10]). Let Λ be the set of all such rays and Σ their

linear span in Rn. Clearly Λ and Σ are invariant under N(G).

We claim that Σ ¥= R". We may assume n > 2 (the case n — 2 can be

handled separately.) For if Σ = R" there would exist n linearly independent

vectors e,, , e n 6 L which would be eigenvalues for all of the elements of G.

For each j = 1, ,« the orthogonal complement of the span of eu ,ey_j,

ej+x," ,en is a line disjoint from L\{0} and contains a vector Vj with

q(Vj) = + 1 . Clearly {V\9"
m

9Vj} is a linearly independent set of simultaneous

eigenvectors for G and for each g E G, gt;, = t?f since g preserves q and

^(i)7) = + 1 . Thus G fixes a basis of RΛ and must be trivial, a contradiction.

Now we prove (a). Suppose G is noncompact. Then Λ C 3L. For otherwise

G preserves a ray / inside L, and since q is nonzero on /, G must fix / pointwise.

Since G preserves q and fixes /, it preserves another quadratic form q' which

agrees with q on I1- and equals -q on /. Since q' is positive definite, G must be

compact, a contradiction. Thus Λ C ΘL.

We prove 1.3(a) inductively on n. For n — 2, £(1,1) is already amenable so

the closed subgroup N(G) is automatically amenable. Assume that 1.3(a) has

been proved for all dimensions less than n. We divide the proof into two cases,

depending on whether Σ C 3L.
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If Σ C 3L, then dimΣ = 1. The stabilizer in O(n - 1,1) of such a Σ is
amenable (it is easily seen to be isomorphic to the Euclidean similarity group
(R* X O(« - 2)) IX RM"2) and since closed subgroups of amenable groups are
amenable, N(G) is amenable.

Otherwise Σ ζt L and L intersects Σ in an open cone in Σ. Thus q |Σ is
indefinite and there exists g e O(n - 1,1) such that g(Σ) = {0} X R"~k C R",
k = n - dim Σ. Then g^x) = RkX {0} and N(G) preserves the orthogonal
decomposition R1 = Σ1- ΘΣ. Hence g~λN(G)g C O(k) X O(n - k - 1,1).
Since G is noncompact it must project to a noncompact amenable subgroup of
O(n — k — 1,1). Since k > 0, N(G) must project to a closed amenable sub-
group of O(n — k — 1,1) by the induction hypothesis. It follows that N(G) is
amenable and (a) is proved.

Now suppose that G is compact. For any υ E L the orbit Go is compact and
its barycenter is a vector in L fixed by G. Thus Λ meets L and Σ is the span of
A Π L. Since G fixes A Π L pointwise G is the identity on Σ.

Suppose first that dim Σ > 2. Then as in the preceding argument, there
exists g such that g(Σ) = {0} X R""Λ g ^ ) = R* X {0} and g~ιN(G)g C
O(k) X O(« - A: - 1,1). As G is the identity on Σ it follows that g~]Gg C

Now suppose dim Σ = 1. Then G fixes a unique ray in L and so must N(G).
It follows that N(G) is compact.

The proof of 1.3 is now complete.

2. Lorentz flat manifolds with discrete holonomy groups

The purpose of this section is to prove the following
2.1. Proposition. Let T C E(n — 1,1) fee a finitely generated subgroup which

acts properly discontinuously on Rn with compact quotient. Assume that the image
L(Γ) C O(n — 1,1) is discrete. Then Γ is virtually polycyclic.

If T C E(n — 1,1) acts properly discontinuously on R", then certainly Γ is
discrete, but the converse does not hold (e.g. no infinite discrete subgroup of
O(n — 1,1) C E(n — 1,1) acts properly discontinuously on Rn). Similarly, if Γ
acts properly discontinuously on R", then its image L(Γ) under L: E(n — 1,1)
-> O(n — 1,1) may or may not be a discrete subgroup of O(n — 1,1). In this
section we consider the case that L(Γ) is discrete in O(n — 1,1).

2.2. The proof proceeds by induction on the dimension n. For n = 1 any
such Γ must either be cyclic on an infinite dihedral group Z XI (Z/2), and
there is nothing to prove.
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Assume the statement is true for all dimensions less than n > 1. We show Γ
is virtually polycyclic. Since Γ is a finitely generated subgroup of E(n — 1,1)
C GL(n + 1,R), it follows from Selberg's lemma (Raghunathan [14, 6.11])
that Γ contains a torsion-free subgroup of finite index. Replacing Γ by a
subgroup of finite index we may assume that Γ is a torsion-free subgroup of
E(n - 1,1)°.

