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Afflne manilolds with nilpotent holonomy 

DAVID FRIED, WILLIAM GOLDMAN, MORRIS W. HIRSCH 

Introduction 

An affine manifold is a differentiable manifold together with an atlas of 
coordinate charts whose coordinate changes extend to affine automorphisms of 
Euclidean space. These charts are called atline coordinates. A map between affine 
manifolds is called affine it its expression in affine coordinates is the restriction of 
an aftine map between vector spaces. Thus we form the category of affine 
manifolds and affine m_nps. 

Let  M be a connected affine manifold of dimension n-> 1, locally isomorphic 
to the vector space E. Its universal covering/~/ inheri ts  a unique affine structure 
for which the covering projection/~/--~ M is an aifine immersion. The group ~r of 
deck transformations acts on /V/by afline automorphisms. 

It is well known that there is an affine immersion D :/~5/--~ E, called the 
developing map. This follows, for example, from Chevalley's Monodromy 
Theorem; a proof is outlined in Section 2. Such an immersion is unique up to 
composition with an atiine automorphism of E. Thus for every g ~ "n" there is a 
unique affine automorphism a(g)  of E such that D o g  =ct(g)oD.  The resulting 
homomorphism a : ~r --~ Aft (E) from 7r into the group of affine automorphisms 
of E is called the affine holonomy representation. It is unique up to inner 
automorphisms of Aft (E). The composition A : 7r ~ G L  (E) is called the linear 
holonomy representation. The affine structure on M is completely determined by 
the pair (D, a) .  

M is called complete when D is a homeomorphism. This is equivalent to 
geodesic completeness of the connection on M (in which parallel transport is 
locally defined by affine charts as ordinary parallel transport in E). It is notorious 
that compactness does not imply completeness. 

The main results of this paper are about aftine manifolds whose affine 
holonomy groups a(Tr) are nilpotent. An important class of such manifolds are 
the affine nilmanifolds 7r\G. Here  7r is a discrete subgroup of a simply connected 
nilpoint Lie group G. It is assumed that G has a left-invariant afline structure; the 
space of right cosets of r then inherits an affine structure. 
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A tensor field on an affine manifold M is called polynomial if its components 
in affine cordinates are polynomial functions. In particular there is an exterior 
algebra of polynomial exterior differential forms on M, closed under exterior 
differentiation. 

Our main results are summarized as follows. 

T H E O R E M  A. Let M be a compact affine manifold whose affine holonomy 
group is nilpotent. Then the following conditions are equivalent: 

(a) M is complete 
(b) the developing map is surjective 
(c) the linear holonomy is unipotent 
(d) the linear holonomy preserves volume 
(e) the affine holonomy is irreducible 
(f) the alpine holonomy is indecomposable 
(g) M is a complete a~ne nilmanifold 
(h) M has a polynomial volume form 
(i) M is orientable and the de Rham cohomology of M is the cohomology of the 

complex of polynomial exterior forms. 

In Section 1 we collect several algebraic facts about affine representations and 
cohomology which will be used throughout the rest of the paper. In particular we 
introduce the notations of irreducibility and indecomposability of an affine 
representation. Section 2 is geometric and discusses affine structures and their 
holonomy and development.  The parallelism on an affine manifold is used to 
describe several classes of tensors which have special descriptions in affine 
coordinates. Left-invariant structures on Lie groups, which provide many exam- 
ples of affine manifolds, are introduced. 

In Section 3 we define another large class of affine manifolds: the radiant 
manifolds. These are characterized by the property that the affine holonomy has a 
stationary point. By choosing the origin to be such a point we identify the aftine 
holonomy with the linear holonomy. More generally, for any affine manifold M 
we define a cohomology class cM which vanishes when precisely M is radiant. This 
radiance obstruction is one of our principal tools. 

Section 4 uses the cohomology theory developed in Section 1 to obtain several 
results about nonradiant affine manifolds having nilpotent affine holonomy group. 

In Section 5 we prove a technical result about nilpotent linear groups. 
In Section 6, we prove the equivalence of (a)-(f) in Theorem A, using 

techniques of Section 4 and the technical lemma from Section 5. (See 6.11). 
Deformation of affine structures is discussed, and some solvable examples are 
given. 
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In Section 7 we prove that every compact  complete affine manifold with 
nilpotent fundamental  group is an affine nilmanifold, establishing (g) of Theorem 
A. Finally, in Section 8 we discuss polynomial tensors on attine manifolds with 
nilpotent holonomy, completing the proof of Theorem A. 

We have greatly profited from conversations with John Smillie. Many of the 
results here were first proved in his thesis under the assumption of abelian affine 
holonomy. We  are indebted to him for many valuable ideas. 

1. Afllne representations and cohomology o[ groups 

Throughout  this paper  E denotes the real n-dimensional vector space R", 
n -> 1. The group of linear automorphisms of E is G L  (E). An affine map E ~ E 
is the composition of a linear map and a translation. The group of atfine 
automorphisms of E is denoted by Aft (E). 

Let  g ~ Aft (E). There  are unique elements L ~ G L  (E) and b e E such that 
g(x) = Lx + b. We call L the linear part of g and b the translational part of g. 

Notice that L = dg(x), the derivative of g at x, for all x ~ E ;  and b = g(0). 
An affine representation of a group G is a homomorphism ot : G ~ Aft (E). 

For each g c G the affine automorphism a(g)  decomposes into a linear part  A(g) 
and a translational part  u(g). In this way E becomes a G-module  via h and 
u : G --~ E is a crossed homomorphism, or cocycle, for h: for all x ~ E, g, h e G, 

a (g) (x)  = A(g)x + u(g) (1) 

u ( g h ) =  u(g)+h(g)u(h) (2) 

Conversely, given any (linear) representation h : G --~ G L  (E), and u : G ~ E 
satisfying (2), formula (1) defines an affine representation of G having linear part  
h. 

It is readily verified that y e E is a stationary point for a - that is, a (g) (y)  = y 
for all g e G -  if and only if 

u(g) -- y - h(g)y (3) 

for all g e G. In this case u is called a principal crossed homomorphism, or a 
coboundary, and we write u -- By. It  is easily proved that u -- 8y if and only if a is 
conjugate to the linear action A by the translation Ty :E  -~ E, Ty(x)= x - y  (that 
is, h(g) = T~ oa (g)oT~ 1 for all g). 

We assume familiarity with the language of G-modules  and their cohomology 
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groups: whenever a linear representation it : G ~ GL (E) is given, E is called a 
G-module,  and vector spaces H i ( G : E x )  are defined for i = 0 ,  1 . . . . .  Often the 
subscript it will be omitted. The only G-modules we consider are defined by real 
finite-dimensional representations. 

Of primary interest are H ~ and H 1. By definition H~ : E~) is the space of 
stationary points of it, while HI(G;E~)  is the quotient space of crossed 
homomorphism for it modulo principal crossed homomorphisms. The element of 
H~(G; Ex) represented by u is the cohomology class of u, denoted by [u]. One 
may interpret H1(G; Ex) as the set of translational conjugacy classes of affine 
representations of G having linear part h. 

The radiance obstruction of c~ is the cohomology class c~ = [u]a  HI(G; E) 
where u is the translational part of a. The following simple observation will be 
very useful: ca = 0 if and only if ot is conjugate by a translation to its linear part; 
and also c~, = 0 if and only if a has a stationary point. 

Also of interest are the homology groups Hi(G; Ex), of which we need only 
Ho. For a general definition the reader is referred to Atiyah-Wall [3]. The 
homology group Ho(G; Ex) is by definition E/K where K is the linear subspace 
spanned by 

{ x - h ( g ) x  : x a E  and g a G } .  

Let  E* = H o m  (E, R) denote the dual space of E. The contragredient represen- 
tation of it is 

h '  : G ~ GL(E*)  
h'(g) : w ~ woh(g-1), w e E * .  

