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This ambitious paper develops the theory of higher Teichmüller spaces over a compact connected
oriented surface S with possibly nonempty boundary and punctures. These spaces generalize
the classical Fricke-Teichmüller spaces whose points parametrize isometry classes of complete
hyperbolic geometry structures on S, possibly with geodesic boundary.
Higher Teichmüller spaces originate with the moduli spaces LG,S of G-local systems over S,
whereG is a connectedR-split semisimple algebraic Lie group. Such a local system is equivalent to
a flat principalG-bundle over S. This, in turn, is equivalent to a conjugacy class of a representation
π1(S) ρ→G. The set Hom(π1(S), G) has a natural structure of an affine algebraic set over R, and
LG,S is its quotient (in the classical topology) by inner automorphisms of G.
The higher Teichmüller spaces involve some extra structure over the boundary, and correspond
to a remarkable class of representations. Let B denote a Borel subgroup (minimal parabolic
subgroup) of G and U its unipotent radical. A framing of a G-local system is a parallel section
of the associated flat G/B-bundle over ∂S. A decoration of a G-local system is a parallel section
of the associated flat G/U -bundle over ∂S, provided that the holonomy around each component
of the boundary is unipotent. Equivalently a framing (respectively a decoration) corresponds to,
for each component γ ⊂ ∂S, an element of G/B (respectively G/U ) invariant under ρ(γ). The
authors define moduli spaces XG,S of framed local systems and AG,S of decorated local systems,
each of which maps to LG,S . They conjecture that these two moduli spaces are dual when the
groupG is replaced by its Langlands dual. Specifically, this means that there is a basis of functions
on the framed moduli spaceXG,S parametrized by the points of the tropicalization of the decorated
moduli space AG,S , and vice versa.
The paper develops a structure on these moduli spaces similar to that of a toric variety, whereby
the space admits a dense open subset which looks like an affine torus (Gm)N with a natural
“symplectic geometry”. When ∂S = ∅, this is the symplectic geometry given by the general con-
struction in [W.M. Goldman, Adv. in Math. 54 (1984), no. 2, 200–225; MR0762512 (86i:32042)],
which was based on [M. F. Atiyah and R. H. Bott, Philos. Trans. Roy. Soc. London Ser. A 308
(1983), no. 1505, 523–615; MR0702806 (85k:14006)] for the analogous case that G is compact.
In the simplest case (G = PSL(2, R)), all three moduli spaces are the Fricke-Teichmüller space
T(S) of marked hyperbolic structures on S, the moduli space in question, and the symplectic
structure arises from the Kähler form of the Weil-Petersson metric on Teichmüller space.
When ∂S #= ∅, the moduli space AG,S of decorated local systems carries a natural degenerate
closed exterior 2-form. Its “dual” moduli space XG,S of framed local systems carries a natural
Poisson structure on LG,S . In the analogous case whenG is compact, these structures relate to the
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Poisson structures on moduli spaces considered by K. Guruprasad et al. [Duke Math. J. 89 (1997),
no. 2, 377–412; MR1460627 (98e:58034)] and the quasi-Hamiltonian moment maps considered
by A. Yu. Alekseev, A. Z. Malkin and E. Meinrenken [J. Differential Geom. 48 (1998), no. 3, 445–
495;MR1638045 (99k:58062)]. Closely related are the constructions, using quantum groups, of V.
V. Fok and A. A. Roslyı̆ [inMoscow Seminar in Mathematical Physics, 67–86, Amer. Math. Soc.
Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999; MR1730456 (2001k:53167)] and
Alekseev and Malkin [Comm. Math. Phys. 169 (1995), no. 1, 99–119; MR1328263 (96m:58028)]
The locally toric structure on these moduli spaces has a remarkable property: one component of
this space has a positive structure. From the viewpoint of the paper under review, the disconnect-
edness of the space Hom(π1(S), G) (corresponding to the moduli space LG,S of local systems)
arises from the disconnectedness of the Lie group R∗.
In the simplest case (G = SL(2, R)), the Fricke-Teichmüller space T(S) of marked complete
hyperbolic structures on S embeds as a connected component in the moduli space, defined by
real inequalities (conditions like |tr(ρ(γ))|≥ 2, for example). The dense open affine torus (Gm)N

then corresponds to the shearing coordinates developed by W. Thurston and by R. C. Penner
[Comm. Math. Phys. 113 (1987), no. 2, 299–339; MR0919235 (89h:32044)]. Since this plays a
fundamental role in this theory, we briefly review the construction.
The starting point for this theory is an ideal triangulation of S and the shearing coordinates on