The kernel of L: Γ -> SO(n — 1,1) is the subgroup Γ Π T of Γ consisting of
translations. Clearly, Γ Π T is a discrete group of translations. First we show
that Γ Π Γis nontrivial.

Suppose Γ Π Γ = {0}, i.e. that L: Γ -> L(Γ) is an isomorphism. Then the
double coset space L(T)\SO(n — 1, \)/0{n — 1) is an (n — l)-dimensional
hyperbolic space form and hence an aspherical (n — l)-manifold with funda-
mental group isomorphic to Γ. In particular the cohomological dimension of Γ
is at most n — 1, contradicting the fact that Γ is the fundamental group of the
compact aspherical w-manifold Rw/Γ.

2.3. Thus T Π Γ is nontrivial. Let V be the subspace spanned by Til Γ;
evidently V is invariant under L(Γ). Let k = dim V > 0 and let b: F X V^R
be the Lorentzian bilinear form restricted to V. We distinguish three cases: (i)
b: FX F - ^ R i s degenerate; (ii) b: FX F ^ R i s positive definite (i.e. has
signature (/c,0); and (iii) b: FX F ^ R is nondegenerate but not positive
definite (i.e. has signature (k — 1,1)).

We start with case (i). Since Fis L(Γ)-invariant, it follows from 1.2 that Γ
must be virtually polycyclic.

2.4. For the other two cases (i) and (ii) consider the splitting of R" as the
orthogonal direct sum R" = V® V±. Let O(VΘ V^ denote the subgroup
of O(n — 1,1) which preserves V (and hence the splitting F θ V±). Then
O(VΘ F-1) is a direct product O(V) X O(V^\ where O(V) and O(KX) are
the respective orthogonal groups of the quadratic forms restricted to F and
V±. Let EiVΘV^ be the subgroup E(n - 1,1) generated by R*
O(VΘ V1-) and the group of translations T; clearly £ ( F Θ V1-) is the semidi-
rect product 0 ( F Θ F 1 ) IX T and the direct product E{V) X E{V^) where
E(V) (resp. E^)) is the group generated by O(V) (resp. (Kx)) and the
translations in F(resp. F x ) . Let/?: E(VΘ F x ) -> ̂ (F"1) denote the canonical
projection.

By another application of Selberg's lemma we may replace Γ by a subgroup
of finite index in order to assume the image of Γ under E(V θ F x ) -> O(F) is
torsion free.

We may consider the covering space M — R"/(Γ Π T) oί M. The action of
F on R" by translations defines an action of the /i-torus (& = dim F), Γ* =
F/(Γ Π Γ) on M. Indeed, M becomes a principal 7^-bundle over F x .
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2.5. Lemma. Γ V acts properly on Rn andp(T) acts properly discontinuously
on V±.

Recall that a group G acts properly on a space X if the canonical mapping
G X X -* X X X defined by (g, x) H> (gx, x) is proper. A group acts properly
discontinuously if and only if it acts properly when it is given the discrete topology.
We must show that for any two compact subsets Kλ, K2 C R" the set of all
vy E VT such that yvKx meets K2 is compact. To this end let F C V be a
compact subset which meets each Γ Π Γ-coset. (t>γ E V Γ | vyKx Π K2Φ 0 }
is a closed subset of the set F {γ E T\yKx Π K2^ 0}, which is compact
since Γ acts properly. It follows that Γ V — V Γ acts properly. Sincep(V) is
trivial and Γ is discrete in E(V θ V^\ it follows that P(T) is discrete in £ ( F ± )
and acts properly discontinously on V± . The proof of Lemma 2.5 is complete.

2.6. Next we show that the kernel of p: Γ -> ̂ (F"1) is precisely Γ Π R " =
KerL: Γ -> O(n — 1,1). For if γ E Γ, p(y) = 1 implies that γ acts as the
identity on V1-. Thus the induced action of γ on M preserves each 7^-fiber of
M -> V±. Since γ acts properly discontinuously on M, it must act properly
discontinuously on each Tk and hence its linear part is restricted to V. L(y)\v

must have finite order. But this implies L(γ) = 1 and hence γ is a translation.
We have thus proved: there is an exact sequence

and p(T) acts properly discontinuously on V±. In particular, Γ is virtually
poly cyclic if and only ifp(T) is.

2.7. We conclude the proof of 2.1 in case (i), when the Lorentz metric on
R" restricts to a positive definite form on V. Then V1- has a/?(Γ)-invariant flat
Lorentz structure and V/p(T) is compact. Since dimF"L< n, it follows from
the induction hypothesis that/?(Γ), and hence Γ, is virtually polycyclic.