It is readily proved that H~ E*) and Ho(G; E) are dual vector spaces under 
the paring 

H~ E*) • Ho(G, E) ---, It 
(w, x + K) ~-> w(x) 

The following result, proved in Hirsch [20] (see also Dwyer [46]), will be used 
repeatedly: 

1.1. LEMMA. Let G be a nilpotent group and E a G-module. Then 
H~ E) = 0 implies Hi(G; E) = 0 for all i >-0. 
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From this we deduce: 

1.2. T H E O R E M .  Let G be a nilpotent group, E a G-module. Then the 
following are equivalent: 

(a) H~ E )  = 0,  
(c) Ho(G; E )=O,  

(b) H~  U*) = 0, 
(d) Ho(G; E*) = 0 

Proof. Suppose H~  E ) = 0 .  Let  Ho(G; E ) =  E / K  as before. The exact se- 
quence 0 ~ K ~ E ~ E / K  ~ 0 determines an exact sequence 

0 ---* H~  K) ~ H~  E)  ~ H~  E/K)  ~ HI(G;  K). 

Since H~  E)  = 0, by exactness, H~  K) = 0. By Lemma 1.1, H i (G ;  K) = 0, 
and now by exactness H ~  But G acts trivially on E/K, so 
H~ E/K)  = 0 implies E / K  = 0. Thus Ho(G; E)  = O. 

This proves ( a ) ~  (c). The other  implications follow from this and the dualities 

H ~  E*)  ---= Ho(G;  E)*, 
Ho(G;  E * ) =  H~  E)*. QED.  

1.3. C O R O L L A R Y .  Let G be a nilpotent group and E a G-module. I f  
H i ( G ;  E)~:O, then G leaves fixed a nonzero vector in E and a nonzero linear 

functional in E*.  

A G-module  E is unipotent if for every g ~ G the operator  g - I  is a nilpotent 
linear endomorphism of E (i.e. ( g - i ) n =  0 where n = dim E). We call an affine 
representation unipotent if its linear part defines a unipotent module. 

It is well known that E is unipotent if and only if E has a vector space basis in 
terms of which G is represented by upper triangular matrices all of whose 
diagonal entries are l ' s  (see e.g. Humphreys [23]). Even if E is not unipotent 
there is a unique maximal submodule Err c E upon which G acts unipotently, 
called the Fitting submodule. 

1.4. LEMMA.  H~  E]Eu) = O. 

Proof. If x + Eu ~ H~ E/Eu) ,  then the submodule spanned by x and Etj is 

unipotent. Hence x ~ Eu  by maximality. QED.  
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An affine representation a : G --~ Aft (E) is reducible if a(G) leaves invariant 
a proper  affine subspace Fo c E. Let  F c  E be the linear subspace of which Fo is a 
coset. Then a(G) permutes the cosets of F, so there is induced an affine 
representation G ~ Aft (ELF), having a stationary point at the coset F0. If a is 
not reducible it is called irreducible. 

An affine representation with a stationary point is called radiant. This is a 
special case of reducible (and also of decomposable, defined below). Every linear 
representation is a radiant affine representation, and every radiant representation 
is conjugate to a linear one by a translation. 

A reducible affine representation a may have the stronger property of being 
decomposable (compare Zassenhaus [45]). This means that there is a splitting 
E = E I ~ F ,  El ~:E, invariant under the linear part of a, with some coset of El  
invariant under ct. We call EIG)F a decomposition of a. The radiant case El  = 0, 
F =  E is allowed. If et does not have a decomposition, ct is indecomposable. 
Evidently irreducibility implies indecomposability. 

1.5. T H E O R E M .  Let a : G -e, Aft (E) be an indecomposable affine represen- 
tation of a nilpotent group G. Then a is unipotent. 

The proof of this theorem will be broken up into the following two results, 1.6 
and 1.7: 

1.6. LEMMA.  Let Eu c E be the Fitting submodule of the linear part of an 
a~ne representation ot of G. If G is nilpotent then some coset of Eu is invariant 
under ol(G). 

Proof. Let v : G --~ E be the translational part of a. It is easy to verify that the 
composition v ' : G - ~  E--~ E/Eu is a crossed homomorphism for the induced 
linear action )t' of G on E/Eu. Thus v' is the translational part of an affine 
representation a ' :  G --~ Aft (E/Eu) whose linear part is )t'. The natural projec- 
tion E --~ E/Eu is equivariant respecting (a, a').  

By Lemma 1.4, H~ so by Lemma 1.1, H1(G;E/Eu)=O be- 
cause G is nilpotent. In particular the radiance obstruction c~,~HI(G; E/Eu) 
vanishes. Therefore  ct '(G) fixes some x + Eu ~ E/Eu; this means that a (G) leaves 
invariant the coset x + Err. QED.  

Lemma 1.6 shows that the conclusion of Theorem 1.5 holds under the 
stronger assumption that a is irreducible. 

The  proof of 1.5 is completed by the following splitting theorem, 1.7. The 
analogue for Lie algebras is well known. 
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1.7. T H E O R E M .  I f  G is a nilpotent group and E a G-module  with Fitting 
submodule Eu, there exists a unique submodule F such that E = E u ~  F. 

Proof. Put E/Eu  = V. Let  [3 : G ~ G L  (V) be the induced representation. By 
1.4, H ~  V ) = 0 .  

Let  P : E ---* V be the canonical projection, which is equivariant. Let  S : V --~ 
E be a linear map such that PoS  = Iv, the identity map of V. 

A submodule F c  E is complementary  to Eu  if and only if F =  T(V)  where 
T : V ---* E is an equivariant linear map with po  T = Iv. Thus we must prove there 
is a unique such T. 

Any linear T :  V--* E with P o T = I v  can be uniquely expressed as T = R + S  

where R : V ~ Ev,  and T is equivariant if and only if 

R + S = g o (R  + S)ot3(g)-' 

o r  

R = goR o/3(g) -1 + goSo/3(g) --1 - S. (4) 

We must  prove there is a unique R satisfying (4). 
Define a linear action 3" of G on H o m  (V, Eu)  by 

3" : G ---* G L  (Hom (V, Ev)) ,  3"(g)(R) = goR o/3(g) -1 

and a cocycle u for 3' by 

u : G--~  H o m ( V ,  Et~), u ( g ) = g o S o [ 3 ( g ) - l - S .  

To see that u(g) maps V into Et~ notice that po  u ( g ) =  0 because P is equivariant 

and P o S = Iv. 
Now (4) says that R is a stationary point of that affine action ~ of G on 

Hom (V, Eu)  defined by 3" and u. Thus we must prove that ~ has a unique 
stationary point. This will follow from 1.1 and 1.2 if we prove that 

H ~  H o m  (V, Eu))  = 0 .  
To  this end suppose R : V ~ E v  is fixed under all 3'(g), i.e., suppose 

g o R = R o / 3 ( g ) ,  all g ~ G .  (5) 

Let d = dim Eu. Since g I Eu  is unipotent,  for all gl . . . . .  ga 6 G we have 

(I  - g~) . . . . .  ( I -  g~) I E v  = O. 
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From this and (5), R vanishes on the linear span in V of all vectors of the form 

[ x - t 3 ( g ~ ) ] . . .  [ I -  t3(gl)]x, x ~ v .  (6) 

Hence  it suffices to prove every vector in V is a linear combination of vectors of 
the form (6). This will be  evident if we show that V is spanned by vectors of the 
form [ I - / 3 ( g ) ] x ,  i.e., that Ho(G, V ) =  0. But  this follows f rom H~ V ) =  0 and 
1.2. QED.  

An alternative proof  of 1.7 can be based on the analogous result about  Lie 
algebras, by passing to the Lie algebra of the identity component  of the algebraic 
closure of G in G L  (E). 

2. Development, holonomy and parallelism 

Let  M denote  an n-dimensional  manifold, n -> 1. We shall always assume M is 
connected and without boundary.  

An alfine atlas �9 on M is a covering of M by coordinate charts such that each 
coordinate change between overlapping charts in q~ extends to an affine auto- 
morphism of E = R". A maximal affine atlas is an affine structure, on M, and M 
together  with an affine structure is an affine manifold. Each chart in the affine 
structure defines a~ne coordinates. 

