This is a review text file submitted electronically to MR.

Reviewer: W.M.Goldman Reviewer number: 014521

Address:

Math Dept. University of Maryland, College Park, Maryland 20742

Author: Loftin, John C.

Short title: Affine spheres and convex \mathbb{RP}^n -manifolds

Control number: 1 828 223 Primary classification: 53A Secondary classification(s):

Review text:

The present paper relates affine differential geometry to the study of (flat) real projective structures on manifolds.

An \mathbb{RP}^n -manifold is a manifold M with a distinguished atlas of coordinate charts to \mathbb{RP}^n with coordinate changes in the projective group $\mathbf{PGL}(n+1,\mathbb{R})$. Such a structure determines a projective equivalence class of projectively flat connections. Apart from exceptional cases (constant curvature Riemannian metrics) such a projectively flat connection will *not* be the Levi-Civita connection for a Riemannian structure. However, in some cases, one can find a canonical Riemannian metric on M with strong analytic properties related to the \mathbb{RP}^n -structure.

An \mathbb{RP}^n -manifold is *convex* if it is equivalent to the quotient Ω/Γ where $\Omega \subset \mathbb{RP}^n$ is a properly convex domain and $\Gamma \subset \mathbf{PGL}(n+1,\mathbb{R})$ is a discrete subgroup acting properly on Ω . The present paper identifies convex \mathbb{RP}^n -structures with structures arising in affine differential geometry and applies this correspondence to the moduli of \mathbb{RP}^n -structures on surfaces when n=2.

The basic object is an affine sphere, classically studied by Blaschke and others in the early twentieth century. An affine sphere is a strictly convex hypersurface in affine space satisfying a differential equation of Monge-Ampère type analogous to the Kähler-Einstein condition for Hermitian metrics on complex manifolds. The basic existence, uniqueness and regularity of solutions of this equation are due to Calabi, Loewner-Nirenberg, Cheng and Yau and others. In particular Cheng and Yau proved that every convex domain $\Omega \subset \mathbb{RP}^n$ determines an affine sphere asymptotic to the cone over Ω in \mathbb{R}^{n+1} (Complete affine hyperspheres I. The completeness of affine metrics, Comm. Pure Appl. Math. 33 (1986), 839–866). (This settles a conjecture of Calabi.) Using this correspondence, the author proves (Theorem 1) that every

convex \mathbb{RP}^n -manifold carries a canonical complete Riemannian metric h and two canonical projectively flat affine connections ∇ and $\bar{\nabla}$. The projectively flat connection ∇ is due to Blaschke, and the average $\hat{\nabla} = (\nabla + \bar{\nabla})/2$ is the Levi-Civita connection of h. Furthermore ∇ and $\bar{\nabla}$ correspond to dual \mathbb{RP}^n -structures, that is modelled on dual convex domains $\Omega, \bar{\Omega}$ in dual projective spaces. The two connections agree precisely when Ω is the interior of a hyperquadric, in which case the \mathbb{RP}^n -structure is a hyperbolic structure, via the Klein-Beltrami projective model of hyperbolic geometry.

In dimension n=2, the reviewer has defined (Convex real projective structures on compact surfaces, J. Diff. Geo. 31 (1990), 791-845) a deformation space $\mathcal{G}(S)$ parametrizing equivalence classes of convex \mathbb{RP}^n -structures on a compact surface S, and proved it to be diffeomorphic to \mathbb{R}^{16g-16} if S is closed orientable, and of genus g>1. Using the analytic machinery, this paper contains a sharp analytic proof of this result.

With the conformal structure induced by the canonical Riemannian metric h, the convex \mathbb{RP}^n -manifold M becomes a Riemann surface Σ . Following C.-P. Wang (Some examples of complete hyperbolic affine 2-spheres in \mathbb{R}^3 , Global Differential Geometry and Global Analysis, Lecture Notes in Math. vol. 1481, Springer-Verlag, New York (1991) 271-280), the affine differential geometry determines a holomorphic cubic differential $C \in H^0(\Sigma; K^3)$ (where K is the canonical bundle of Σ). Namely $Pick\ form\ \hat{\nabla} - \nabla$ is a tensor field in

$$\operatorname{Hom}(T\Sigma,\operatorname{End}(T\Sigma))\cong T^*\Sigma\otimes (T^*\Sigma\otimes T\Sigma)$$

which corresponds to a holomorphic cubic differential. As explained to us by F. Labourie, dualizing the Pick form with respect to h produces a symmetric 3-tensor in $\Gamma(S^3T^*\Sigma)$. The holomorphic cubic differential C is then the (3,0)-Hodge component of the complexified 3-tensor.

Thus the deformation space $\mathcal{G}(S)$ of convex \mathbb{RP}^2 -structures on S identifies with the total space of the holomorphic \mathbb{C}^{5g-5} -bundle over the Teichmüller space $\mathcal{T}(S)$ whose fiber over a point $\sigma \in \mathcal{T}(S)$ is the vector space $H^0(\Sigma; K^3)$ where Σ is the marked Riemann surface representing σ .

This approach closely relates to Hitchin's description of a component ${\mathfrak C}$ of the deformation space

$$\mathcal{D} = \operatorname{Hom}(\pi_1(S), \operatorname{SL}(3; \mathbb{R})) / \operatorname{SL}(3; \mathbb{R})$$

flat SL(3; \mathbb{R})-bundles (*Lie groups and Teichmüller space*, Topology **31** (3), (1992), 449–473). For a fixed conformal structure on S, Hitchin finds a component of \mathcal{D} which identifies with the complex vector space $H^0(\Sigma, K^2) \oplus$

 $H^0(\Sigma, K^3)$. Choi and the reviewer showed that \mathfrak{C} contains the equivalence classes of holonomy representations $\phi: \pi_1(\Sigma) \longrightarrow \mathrm{SL}(3;\mathbb{R})$ of convex \mathbb{RP}^2 -structures, that is, \mathfrak{C} equals $\mathcal{G}(S)$. (Convex real projective structures on closed surfaces are closed, Proc. A.M.S. 118 no.2 (1993), 657–661) Thus ϕ determines an element

$$Q \oplus C \in H^0(\Sigma, K^2) \oplus H^0(\Sigma, K^3).$$

The holomorphic quadratic differential Q is the Hopf differential of the (unique) ϕ -equivariant harmonic map of the universal covering space of Σ into the symmetric space of $\mathrm{SL}(3;\mathbb{R})$. When Σ is the conformal structure induced by the affine metric h, then this map is holomorphic and the holomorphic cubic differential is the one induced by the Pick form above.