T(S) first studied in this context by Thurston and Penner. The surface S, with a convex hyperbolic
structure, is decomposed into ideal polygons. (The first occurrence of this idea seems to be in the
1983 doctoral thesis of Lee Mosher [“Pseudo-Anosovs on punctured surfaces”, Princeton Univ.,
Princeton, NJ, 1983] written under the supervision of Thurston.) When S has cusps, then the
sides of the polygons may be simple geodesics which limit to the cusps. When ∂S #= ∅, then ∂S
is assumed to be a union of closed geodesics, and the sides of the polygon may spiral around
these closed geodesics, or other closed geodesics in the interior of S. The surface is reconstructed
from this finite set of polygons by identifying sides (which appear as shears), and these gluing
instructions furnish a convenient and computable set of coordinates for T(S). As first observed
by Penner [J. Differential Geom. 35 (1992), no. 3, 559–608; MR1163449 (93d:32029)], the Weil-
Petersson symplectic form has a remarkably simple expression in these coordinates. Penner’s
construction is based in turn on S. A. Wolpert’s theorem that Fenchel-Nielsen coordinates on
T(S) are canonical (Darboux) coordinates for the Weil-Petersson Kähler form [S. A. Wolpert,
Amer. J. Math. 107 (1985), no. 4, 969–997; MR0796909 (87b:32040)].
The shearing coordinates provide instructions to assemble a hyperbolic surface out of ideal 2-
simplices. The condition that the shear coordinates are positive implies that the union of ideal
2-simplices fit together to form a nonsingular hyperbolic surface. Otherwise the union is a hyper-
bolic surface folded along the geodesic 1-simplices. These correspond to representations in other
components of Hom(π1(S), G), and have been investigated by R. M. Kashaev [Math. Res. Lett.
12 (2005), no. 1, 23–36; MR2122727 (2005k:53164)].
Such ideal triangulations are related by sequences of mutations, whereby one edge is removed
and replaced by a geodesic with an alternate pair of endpoints, such as replacing one diagonal in
a quadrilateral by the other diagonal. The coordinates transform birationally, preserving the sym-
plectic geometry and the positivity. They define a groupoid, whose objects are ideal triangulations,
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and the morphisms are generated by the elementary moves. Because Mod(S) has only finitely
many orbits on the set of ideal triangulations, this group is a finite extension ofMod(S).
Fok and Goncharov show that this theory extends to all split real forms G. In their generalized
shearing coordinates, the elementary transformations are represented by rational functions whose
numerators and denominators are polynomials whose coefficients are positive integers. Therefore
inside the coordinate ring of the moduli space is a preserved subset of positive functions. Moreover
this positive structure on the moduli space determines a preferred subset of positive points, which
comprises a connected component in the classical topology of the set of R-points. From its
description this component is homeomorphic to a cellRN . This positivity was due to G. Lusztig in
his theory of canonical bases [in Lie theory and geometry, 531–568, Progr. Math., 123, Birkhäuser
Boston, Boston, MA, 1994; MR1327548 (96m:20071); in Algebraic groups and Lie groups, 281–
295, Cambridge Univ. Press, Cambridge, 1997; MR1635687 (2000j:20089)], and independently
to A. Zelevinsky.
The authors describe this in the general algebraic framework they call an orbi-cluster ensem-
ble. The ideal triangulations correspond to the seeds and the mutations which closely relate to
the cluster algebras developed by S. Fomin and Zelevinsky [J. Amer. Math. Soc. 15 (2002),
no. 2, 497–529 (electronic); MR1887642 (2003f:16050); Invent. Math. 154 (2003), no. 1, 63–
121; MR2004457 (2004m:17011); Adv. in Appl. Math. 28 (2002), no. 2, 119–144; MR1888840
(2002m:05013)]. As noted in the paper the relationship between cluster algebras and Penner’s
Weil-Petersson symplectic geometry on decorated Teichmüller spaces was independently dis-
cussed by M. I. Gekhtman, M. Z. Shapiro and A. Vainshtein [Duke Math. J. 127 (2005), no. 2,
291–311; MR2130414 (2006d:53103); correction, Duke Math. J. 139 (2007), no. 2, 407–409;
MR2352136 (2008f:53110)]. While the mutations for higher groups appear the same as for SL(2)
the expression of flips becomes increasingly complicated—for example for SL(3) flips require
four mutations.
Furthermore the action of the mapping class group Mod(S) on these spaces preserves all this
structure. Starting from the Poisson structure, the authors then develop a quantization of this
space, from which new actions and extensions of the mapping class group derive. This generalizes
earlier work in this direction by Fok and L. O. Chekhov [Teoret. Mat. Fiz. 120 (1999), no. 3,
511–528; MR1737362 (2001g:32034)]. Extending the mapping class group of a surface to a
groupoid generated by flips appears in earlier work of Penner [Adv. Math. 98 (1993), no. 2, 143–
215; MR1213724 (94k:32032); in Geometric Galois actions, 2, 293–312, Cambridge Univ. Press,
Cambridge, 1997; MR1653016 (99j:32024)]. These quantum representations of the mapping class
were an important motivation for this study, on which the authors have recently made progress
[Invent. Math. 175 (2009), no. 2, 223–286; MR2470108].
The symplectic form is also described in terms of the algebraic K-theory of the moduli space