Let  M be an affine manifold. Let  5e denote  the sheaf of germs of affine 
coordinate systems on M. The  germ at x e U of the affine chart f : V --~ E is 

denoted by [f]~. 
The  group Aft  (E) acts stalkwise on Se by composition of germs: g e Aft (E) 

sends [f]x to [gof]~. It  is easy to see that Aft (E) acts simply transitively on stalks. 
In fact 5" is a principal Aft (E)-bundle  over M when Aft (E) is given the discrete 

topology. 
The  following result, whose proof is left to the reader,  gives another  descrip- 

tion of 5". 

2.1. T H E O R E M .  5e is a disconnected covering space of M. I f  [fl]~, [f2]~ e 5e 
are a~ne coordinate germs at x ~ M, there is a deck transformation taking [1 to f2, 
induced by composition with a unique affine automorphism of E. Thus the group of 
deck transformations acts transitively on each fibre of 5e, and the components of 5 v 
are isomorphic as covering spaces of M. These covering spaces are regular. 
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We fix one component  of S ~ and call it the holonomy covering space l(ff of M. 
There is a canonical immers ion /~  : AT/~ E which assigns f(x) to the germ ~]~. 
This immersion is affine in the sense that in affine coordinates, it appears as an 
affine map. 

Let  r denote  the group of deck transformations o f / ~ / ~  M. An element g e F 
sends [f]~ to [&(g)o[]x, where &(g) is the affine automorphism of E determined by 
g. The  resulting map & : F ~ Aft (E) is a faithful affine representation of F on E. 
It is easy to see that / )  is equivariant respecting o~, i.e., for each g e F the 
following diagram commutes: 

~  

g I ~6(g) 
/f/ ~  

Now let p :/~f --+ M be a universal covering, and fix a lift of p to a covering 
/~ :/~/-->/~/. Denote  by D : AT/--> E the composi t ion/9  o lfi; we call D the develop- 
ing map of the affine manifold M. We g ive /~ / the  affine structure inherited from 
M; then D : AT/~ E is an affine immersion. 

Let  ,r denote  the group of deck transformations of M --> M. Choice of a base 
point in AT/ identifies 7r with the fundamental group of M. Since /~/-->/~/ is a 
regular covering, there is a natural surjective homomorphism 7r --~ F with respect 
to which /~ / - -+ /~ / i s  equivariant. 

Denote  by ot : 7r --~ Aft (E) the composite homomorphism 7r --~ F ~-+ Aft (E). 
We call a the a~ne holonomy of M. The image ot ( , r ) c  Aft (E) is isomorphic to F; 
it is called the a~ne holonomy group of M. It is clear that D:AT/--> E is 
equivariant respecting a. 

The definitions of D and a depend on various choices of covering spaces. But 
once the universal covering / ~ / ~  M is fixed, changing /~/ or the lift /~/--~ h~/ 
changes D only by composition with an element of Aft (E);  and it changes a by 
conjugation with that element. 

Let  k : 7r -~ G L  (E) be the homomorphism assigning to each g ~ 7r the linear 
part of a(g) .  We call 2, the linear holonomy; it is well defined up to conjugation 
by an element of G L  (E). 

We shall assume when discussing an affine manifold M that a developing map 
D :/~/--~ E has been selected. The afline and linear holonomy representations 
are then determined. 

This somewhat abstract description of holonomy can be brought down to earth 
by working through the definitions. In terms of loops on M based at Xo ~ M, the 
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homomorphism 

a : ~rl(M, Xo) ---> Aft (E) 

can be described as follows. Let  s : [ 0 ,  1]---> M be a loop at Xo, representing 
[s]~1rl(M, xo). Subdivide [0,1]  by 0 = t o <  " ' "  < t ~ = l ,  so that for each i =  
1 . . . . .  m there is an a/fine chart ~ ,U~) with s:[ti_l, ti]-->Ui. (The choice of 
(fo, Uo) determines a component  of 5~ Let  Vj be the component  of f~(U i f3 Ui+l) 
that contains f~(s(ti)), j = 1 . . . . .  m - 1. There is a unique A~ e Aft (E) such that 

= A j  o n  j = 1 . . . . .  m .  

Then 

a ( s )  { Am~ . . . .  A l i f m - - 2  

[ ] = the identity map I of E if m = 1. 

We emphasize that there is some freedom of choice in the developing map D. 
In practice we shall alter D only by composing it with a translation of E. 

The  a/fine manifold M is complete if D maps/~/homeomorphica l ly  onto E. In 
this case we can take /~/= E. The a/fine holonomy is then an inclusion 7r 
Aft (E) of a discrete subgroup which acts freely and properly discontinuously on 
E. Thus M is identified with the orbit space E/zc. 

M can be compact without being complete, e.g. the 1-dimensional a/fine 
manifold R+/{2"}. Examples have been constructed of compact a/fine manifolds 
whose developing maps fail to be covering-space projections into their images 
(see also Section 3). 

The  following result illustrates the interplay between the topology of an a/fine 
manifold, its developing map, and its a/fine holonomy representation: 

2.2. T H E O R E M .  Let M be a compact complete affine manifold. Then the 
affine holonomy representation is irreducible. 

Proof. Let M =  E/Tr. Suppose F e E  is an a/fine subspace invariant under ~r. 
Then F is the universal covering of F/1r. Both F/'tr and E/Tr are Eilenberg- 
MacLane spaces of type K(~r; 1). The  inclusion F[~r ---> E/~r induces an isomorph- 
ism of fundamental groups and is therefore a homotopy equivalence. Since F/1r 
and E/~r are compact manifolds it follows that dim F/~r = dim E[1r. Hence  F = E. 

QED.  
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On an affine manifold M there is a natural linear connection V having zero 
curvature and torsion: in affine coordinates it appears as the standard connection 
on E. Covariant  differentiation in M corresponds to ordinary differentiation in E. 

It  is proved in Auslander and Markus [9] that an affine manifold M is 
complete if and only if the connection V is geodesically complete. 

The operat ion of parallel transport  of a tensor along a path in M depends only 
on the homotopy  class of the path (fixing end points). This corresponds to 
ordinary parallel transport  in E in successive affine charts. 

A tensor (field) T on M is parallel if its covariant derivative vanishes. This 
means that in every connected affine chart the components  of T are constant. 
Equivalently, the induced tensor field on / ( ' / i s  the pullback by the developing map 
of a constant tensor field To on E. Thus To is an element of the tensor algebra 
T(E) which is fixed under the induced action of the linear holononomy group on 
T(E). In every affine chart T appears  as To. 

We shall be particularly concerned with parallel vector fields, parallel 1-forms, 
and parallel volume elements. A parallel vector field on M corresponds to a 
vector in E which is stationary under the linear holonomy. The set of such vectors 
is H~ E). A parallel 1-form corresponds to a linear map E ~ R stationary 
under  the contragredient action, i.e. an element  of H~ E*). A parallel volume 
form is a nonzero exterior n- form on E stationary under the induced action of the 
linear holonomy group on A"E*. Since this action is precisely the determinant  of 
the linear holonomy, M has a parallel volume form if and only if the linear 
holonomy A has determinant  identically one, i.e. when A is a representation in the 
special linear group SL (E). 

The condition that an affine manifold M have a parallel volume form is an 
extremely useful one. We refer to it by saying that  M has parallel volume. 

A basic conjecture,  going back to Markus [28], is that a compact  orientable 
affine manifold has parallel volume if and only if it is complete.  This is trivially 
true for flat Riemannian manifolds. Furness and Fedida [15] prove it for fiat 
pseudo-Riemannian  tori in dimensions <--3. In his thesis [38] Smillie proves the 
conjecture in the case of abelian affine holonomy; for nilpotent affine holonomy it 
follows from 6.6 and 6.8 below. 

More general than parallel tensors are polynomial tensor fields. By these we 
mean  tensor fields on affine manifolds whose coefficients in affine coordinates are 
polynomials. A tensor field T is polynomial  of degree < p  if and only if the 
i terated covariant derivative Vo, o . . . .  V~,(T) vanishes for all v o . . . . .  V 1 ~ M~, all 
x e M. (Here  V is the covariant differentiation associated to the affine structure.) 