2.8. Finally we consider case (ϋ): when V inherits a nondegenerate-but
nonpositive-form from Rn. In that case p(T) acts on V1- by Euclidean
isometries (for some Euclidean metric on F^). It follows from the classical
Bieberbach theorems (see e.g. Wolf [15, 3.2.1] or Auslander [1]) that such a
group is virtually abelian. Therefore, Γ is virtually polycyclic and the proof of
2.1 is complete.

3. Complete Lorentz flat manifolds with
indiscrete linear holonomy group

The purpose of this section is to complete the proof of virtual polycyclicity
of the fundamental group of a compact flat Lorentz space form.
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3.1. Theorem. Let Γ C E(n — 1,1) act properly discontinuously with R" a
compact quotient. Suppose that the linear holonomy group L(T) C O(n — 1,1) is
not discrete. Then Γ is virtually poly cyclic.

3.2. One of our principal tools is the following, for which a discussion may
be found in Raghunathan [14, 8.24].

Theorem. (Auslander [2]). Let Γ be a discrete subgroup of a semidirect
product G — A XI B, where A is a solvable normal subgroup. Let p: G -> B be
the canonical projection with kernel A. Then the identity component p(Γ)° of the
closure ofp(T) is solvable.

Using this fact we can now obtain
3.3. Proposition. Suppose Γ C E(n — 1,1) is a discrete subgroup and the

identity component L(T)° of the linear part L(T) C O(n — 1,1) is noncompact.
Then Γ is virtually poly cyclic.

Proof. By Auslander's theorem G — L(Γ)° is a connected closed solvable
subgroup of O(n — 1,1). Furthermore, L(Γ) normalizes G. By hypothesis, G is
noncompact and by 1.3(a) L(Γ) lies in the amenable subgroup N(G) of
O(n — 1,1). Thus Γ is a discrete subgroup of the Zariski-closed amenable
group N(G)\X T C E(n — 1,1) and by 1.1 Γ is virtually polycyclic. q.e.d.

3.4. Thus we know that a subgroup Γ C E(n — \,\) which acts properly
discontinuously on Rn with compact quotient is virtually polycyclic if either (i)
L(Γ) is discrete in O(n — 1,1) or (ϋ) the identity component of the closure of
L(Γ) is noncompact. We finish the proof of Theorem 3.1, and in the last
remaining case: under the assumption that L(Γ)° is compact.

By 2.2, G — L(Γ)° is solvable and in fact abelian (since it is also compact
and connected). By Lemma 1.3(b), either N(S) is compact or N(S) is con-
jugate to a subgroup of O(k) X O(n — k — 1,1) in such a way that S maps to
O(k). In the first case Γ lies in the amenable group N(S)P< T and must be
virtually polycyclic. Thus we may assume that SC0(A;)X{1} and L(Γ) C
N(S) C 0{k) X 0{n - k - 1,1).

Let p denote the composition

Γ ^ L ( Γ ) C O(k) XO(n-k-\,\)-*O(n-k- 1,1),

and Γ, denote its kernel. Then Γj is a properly discontinuous group of
Euclidean isometries; passing to a subgroup of finite index in Γ we may
assume Γ (and hence Γj) acts freely on R". Thus Rn/Tx is a complete flat
Riemannian manifold. By Wolf [15, 3.3.3], Rn/Tγ deformation retracts onto a
compact totally geodesic submanifold, which must be of the form F/Yλ, where
F is a Γ,-invariant affine subspace. Moreover, all the Tx -invariant affine
subspaces F such that F/Tx is compact are all parallel and their union is itself
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an affine subspace E of Rn. Since Γ\ is normal in Γ, the various F are permuted
by Γ and E is a Γ-invariant affine subspace. By Fried, Goldman & Hirsch [9,
2.1], £ = R".

Thus we may choose one F C R " upon which Tx acts as a Euclidean
crystallographic group; then Γ, acts as a Euclidean crystallographic group on
each coset x + F, x E Rn. It follows that all of the eigenvalues of elements of
L(Γj) are roots of unity. By Selberg's lemma, we may replace Γ by a subgroup
of finite index none of whose elements have eigenvalues which are roots of
unity except 1. Thus we may assume that Γ, consists of translations.

We claim now that L(Γ) must be discrete. Since S C O(k) X {1}, the image
p(Γ) is discrete in O(n - k - 1,1), i.e. L(Γ) C O(k) X O(n - k - 1,1) pro-
jects to a discrete subgroup of O(n — k — 1,1). Since L(T) — 1 whenever
p(γ) = 1, it follows that L(T) is discrete. By 1.1, Γ must be virtually poly-
cyclic.
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