AG,S of decorated local systems. The (possibly degenerate) closed 2-form defines an element of
K2 of the function field of AG,S . Its explicit description [see A. B. Goncharov, in I. M. Gel′fand
Seminar, 169–210, Amer. Math. Soc., Providence, RI, 1993; MR1237830 (95c:57045)] displayed
the canonical coordinate systems, which initiated this investigation. As Fok has pointed out to
the reviewer, pursuing this approach relates K3 of this field with volumes of simplices in the
symmetric space.
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The positive structure allows one to tropicalize this variety. In the simplest case, the tropical
points identify with measured geodesic laminations, whose projectivizations comprise Thurston’s
boundary for T(S). The relation between Thurston’s symplectic form on the measured lamination
space and the Weil-Petersson Kähler form is due to A. Papadopoulos and Penner [Trans. Amer.
Math. Soc. 335 (1993), no. 2, 891–904; MR1089420 (93d:57022); C. R. Acad. Sci. Paris Sér. I
Math. 312 (1991), no. 11, 871–874; MR1108510 (92e:57023)]. That Thurston’s spaces tropicalize
the real character variety is implicitly due to J. W. Morgan and P. B. Shalen [Ann. of Math. (2) 120
(1984), no. 3, 401–476; MR0769158 (86f:57011)] and is related to George Bergman’s logarithmic
limit set of an affine variety [Trans. Amer. Math. Soc. 157 (1971), 459–469; MR0280489 (43
#6209)].
For otherG, this defines a new structure, which deserves further study. In particular the extension
of Thurston’s theory of measured laminations on hyperbolic surfaces (such as train track coordi-
nates, earthquake deformations, bending, cataclysms) to higher Teichmüller theory raises many
fascinating questions. The paper under review treats the case of SL(n), but for the other split real
forms, the reader should consult the authors’ sequel [in Algebraic geometry and number theory,
27–68, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006; MR2263192 (2008b:22009)],
but the cluster theory for generalG is not given here.
When G = SL(3, R) this is the deformation space of convex RP2-structures on S, which was
discussed in the authors’ shorter paper [Adv. Math. 208 (2007), no. 1, 249–273; MR2304317
(2008g:57015)]. For compact surfaces this deformation space was shown to be a cell when S is a
compact surface with boundary by the reviewer [J. Differential Geom. 31 (1990), no. 3, 791–845;
MR1053346 (91b:57001)].
In general, the higher Teichmüller space coincides with the Teichmüller component (now called
the Hitchin component) of the space Hom(π, G)/G discovered by Nigel Hitchin [Topology 31
(1992), no. 3, 449–473; MR1174252 (93e:32023)]. Using gauge-theoretic techniques and a com-
plex structure J on S, Hitchin identified a connected component of Hom(π, G)/G with the
complex vector space of sections of a holomorphic vector bundle over the Riemann surface (S, J).
F. Labourie [Invent. Math. 165 (2006), no. 1, 51–114; MR2221137 (2007c:20101)] discovered
strong dynamical properties of the representations in Hitchin’s component, and proved that such
representations quasi-isometrically embed π1(S) in G, and in particular define isomorphisms of
π1(S) with discrete subgroups of G. O. Guichard [J. Differential Geom. 80 (2008), no. 3, 391–
431; MR2472478 (2009h:57031)] completed Labourie’s characterization of these representations.
Specifically the curve S1 f→ Pn is hyperconvex if for every collection x0, . . . , xn ∈ S1 consist-
ing of distinct points, the lines in Rn+1 corresponding to f(x0), . . . , f(xn) span Rn+1. Crucial
to this point of view is that the limit set of these groups is positive in the above sense; Labourie
established that these positive curves are Hölder regular, which is an important feature in this
theory.
Among the many intriguing questions raised in this paper is whether a representation π1(S)−→

GC (whereGC is the group ofC-points) which is close to a Hitchin representation inG determines
a pair of Hitchin representations into G, that is, a pair of points in the “higher Teichmüller
space”. The evidence for this conjecture is the classical case when G = SL(2, R), in which L.
Bers’s simultaneous uniformization for quasi-Fuchsian deformations of Fuchsian representations
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parametrizes quasi-Fuchsian surface groups [L. Bers, Bull. Amer. Math. Soc. 66 (1960), 94–97;
MR0111834 (22 #2694)]. Bers’s proof uses heavily the theory of quasiconformal mappings in
dimension two, a tool which seems very difficult to extend to this more general setting where
complicated integrability conditions are present.
Another provocative question arising from this theory is to what extent what the authors call
“Weil-Petersson” is a mapping class group invariant Kähler geometry on the higher Teichmüller
spaces.
Despite the length of the paper (211 pages), it is clearly written. The 30-page introduction is
particularly helpful for an overview of the theory. Although parts of the paper are somewhat
speculative, this paper contains a wealth of interesting new ideas and inter-relationships between
several areas of mathematics. Undoubtedly this work will strongly impact and inspire future
research.