Many examples of affine manifolds come from left-invariant affine structures 
on Lie groups. If G is a Lie group, an affine structure on G is left-invariant if for 
each g ~ G the operat ion Lg : G ~ G of left multiplication by g is an automorph-  
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ism of the affine structure. In other words, in atone coordinates Lg is expressed by 
an afline map. 

The development  map of such a structure blends together with left multiplica- 
tion in a remarkable way. Suppose G is simply connected; let D : G -o  E be the 
developing map. For  each g e G there is a unique afline automorphism a(g)  of E 
such that the following diagram commutes: 

D 
g ; E  

L" 1 1 ~(g) 

G ,,,,~ >E  

Clearly ct : G --~ Aft (E) is an affine representation. In particular a(G) preserves 
the connected open set D ( G ) c E ,  and acts transitively on it. Conversely if 
dim G = dim E and a : G ~ Att (E) is an affine representation having an open 
orbit U--D(G)xo for some xoeE,  then there is a unique left-invariant al~ne 
structure on G whose developing map is given by 

D : G -'-> U c E ,  D(g)=a(g)xo. 

Notice that when Xo = 0 e E, D is just the translational part of the affine represen- 
tation. 

The left-invariant afline structure on G is complete precisely when a is a 
simply transitive affine action of G on E. In this case a is evidently irreducible. 

Let D : G  ~ E be the developing map of a left-invariant atone structure. 
Then D : G ~ D(G) is a covering space, so the structure is complete if and only 
if the action of G on E is transitive. It is known that in this case G must be 
solvable (Auslander [6], Milnor [31]). It is conjectured that every solvable Lie 
group has such a structure. 

For  examples of left-invariant affine structures see Auslander [6], [7]; 
Scheuneman [35], [36]; and Section 6. 

Suppose now that F is a discrete subgroup of G, where G has a left-invariant 
affine structure. Then the homogeneous space F/G of right cosets inherits an 
affine structure. When G is a simply-connected nilpotent Lie group, F \ G  is called 
an afline nilmanifold. 

An affine representat ion ot : G ~ Aft (E) is conveniently presented by the 
linear representation 

a ' :  G ~ G L ( E x R ) ,  
ct' : (g) : (x, t) ~-~ Qt(g)x + tu(g), t) 

where k is the linear part and u the translational part of a. 
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As an example take G = R 2 (the group) and E = R 2 (the vector space). An 
affine representation ~b : G ~ Aft (E) is defined by 

S 

The associated linear representation on R 3 assigns to (s, t) ~ G the matrix 

It is easy to verify that d~(G) acts simply transitively on E ;  thus ~b defines a 
left-invariant affine structure on G. The developing map D : G ~ E defined by 
evaluation at 0 is the translational part of d~: 

D(s, t)= [(sZ/~)+ t] . 

The left-invariant vector fields on G are spanned by 313t and O/Os; in the affine 
coordinates on G defined by D these correspond respectively to O/Ox and 
y(O/Ox +O/0y). The integral curves of O/Ox are horizontal lines; those of y(O/Ox + 
0/Oy) are the parabolas y2_  2x = constant. 

The functions y and y2_  2x on E transform under G by addition of constants. 
Therefore  the 1-forms dy and y dy - dx are the expression in affine coordinates of 
left-invariant 1-forms on G. 

The vector field O/Ox and the form dy (on E)  are translation invariant; hence 
they correspond respectively to a parallel vector field and a parallel 1-form on G. 

Since the linear part of a preserves the area 2-form dx ̂  dy on E, this form 
defines a parallel 2-form on G. 

For  every uniform discrete subgroup F c G we get a complete affine 2- 
manifold F\G diffeomorphic to the 2-torus T 2. By Nagano and Yagi [32] and 
Kuiper [26] these are the only complete structures on T 2 other  than the flat 
Riemannian structure Z2\R 2. 

The  choice of F, however, is crucial. For example it is easy to see that F\G 
has a dosed  geodesic (= 1-dimensional affine submanifold) if and only if F 

contains a pure translation q~(0, to), to ~ 0. 
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There  are many incomplete affine nilmanifold structures on T 2. For example, 
for each a-> 0, b > 0 there is a radiant affine representation 

qla.b : G -~ G L  (R 2) c Aft (R2), 

(s, t) _.>exp [ 0 as+bt] 

Each of these actions is simply transitive on the upper half-plane. 
For  each t~ > 0, v > 0 radiant actions are defined by 

0..v : G ~ GL (R 2) c Aft  (R2), 

These are all simply transitive in the first quadrant. 
Some other  examples are given below after the proof of Theorem 6.4, and in 

6.7. 
By assuming that an affine structure is compatible with a complex structure on 

a manifold one defines the notion of an affine complex manifold. (An affine 
structure is compatible with a complex structure if and only if the associated flat 
affine connection is holomorphic with respect to the complex structure; alterna- 
tively a complex structure is compatible with an affine structure if and only if the 
associated almost complex structure is a parallel tensor of type (1, 1). It is easy to 
see that these two notions are equivalent.) All the results in this paper apply to 
such manifolds. 

It is interesting to note that Fillmore and Scheuneman [11], Suwa [41], and 
Sakane [34] have proved, independently, that every complex surface having a 
complete afline complex structure has a finite cyclic covering which is a complex 
affine nilmanifold. For references and more information on these structures in the 
complex case the reader  is referred to Gunning [19] and  Inoue-Kobayashi-Ochiai  
[24]. 

Smillie [38], Auslander [6] and Milnor [31] relate affine structures to matrix 
algebras. See Matsushima [29] for a connection between affine structures on 
homogeneous complex manifolds and algebras. 
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3. Radiant manifolds and parallel tensors 

In this section we study affine manifolds whose affine holonomy has a 
stationary point; we call such manifolds radiant. 

There  are many examples of radiant manifolds: certain affine nilmanifolds; the 
Hopf  manifolds; the cartesian product  of any compact  surface and the circle. On 
the other hand the affine structures of radiant manifolds have rather special 
properties.  There  are no complete radiant manifolds (except for vector spaces), 
and they tend to have few parallel tensors. In a sense they are at the opposite 
extreme from complete affine manifolds. 

We begin by defining the radiance obstruction for any affine manifold. This 
will play a key role in the analysis of nonradiant  affine manifolds in Section 4. 

M always denotes a connected n-dimensional affine manifold, n-> 1, with 
local affine coordinates in the vector space E = R " .  We fix a universal cover 
p : AT/~ M, with group of deck transformations It. Let  D : AT/---> E be a develop- 
ing map for M and a : ~r ~ Aff (E) the corresponding affine holonomy represen-  
tation (defined in Section 2). The  linear part  of a is the linear holonomy 
~, : 7r -+ G L  (E), and the translational part  a is the cocycle u : zr --* E for A. 

The radiance obstruction of M is the cohomology class 

c~ = c~ ~ Hi( I t ,  E~,), 

where c~ = [u] is the radiance obstruction of the affine representation a (defined 
in Section 1). This cohomology class depends only on the affine holonomy of M 
(assuming the universal covering space AT/---> M has been fixed), and not on the 
choice of the developing map.  To  see this let ~ : Aff (E) -+ Aft (E) be the identity 
affine representation. Let  

a *  : H i (Af t  (E); E)  ~ Ht(~r; E)  

be the homomorphism induced by a. Let  c ,~Ht (A f f (E) :E)  be the radiance 
obstruction of ~; then a*c~ = cM. Let c~ be the radiance obstruction correspond- 
ing to a different developing map D '  : AT/--> E. There  exists g e Aff (E) such that 
D ' = g o D ,  and one verifies that c/~=g#c+, where g# is the automorphism of 
H t (Af f  (E);  E)  induced by conjugation by g. But it is well known that g# is the 

identity, hence c~t = cM. 
In a forthcoming paper  [14] we shall discuss the radiance obstruction in more 

detail. 
I t  follows from the results of Section 1 that cM = 0 precisely when a ( , r )  has a 

stationary point in E. In this case we call M a radiant manifold. We can compose 
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the developing map with a translation of E so that  the stationary point is the 
origin, i.e., a takes values in G L  (E). In this case a = h. 

