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CHARACTERISTIC CLASSES AND REPRESENTATIONS 

OF DISCRETE SUBGROUPS OF LIE GROUPS 

BY WILLIAM M. GOLDMAN 

A volume invariant is used to characterize those representations of a count­
able group into a connected semisimple Lie group G which are injective and whose 
image is a discrete cocompact subgroup of G. Let IT be a discrete cocompact 
subgroup of G and consider the analytic variety Hom(7r, G) consisting of homo-
morphisms 0: TT —> G. Denote by K a maximal compact subgroup of G and 
X = K\G the associated symmetric space. Let M be the orbit space X/TT. 

(For convenience we shall henceforth assume that n is torsionfree: by 
Selberg's lemma [12] this may be accomplished by replacing TT by a subgroup of 
finite index. This insures that M is a compact smooth manifold having TT as its 
fundamental group. The case when n has torsion follows from the torsionfree 
case with minor modifications but these modifications need not concern us here.) 

To every representation 0 G Hom(7r, G) we associate a foliated bundle E^ 
over M with fibre X and structure group G (see e.g. [6] ). If co is a closed G-
invariant differential fc-form on X then we may spread co over the fibres of E^ 
(copies of X) to obtain a closed fc-form co^ on E^. We define co(0) = fj^f*^^ 
where ƒ is any section1 of E^. Moreover co(0) is independent of the choice of 
section. For example taking co to be the G-invariant volume form on X we 
obtain a real number u(0) which depends on 0. 

When X is even-dimensional the Chern-Gauss-Bonnet theorem implies that 
u(0) may be described as an Euler number, i.e. the self-intersection number of 
any section, which is a topological invariant of E^. When X is odd-dimensional 
this volume invariant is related to a more recent kind of topological invariant 
(based on bounded cohomology and due to Gromov [3] ) and is constant on 
the connected2 components of Hom(7r, G). 

The volume invariant satisfies an inequality 

(*) |u(0)| < volume(M) 

(where volume(Af) = |u(i)|, I: IT —> G is the identity). For G = PSL(2; R) we 
recover the famous inequality of Milnor [9] and Wood [17] bounding the Euler 
number of circle bundles over surfaces admitting flat structures. 
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CONJECTURE A. Equality holds in (*) if and only if 0 is an isomorphism 
of 7T onto a discfete subgroup of G. 

We state this as a conjecture since we know it presently except for certain 
G of rank 1. For G compact it is obvious. When R-rank((G) > 1 and n C G is 
an irreducible3 lattice the conjecture may be deduced from Margulis' "super-
rigidity" theorem [8] (see also [18]) as follows. Margulis proves, under the as­
sumptions on IT and G above, that unless a homomorphism 0: n —-• G is an iso­
morphism onto a discrete subgroup (in which case it differs from i by an inner 
automorphism) the image 0(7r) is precompact. In that case there exists h EG so 
that 0(7r) C h~ xKh whence 0(7r) fixes a point x GX. Letting ƒ be the section of 
EQ which is the leaf corresponding to x we obtain ƒ *co0 = 0 whence y(0) = 0. 

For G locally isomorphic to SO(n, 1) (X = hyperbolic «-space), Conjecture 
A may be proved along the lines of Thurston's generalization of Gromov's proof 
of Mostow rigidity [14, §6.4, pp. 6.15-6.18] (combined with [5] for the case 
n > 3). See also Gromov's Bourbaki seminar [4]. 

Now we specialize to the case G is locally isomorphic to PSL(2, R). For a 
detailed elementary proof of Conjecture A in this case see [2]. It is interesting 
to note that the number of values assumed by u(0), 0 G Hom(7r, G) is unbounded 
over all choices 7r-sharply contrasting the corollary of Margulis' theorem 
above. 

We will state a formula for the number of connected components of 
Hom(7r, G) in terms of the genus g of the compact Riemann surface M. It is a 
general observation that for T finitely generated and G an algebraic Lie group 
the space Hom(T, G) is an algebraic variety and has finitely many connected 
components4 — a fact already used in characteristic class discussions (Lusztig, 
see Sullivan [13] and Gromov [3]). 

THEOREM B. The map v: Hom(7r, PSL(2, R)) —> R induces an isomor­
phism of the set of connected components of Hom(7r, PSL(2, R)) onto {2im: 
n G Zand \n\ <2g- 2}. 

In particular there are 4g - 3 components. On the other hand there are 
only two irreducible components, in the sense of a real algebraic variety. Two of 
the connected components, corresponding to the maximum and minimum volume 
and related by changing the orientation of My consist entirely of faithful discrete 
representations.5 Each such component is the space investigated by Weil [15], 
which is a principal G-bundle over the Teichmüller space of M. 

3 When IT C G is not irreducible the conjecture follows once it is known for the 
irreducible factors of IT. 

4 This is also true if G is semisimple with finite center. 
5 In general the subset of Hom(7r, G) consisting of faithful discrete representations is 

closed (by. [ 7 ] , see also [11, 5.10]) and if n C G is cocompact also open (by [15], see 
also [14, 5.1]. 
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THEOREM C. Let G be the n-fold covering group ofPSL(2, R) and n the 
fundamental group of a surface of genus g. Then the number of connected com-
ponents of Hom(7r, G) is given by the following formula: 

2n2* + (4g - 4)/n - 1, ifn\ 2g - 2, 

2[(2g-2)/n] + 1, ifn+ig-2. 

Due to their special significance we briefly mention a few results concerning 
the components of Hom(7r, G) when n is a surface group but G is not locally iso­
morphic to PSL(29 R). For example Hom(7r, G) has two components for G = 
PSL(2, C) and SO(3) but Hom(?r, G) is connected for G = SU(2) (Newstead [10]), 
SL(29 C), and any 1-connected 3-dimensional Lie group. However if G is not 
an algebraic Lie group, then Hom(7r, G) may have infinitely many components: 
for the simplest example take G locally isomorphic to the Heisenberg group but 
not simply connected [2]. 
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