Reviewed byWilliamGoldman
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Progr. Math., Birkhäuser, volume dedicated to V. G. Drinfeld, math.RT/0508408. MR2263192
(2008b:22009)

26. V. V. Fock and A. B. Goncharov, to appear.
27. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12

(1999), no. 2, 335–380, math.RA/9912128. MR1652878 (2001f:20097)
28. S. Fomin and A. Zelevinsky, Cluster algebras, I, J. Amer. Math. Soc., 15 (2002), no. 2, 497–529,

math.RT/0104151. MR1887642 (2003f:16050)
29. S. Fomin and A. Zelevinsky, Cluster algebras, II: Finite type classification, Invent. Math., 154

(2003), no. 1, 63–121, math.RA/0208229. MR2004457 (2004m:17011)
30. S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. Appl. Math., 28 (2002), no. 2,

119–144, math.CO/0104241. MR1888840 (2002m:05013)
31. A. M. Gabrielov, I. M. Gelfand and M. V. Losik, Combinatorial computation of characteristic

classes, I, II. (Russian), Funkts. Anal. Prilozh., 9 (1975), no. 2, 12–28; no. 3, 5–26.MR0410758
(53 #14504a)

32. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of
Mechanical Systems, revised edition of the 1941 Russian original.

file://localhost/mathscinet/pdf/410758.pdf?pg1=MR&amp;s1=53:14504a&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1896177.pdf?pg1=MR&amp;s1=2004a:20049&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1433132.pdf?pg1=MR&amp;s1=98i:22021&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1737362.pdf?pg1=MR&amp;s1=2001g:32034&amp;loc=fromreflist
file://localhost/mathscinet/pdf/965220.pdf?pg1=MR&amp;s1=89k:58066&amp;loc=fromreflist
file://localhost/mathscinet/pdf/417174.pdf?pg1=MR&amp;s1=54:5232&amp;loc=fromreflist
file://localhost/mathscinet/pdf/760998.pdf?pg1=MR&amp;s1=86h:58071&amp;loc=fromreflist
file://localhost/mathscinet/pdf/887285.pdf?pg1=MR&amp;s1=88g:58040&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1460391.pdf?pg1=MR&amp;s1=98d:14010&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1730456.pdf?pg1=MR&amp;s1=2001k:53167&amp;loc=fromreflist
file://localhost/mathscinet/pdf/2233852.pdf?pg1=MR&amp;s1=2233852&amp;loc=fromreflist
file://localhost/mathscinet/pdf/2349682.pdf?pg1=MR&amp;s1=2008k:32033&amp;loc=fromreflist
file://localhost/mathscinet/pdf/2263192.pdf?pg1=MR&amp;s1=2008b:22009&amp;loc=fromreflist
file://localhost/mathscinet/pdf/2263192.pdf?pg1=MR&amp;s1=2008b:22009&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1652878.pdf?pg1=MR&amp;s1=2001f:20097&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1887642.pdf?pg1=MR&amp;s1=2003f:16050&amp;loc=fromreflist
file://localhost/mathscinet/pdf/2004457.pdf?pg1=MR&amp;s1=2004m:17011&amp;loc=fromreflist
file://localhost/mathscinet/pdf/1888840.pdf?pg1=MR&amp;s1=2002m:05013&amp;loc=fromreflist
file://localhost/mathscinet/pdf/410758.pdf?pg1=MR&amp;s1=53:14504a&amp;loc=fromreflist


33. F. R. Gantmacher,M. G. Krein, Sur lesMatrices Oscillatores,C.R. Acad. Sci. Paris, 201 (1935),
AMS Chelsea Publ., Providence, RI (2002).

34. M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc.
Math. J., 3 (2003), no. 3, 899–934, math.QA/0208033. MR2078567 (2005i:53104)

35. M. Gekhtman,M. Shapiro and A. Vainshtein, Cluster algebras andWeil–Petersson forms,Duke
Math. J., 127 (2005), no. 2, 291–311, math.QA/0309138. MR2130414 (2006d:53103)
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