Since a nontrivial group of deck transformations cannot  have a stationary 
point (1) we see that a complete affine manifold is not radiant unless it is aflinely 
isomorphic to a vector space. 

When M is radiant we shall tacitly assume that the origin in E is stationary 
under  a(~').  In this case a(1r) fixes the radiant vector field R = ~x~0/0x~ on E. 
There  is a unique vector field )~ on /~ /wh ich  is D-re la ted  to R. Clearly X is fixed 
under  It; therefore X is p-related to a vector  field X on M, called the radiant 
vector field of M. 

I t  is easy to find examples of such manifolds. The  simplest examples are Hopf  
manifolds: these are the orbit  spaces (E-{0})/ ' t r  where ~r c G L ( E )  is the cyclic 
subgroup generated by an expansion A ~ G L  (E), i.e., the eigenvalues of A all 
have absolute value greater  than 1. For another  example,  the Cartesian product  of 
a compact  orientable surface 2 of genus ->2 and the circle S 1 can be given a 
radiant affine structure as follows. Use one of the well known faithful representa-  
tions of ~rl(~) as a discrete subgroup of SO (1, 2) to obtain a properly discontinu- 
ous free action of -rrl(2~) on one sheet of a two-sheeted hyperboloid H c R 3 - 0 .  

Let  Z c G L  (R ~) be generated by kI where 0 < k <  1. Then , r~(Z)x Z acts freely as 
deck transformations on a component  of the interior of the light cone; the orbit  
space is Z • S 1. 

There  are many  radiant affine structures on the product  of a closed surface of 
genus -> 1 and a circle, for which the developing map is not a covering-space 
projection o f / ( / o n t o  its image. This phenomenon  was discovered by Thurston 
(see [40]) and independently by Smillie [38]. The developing image of such a 
3-torus is the complement  of the three coordinate axes in R3; for the product  of a 
surface of genus -> 2 and a circle, the developing map can be onto the complement  
of the origin. On the other  hand, we know of no example of a compact  afline 
manifold whose developing map is surjective but which is not complete (compare 
Theorem 6.9). 

3.1. THEOREM. A compact radiant manifold does not have a parallel volume 
form. 

Proof. Suppose M is radiant with a parallel volume form. A trivial computa-  
tion in affine coordinates shows that  the flow of the radiant  vector field increases 
volume. Hence  M cannot be compact.  QED.  

l In fact no element of the group (except the identity) can have a fixed point. It follows easily that 
every element of the linear holonomy of a complete afline manifold has 1 as an eigenvalue. This might 
be called "Hirach's principle", following Sullivan [39]. 
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3.2. T H E O R E M .  A compact radiant manifold M does not have a nonzero 
parallel 1-form. 

Proof. Let  r : E --~ R be a linear map invariant under the linear holonomy. 
Then o~ is also invariant under the a/fine holonomy. Therefore  the composite map 

M ~ - ~ R  

covers a map f : M  ~ R. Let x ~ 1(,t cover a local minimum point of f. Then 
D(x) ~ E is a local minimum point of o,  so o, being linear, must be identically 
zero. QED.  

There  are numerous compact radiant manifolds having parallel line fields, for 
example a Hopf  manifold (E-{0})/Tr, where w c G L ( E )  is a cyclic subgroup 
generated by an expansion having a real eigenvalue. 

With later applications in mind we prove the following result about decompos- 
able a/fine manifolds. Note that in the case of radiant manifolds (El  = 0) it shows 
that any point fixed by the a/fine holonomy action lies outside the developing 
image (this was first stated by Nagano-Yagi [32] but their proof is incorrect). Thus 
the radiant vector field on a compact radiant manifold is nonsingular. 

3.3. T H E O R E M .  Suppose M is a compact affine manifold with decomposable 
holonomy, say E = EI ~ F with E~ a-invariant and F A-invariant, F ~ O. Then each 
component of M 1 = p(D-1E1) is incomplete. 

Proof. Clearly M1 is an affine submanifold of M. Assume a component  N of 
M1 is complete. 

Consider the a-invariant  vector field S(x, y ) =  (0, y) on E = EI~)F. Then S is 
D-re la ted  to a rr-invariant vector field t )  on /~ /which  induces a vector field Q on 
M. By the compactness of M, the vector fields Q and 0 are integrable for all time 
and determine flows (b, and ~t on M and M respectively. If the linear flow 
determined by S is denoted ~,, we have ~ ,oD = D o l t .  

Suppose N c M  is a component  of p-lE~. Then D [ / Q  is a homeomorphism 
onto E 1 by completeness. 

The submanifold E1 c E is a repellor for the flow tkt. It follows that /Q is a 
repellor for the flow ~t. Let  B = { x ~ M : ~ b t x - - ~ / V  as t ~ - o 0 }  denote the 
repelling basin of/Q. 

Now D :/Q---~ E1 is a homeomorphism and D :/~/---~ E is a local 
homeomorphism. It follows that D maps a neighborhood B o c B  of /V 
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homeomorphically onto a neighborhood W c  C of El. Therefore D maps ~,(Bo) 
homeomorphically onto ~t(W) for all t-> 0. Since U,>0 ~t(w) = E it follows that D 
maps Ut>o ~t(Bo) homeomorphically onto E. This implies that D : / ~ / ~  E is a 
homeomorphism. Therefore M is complete, in contradiction to Theorem 2.2. 

QED. 

4. Afllne manifolds with ni]potent holonomy 

In this section we begin to exploit the assumption of nilpotent affine holonomy 
group. The same notation and conventions as in Section 3 are used. 

4.1. THEOREM. Let M be a compact affine manifold with nilpotent affine 
holonomy group. Then the following conditions are equivalent: 

(a) M is not radiant; 
(b) M has both a nonzero parallel vector field and a nonzero parallel 1-form. 
(c) H~('tr; E ) ~ 0 .  

Proof. (a)ff(b): Nonradiant means cM~0, 
H~ E) y~ 0 and H~ E*) ~ 0, which is (b). 

(b)~(a): follows from 3.2. 
(c)r (b): follows from 1.3. 

so HI(~r ;E)~0.  By 1.3, 

QED. 

Notice that the implication (a)ff (b) in 4.1 is valid even without compactness. 

4.2. THEOREM. Let M be a compact nonradiant affine manifold having 
nilpotent affine holonomy group. Then M fibres over the circle S 1. 

Proof. A nonzero parallel 1-form on M is a nowhere-vanishing closed 1-form. 
It is well known that the existence of such form implies that M fibres over S 1 
(Tischler [42]). QED. 

We conjecture that 4.2 holds even if M is radiant. 
As a corollary of Theorem 4.1 and the nonsingularity of radiant vector fields, 

we see that a compact affine manifold with nilpotent affine holonomy group has 
Euler characteristic zero. This also follows from Hirsch-Thurston [22]; to use this 
result, it suffices that the linear holonomy group be solvable. Kostant and Sullivan 
[25] have shown that every complete compact affine manifold has zero Euler 
characteristic. It has long been conjectured that every affine manifold (except R ~) 
which is complete or compact has zero Euler characteristic. (In the noncompact 



AFFINE MANIFOLDS VClTH NILPOTENT HOLONOMY 5 0 5  

case the Euler  characteristic is defined as the alternating sum of the Betti 
numbers,  which are conjectured to be finite.) 

We now concentrate attention more  directly on the holonomy representation. 

An immediate consequence of Theorem 1.5 is: 

4.3. T H E O R E M .  Let M be an a]fine manifold whose affine holonomy rep- 
resentation is nilpotent and indecomposable. Then the linear holonomy representa- 
tion is unipotent. 

Little is known about  the structure of noncompact  complete affine manifolds, 
even those with nilpotent holonomy (but see Milnor [31]). The following result 
shows the importance of unipotent in this case. 

4.4. T H E O R E M .  Let M be a noncompact complete affine manifold with 
nilpotent affine holonomy group. Then M is a fiat affine vector bundle over a 
complete affine manifold with unipotent linear holonomy. 

Proof. Let  Eu c E be the Fitting component  of the linear holonomy. We may 
assume E u  invariant under a(Tr). By 4.1 M has a nonzero parallel vector field, so 
E v ~  0. 

By the splitting Theorem 1.7 there is a decomposit ion E = E v ~ F  of a.  The 
vector bundle is 

q : M = E /a (# )  --~ Eu/a('tr), 

with total space M, base space Eu/a( r r ) ,  and fibre F. It  is easy to see that there 
are local trivializations 

fi : q- l (Wi)  "+ Wi • F 

over an open cover {Wi} of EJa(zr ) ,  which are affine isomorphisms, and whose 
transition functions gij : W~ ~ G L  (F) are constants. Thus the bundle is fiat. 

QED.  

5. Niipotent G-modules without expansions 

The purpose of this section is to prove the following technical result. It  will be 
used in Section 6 to prove  the existence of expansions in the linear holonomy of 
certain compact  affine manifolds. 

Recall that E = R", n -> 1. 
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5.1. LEMMA.  Let G be a nilpotent group and E a G-module. Suppose that G 
does not contain an expansion of E. Then for every integer r >-0 there exists a C" 
map �9 : E ~ Ill with the following properties: 

(a) ~ > 0 almost everywhere; 
(b) ~ is G-invariant; 
(c) there exists a > 0 such that 

r  = e 'ar  

for all t ~ R ,  x ~ E .  

Proof. If the lemma is true for a normal subgroup Go = G of finite index, it is 
true for G. For let ~o : E --~ R be a C" Go-invariant map satisfying (a) and (c). 
Let  the left cosets of Go be glGo . . . . .  gvGo. Then the map 

: E --~ R, ~ ( x )  = t ~o(gix) 
i = 1  

satisfies the lemma. 
Let  F = C ~ ) E *  be the complexification of the dual space E*  of E. The 

contragredient representation of G on E*  extends to a (complex) representation 
p : G  ~ G L ( F ) .  Let  H =  G L  (F) be the identity component  of the algebraic 
closure of p(G).  Then H is a connected nilpotent Lie group. Set Go = p - l (H) .  
Then Go = G is a normal subgroup of finite index. 

From the primary decomposition of the representation of the Lie algebra of H 
in F induced by p we get a p-invariant splitting F = ~)Fk. Each Fk has a basis ~k 
representing the operators p(h) [ Fk, h e H as complex matrices 

t ~ ( h ) = h k ( h ) I + N k ( h )  

where Nk(h) is an upper-triangular nilpotent matrix. In particular the set of 
eigenvalues of o(h) is {)tk(h)}. 

Let  [k ~ Fk be the first basis vector in ~1 k, k = 1 . . . .  , m. Then 

Pk(h)fk = hk(h)[k (1) 

for all h e H. 
Define group homomorphisms 

~ok : Go "--) R,  tpk (g) = log [hk (g)l; k = 1 . . . . .  m. 
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Set 

q~ = (~ol . . . . .  r : Go -'~ R " .  

Suppose Go contains no expansion of E. Then q~(Go) is disjoint f rom the 
positive orthant  P c R " ,  

P = { y e R  ~ : yk>O,  k = 1 . . . . .  m}. 

Since q~(Go) is a subgroup of R "  it follows that the linear span L : R m of q~(Go) is 
also disjoint from P. This implies that the orthogonal complement  of L contains a 
nonzero vector v ~/3. This vector v = (vl . . . . .  v,,) thus has the following proper-  
ties: 

each vk->0 (2) 

t Vk = a > 0 (3) 
k = l  

t Vkq~k(g)=0 for all g ~ G o .  (4) 
k = l  

Evidently the vector cv, c > 0, has the same properties.  Therefore  we can also 
choose v to satisfy: 

For each k, either Vk = 0 or Vk > 2r, where r comes from Lemma  5.1. (5) 

For each k we have chosen a vector fk c H o m c  (C | E, C) satisfying (1). We 
embed  E in C ~ E  in the natural way and define 

~F : E --~ R ,  

,/,(x) = ~ Lfk(x)l ~ 
k = l  

By (5) �9 is differentiable of class C' .  By (2) and (3) x/r satisfies (a), (c) of 5.1. 

To  show that ~ is Go-invariant let g ~ Go, x ~ E. Then 

, e (g- 'x)  = I~I Ir~(g-~)l~ = I ]  I(x(g)r~)xl ~ 
k = l  k = l  

(n )(n ) (  " = I)tk(g)l ')~ I]'k(X)l ~ = exp Z VkCk(g) ~ ( X ) =  x/r(x) 
k = l  k = l  k = l  / 

by (4). This completes the proof  of 5.1. Q E D .  
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In general ~ in 5.1 cannot be chosen to be C ~. For example, let 

Any such tO must be of the form C(xy'/2) p where C, p > O, and will not be C ~. 

6. Compact affme manifolds with nilpotent holonomy 

In this section we exploit compactness to prove three main results: 
6.1, 6.8, 6.9. The proofs rely on the integration of vector fields. The first two were 
proved by Smillie [38] for the abelian case. 

The first, Theorem 6.1, is used to find expansions of E/Eu in the linear 
holonomy. This turns out to be a powerful geometric tool. The second, Theorem 
6.8, shows that unipotent holonomy implies completeness. This is also true for 
noncompact  affine nilmanifolds. 

As is Section 3, D : / V / ~  E is the developing map, 1r is the group of deck 
transformations of the universal cover P / / ~  M, etc. Let  A c G L  (E) denote  the 
linear holonomy group and F c Aft (E) the affine holonomy group. 

6.1. T H E O R E M .  Let M be a compact affine manifold. Let Eo c E be a proper 
linear subspace invariant under the a~ne holonomy. If the image A1 c G L  (E/Eo) 
of A is nilpotent then some element of A1 expands E/Eo. 

Proof. Let  q : E  ~ E/Eo denote  the canonical projection. Let  R be the 
radiant vector field on E/Eo. Let {(~oi, Ui)} be an affine atlas on M. There is a C = 
vector field X on M which in every affine chart (q~i, U~) is represented by a vector 
field on q~(U~) which is q-related to R. For there is clearly such a vector field X~ 
on Ui ; set X = ~, i  X~ where {~i} is a C = partition of unity subordinate to the open 
cover { Ui}. 

Suppose A1 does not contain any expansion of E/Eo. Then by 5.1 there is a 
Al-invariant C ~ map gt:E/Eo---> R, t / t>0  almost everywhere and 

d ' t ' z R ( z )  - a~ l , ( z )  (1) 

for some a > 0 and all z ~ U/Eo (this is the differential equivalent of 5.1(c)). 
The  composite map 

~ " D q 

f : M - ~  E--> E/Eo ~---> R 
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is 1r-invariant. Thus f covers a C 1 map f :M-->R. In affine coordinates f 
appears as ~oq .  It follows that 

aleX(y) = af(y) 

for all y ~ M. This implies that if ~ : R ~ M is an integral curve of X then 

f ( ~ ( t ) )  = e ' a f (~ (c ) ) .  

Now there exists Xo6 M with f(xo)> 0, and the integral curve ~o through Xo is 
defined for all t because M is compact. Then l i m , ~ f ( ~ o ( t ) ) = ~ .  But f, being 
continuous, is bounded. This contradiction proves 6.1. QED.  

We derive several consequences from 6.1. 

6.2. T H E O R E M .  Let M be a compact radiant manifold with nilpotent linear 
holonomy group A. Then A contains an expansion. 

Proof. Take Eo = 0 in 6.1. 

6.3. C O R O L L A R Y .  M has no nonzero parallel covariant or contravariant 
tensors. 

Proof. Let  to be a parallel covariant (resp. contravariant) tensor on M; let 03 
be the corresponding (constant) tensor on E invariant under A. By 6.2, A 
contains an expansion g. Let  the eigenvalues of g be A1 . . . . .  A, (counted with 
multiplicity), IA~I>I. Now 03 is an element of the tensor algebra ~ZE* (resp. 
~ E ) .  The map on this algebra induced by g has eigenvalues A~,"'Ai~ (resp. 
h ~ l . . .  A~I), which makes it an expansion (resp. a contraction). Consequently the 
g-invariant tensor 03 must be zero. QED.  

Conversely, suppose M is a nonradiant compact affine manifold with nilpotent 
atfine holonomy. Then by 4.1 M has nonzero parallel vector fields and 1-forms. 

Another  characterization of radiance is the following: 

6.4. T H E O R E M .  Let M be a compact affine manifold with nilpotent affine 
holonomy group. Then the following conditions are equivalent: 

(a) M is radiant. 
(b) The linear holonomy group contains an expansion. 
(c) The linear holonomy group contains g such that I - g  is invertible. 
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Proof. ( a ) ~ ( b )  by 6.2 and dear ly  (b )~(c ) .  Suppose (c). By Hirsch [21] it 
follows that H~(F; E ) =  0. Therefore  the radiance obstruction of M vanishes, 
implying (a). QED.  

We digress to consider deformations of affine structures. 
Conditions (c) and (b) of Theorem 6.4 evidently persists under sufficiently 

small deformations of the linear holonomy representations. It follows that if M is 
a compact radiant affine manifold with nilpotent holonomy group, then all suffi- 
ciently small deformations of the affine structure are also radiant. In other words, 
for this class of manifolds radiance is an open condition. (See Goldman [16] for 
the definition of deformation of affine structures.) 

Consider also the radiant affine structure on M 2 x  S ~ discussed in Section 3, 
where M 2 is a compact surface of genus >-- 2. Let  g e r x S 1) be the image of a 
generator of S ~. Then g is central and I - h ( g )  is invertible. This suffices to prove 
that any sufficiently small deformation of the affine holonomy has a stationary 
point (Hirsch [21]). Thus the radiance of these affine structures is also persistent 
under small deformations. 

In this direction D. Fried has proved [13] that there are no complete affine 
structures on these 3-manifolds. It is conjectured that all affine structures on these 
manifolds are radiant. 

Corollary 6.3, and the persistence of radiance discussed above, cannot be 
extended to the case of solvable holonomy. To construct a counterexample we 
start from the subgroup G c GL  (3, R) consisting of all the matrices of the form 

e kt . e - t  = �9 e ( k - 1 ) t  

�9 * * e k t  

where t, u, v ~ R, and k > 0 is a real constant to be determined later. Clearly G 
preserves the upper half-space 

W = { ( x ,  y ,  z ) E R  3 : Z ~ > 0 }  

and acts simply transitively. Thus G inherits a left-invariant radiant (and hence 
incomplete) affine structure from W. 

It is easily seen that G is the semidirect product  of the two-dimensional vector 
subgroup N defined by t = 0 with the subgroup H - ~ R  defined by u = v = 0. The 
representation R ---> Aut (R 2) which defines the semidirect product is given by 

let -] 
q~ : t - - ,  �9 t ~ R  

e t 
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I t  is well-known that G = N >~H possesses discrete cocompact  subgroups F. To 

see this take any integral matrix A = [c a b]esL2(Z)  w i t h a + d > 2 .  Then A i s  

conjugate (in SL2 ( R ) ) t o  some diagonal matrix r_x[O 011 e -  x_ , h # 0, and therefore 

one may form the semidirect product  R 2 >~Z defined by this representation,  with a 
generator of Z corresponding to A. Since A was originally defined as an integral 
matrix, it preserves a lattice Z2c  R 2. (It must  be emphasized, however,  that this 
lattice is not generated by a basis which diagonalizes A).  Then we may form the 
semidirect product  F = Z 2 >4Z which is a discrete subgroup of G = 112 >~R = N >qH, 
with F\G  compact.  Using the left-invariant structure on G, we thus obtain affine 
structures on the compact  3-manifold M 3 = / ~ G ;  indeed, as k varies continuously 
a whole one-paramete r  family of affine structures is defined in this way. 

Let  us now examine the case k -- 1. Then  G is the group of matrices 

A(u, v~ t)= 1 ; 
e t 

t, u, v e R .  

It  is apparent  that  the vector  field 0/0y parallel to the second basis vector is fixed 
by G, and hence defines a parallel vector field on G, and also on F\G. Thus we 
obtain a compact  affine manifold with both a radiant vector field and a parallel 
vector field. These two vector fields generate an affine action on the group Aft (R) 
on the affine 3-manifold. 

The  existence of a parallel vector field on a radiant affine manifold is easily 
seen to be equivalent to the condition that  the holonomy have more than one 
stationary point. (The stationary points of an atiine action form an affine subspace, 
parallel to the space of parallel vector  fields.) 

We now describe a deformation of this aifine structure. For each s e R,  define 
an affine representat ion As : G --> A f t ( E )  as follows. Let  As(u, v, t) be the affine 
map of E = R  3 with linear part  A(u, v, t) and translational part  (0, st, 0). For each 
s, As defines an action of G which is simply transitive on the upper  half space. By 
passing to a quotient F \ G  we obtain new affine structures on M 3= F\G. These 
new affine manifolds are no longer radiant for s # 0, as is easily verified. Thus 
radiance is not an open condition on holonomy of affine structures. A glance at 
the circle shows that neither is radiance a closed condition. 

The  case k =+ �89  of (2) is also interesting. Taking k =�89 we represent  G by 

matrices 

[e3: e: etiJ 
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then G preserves the parallel 2-form to = dy Adz as well as the radiant vector 
field R. (Compare 6.3.) In addition to the affine vector field R the polynomial 
vector field z2(O/Ox) and rational vector field z-l(O/Oy) are left-invariant. The 
attine 1-form ~Rto = Z d y - y  dz is also left-invariant. Thus a compact radiant 
manifold may admit a 1-form which is affine (polynomial of degree 1) but not 
parallel (polynomial of degree 0). Compare 3.2. 

In a forthcoming paper [14] we will show that on a compact radiant manifold 
all polynomial closed 1-forms and volume forms are zero. 

It is interesting to note that G also carries the complete left-invariant affine 
structure corresponding to the simply transitive affine action a:G---> Aff  (E) 
defined as follows. Represent  G a s  R N R  2 as above. Let  ( t ,~ )ERt~R 2 act on 
R •  2 by 

( t , , ) : (q ,~) - - ->(q+t , [  e' e'_~] ~1 + ~) .  

See also Example 6.7 below. Auslander [6] gives a different complete left- 
invariant affine structure on G. 

We return to the general theory. 
Let  Err c E be the Fitting component  (= maximal unipotent submodule) of the 

linear holonomy. Recall that when the atIine holonomy group is nilpotent we may 
assume (by 1.6) that Eu  is invariant under the affine holonomy; and there is a 
unique splitting E = Eu  ~ F  invariant under the linear holonomy. 

With this notation we have the following generalization of 6.2. 

6.5. T H E O R E M .  Let M be a compact affine manifold with nilpotent affine 
holonomy group. If  F ~ 0 then some element of the linear holonomy group expands 
F. 

Proof. Apply 6.1 with Eo = E v ;  then E/Eo ~ F as a 7r-module. QED.  

For the special case of abelian holonomy, 6.5 and 6.2 were first proved by 
John Smillie. 

An important consequence of 6.5 is: 

6.6. T H E O R E M .  Let M be a compact a~ne manifold with nilpotent affine 
holonomy group. Assume M has a parallel volume form. Then the linear holonomy 
is unipotent. 

Proof. Let  g be any element of the linear holonomy group A. Then 1 = 
D e t g = D e t ( g l E t r ) - D e t ( g [ F ) .  But g [ E u  is a unipotent operator,  so 
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Det  (g I Err) = 1. Therefore  Deg (g I F) = 1 and so g I F cannot be an expansion. 
Therefore F = 0 by 6.5. This means E = Ev.  QED.  

6.7. E X A M P L E .  Theorem 6.6 fails for solvable holonomy. For example let 
T" = R"/Z"  be the usual Euclidean affine torus, Z"  c R n being the integer lattice. 
Let ] ' : 7 "  ~ T" be the affine automorphism represented by a matrix A 
SL (n, Z). Let  Z act on T" • R, the generator  sending (x, t) to ([(x), t + 1). Then 
M =  (T" x R) /Z has a complete affine structure covered by the product  affine 
structure on T n • R.  If A is not unipotent then the linear holonomy of M contains 
the nonunipotent  opera tor  A x I on l i  ~ x R .  The affine holonomy group F is 
solvable (even polycyclic) since it embeds in the exact sequence 

1 ---~ Z" --~ F ---~ Z ---~ 1. 

We now turn to the problem of characterizing complete affine manifolds. The 
following theorem, one of the few general methods of proving completeness,  
shows the geometrical importance of unipotence. 

6.8. T H E O R E M .  Let M be an affine manifold. Suppose either 
(a) M is compact and has unipotent holonomy, 

o r  

(b) M is an affine nilmanifold F\  G and the corresponding linear representation 
G --~ G L  (E) is unipotent. 

Then M is complete. 

Pro@ First assume M is compact.  From unipotence it follows that there is a 
flag of linear subspaces 0 = Fo c F1 c �9 �9 �9 c/7,, = E, dim F~ = i, invariant under the 
linear holonomy, such that the induced action on each F~/F~_t is trivial. Therefore  
there are linear maps li : Fi --~ l i  which are invariant under the linear holonomy, 
and which have kernel Fi-1. (See e.g. Humphreys  [23].) 

The  invariant flag on E determines a family of fields ~ of para l le l / -p lanes  on 
M, i = 0 . . . . .  n. Each field :T~ is integrable, as is clear in affine coordinates. The 
invariant linear map l~ determines a parallel 1-form to~ defined on ~:~ and 
vanishing on ~_~ .  Using partitions of unity, one readily constructs vector fields X~ 
on M tangent to ~ with l~(X~)= 1. The  X~ are covered by integrable vector fields 

J(~ o n / ( / ,  since M is compact.  
We now show tha t /~ /deve lops  onto E. Suppose one fixes a base point mo in/~/ 

which develops to the origin in E. Let  v e E. We construct a path in Jr /beginning 
at mo whose development  ends at v as follows. Starting at too, flow along X ,  for 
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t ime/~(v),  ending at the point m l e  AT/with D(mO = v~ ~ E where v - vl e Ker I, = 
F,-1.  Then flow along X~-I for time l , _ l ( v -  vl) ending at m2 e /~ /wi th  D(m2)=  
v2 ~ E where v - v2 ~ Ker / , -1  = Fn-1. Continuing this way, we reach v = v, after n 
steps. 

We verify that the developing map is injective. Assume Vo : [a, b] --~ ATI is a 
path which develops onto a dosed loop 8 : [a, b] ~ E with B(a) = ~(b) = 0. We 
may deform ~/o with end points fixed so that the new path Vt develops in F,_~: 
we use 3', : [a, b] -~/~/,  where ~,(s) is the image at time - tl~(~(s)) of ~/o(S) under 
the flow of J~,, 0 < t <-1, a-< s-< b. By further such deformations, we eventually 
obtain a path from 3'o(a) to ~o(b) which develops to a point. Hence Vo(a) = ~o(b), 
so the developing map is injective and M is complete. 

When M is an afline nilmanifold, not assumed compact, the proof is similar. 
We may as well assume M = G. Fix a flag at the identity e e G invariant under the 
linear part  of the affine action of G. Let  X~ . . . . .  X, be tangent vectors at e 
forming a basis for the flag, and extend them to vector fields on G by left- 
multiplication. Being left-invariant, each of these vector fields is integrable for all 
t ~ l i .  The rest of the proof is analogous to the compact case. QED.  

The same proof shows that in the incomplete case, the projection Eu@F--~ 
Eu maps the developing image onto Eu by a fibration. 

The following application of 6.8 might be true even without nilpotence. 

6.9. T H E O R E M .  Let M be a compact affine manifold with nilpotent affine 
holonomy group. Suppose the developing map D : 1~ ~ E is surjective. Then M is 
complete. 

Proof. Let E = E u ~ F  be the Fitting splitting of the linear holonomy. If F #  0 
then Theorem 3.3 holds that each component  N of p(D-1Eu) is incomplete. 
Nevertheless N has unipotent holonomy and so, by Theorem 6.8, must be 
complete. These facts are only compatible if F =  0. It follows that M =  N is 
complete. QED.  

At  this point it may be useful to summarize the implications proved thus far 
between various properties of affine manifolds: 

6.10. SUMMARY.  For compact affine manifolds: 
(a) Surjective developing map and nilpotent affine holonomy ~ indecomposa- 

ble affine holonomy (6.9). 
(b) Complete ~ irreducible affine holonomy (2.2). 
(c) Unipotent  linear holonomy ~ complete (6.8). 
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(d) Nilpotent affine holonomy group and parallel volume ~ unipotent linear 
holonomy (6.6). 

(e) Nilpotent linear holonomy group and radiant ~ expansion in linear 
holonomy (6.2). 

For possibly noncompact affine manifolds: 
(f) Indecomposable, nilpotent affine holonomy ~ unipotent linear holonomy 

(4.3). 
(g) A left-invariant afline structure on a nilpotent Lie group G is complete if 

and only if the corresponding affine representation of G is unipotent. 
(6.8, 1.5). 

In a subsequent paper we will show that for compact affine manifolds, parallel 
volume ~ irreducible affine holonomy. 

The following case is especially neat, as all the conditions coincide: 

6.11. THEOREM. Let M be a compact af]ine manifold with nilpotent affine 
holonomy group. Then the following are equivalent: 

(a) M is complete 
(b) The linear holonomy is unipotent. 
(c) M has parallel volume. 
(d) The affine holonomy is irreducible. 
(e) The affine holonomy is indecomposable. 
(f) The developing map is surjective. 

Proof. (f)~(e)  by 6.9. (e )~(b)  by 4.3. (b)~(a)  by 6.8. Clearly (a)~(f).  Also 
(b)~(c) ,  and (c)~(b)  by 6.6. Finally, (a)~(d)  by 2.2, and (d)~(e).  QED. 

In the next section we adjoin another equivalent condition: that M be a 
complete affine nilmanifold. 

In a forthcoming paper [17] it will be shown that (d)~(a)  fails for certain 
compact affine 3-manifolds with solvable fundamental group. 

7. Complete aMne nilmanifolds 

The following theorem follows from a more general theorem announced by 
Auslander [8]. Unfortunately the proof is wrong, as Auslander shows in [6]. Many 
of the ideas in this paper, and in particular the proof of our Theorem 7.1, come 
from Auslander's work. (One can, however, deduce Theorem 7.1 from the correct 
results in [8] (see [8], page 811).) 



516 D. F R I E D ,  W. G O L D M A N  A N D  M. W. H I R S C H  

7.1. T H E O R E M .  Let M be a compact complete affine manifold with nilpotent 
fundamental group. Then M is an affine nilmanifold. 

Proof. We take the universal covering space of M to be vector space E. The 
fundamental group is the group of deck transformation 7r c Aft (E); thus M =  
E/Tr. 

To  prove the theorem we must find a subgroup G c Aft (E), containing ~-, 
which acts simply transitively on E. 

The linear action of 1r on E is unipotent (Corollary 3.4). Hence for every 
g ~ G there is a unique element log (g) in the Lie algebra Aft (E) of Aft (E) whose 
linear part is a nilpotent transformation of E and whose exponential is g. 

By a celebrated theorem of Malcev [27] there is a simply connected nilpotent 
Lie group H containing ~r as a discrete uniform subgroup. Recall that the Lie 
algebra b of H is generated by elements L(g )~b ,  g ~ -  subject only to the 
relations 

C(L(g0 ,  L(g2)) = L(glg2) (1) 

where C : b • b ~ b satisfies the Baker-Campbel l -Hausdorff  formula (Varadara- 
jan [43]): 

exp C(X, Y) = exp X exp Y. 

Clearly (1) holds with L ( g ) =  log (g), so there is a homomorphism of Lie algebras 
b --~ Aft (E) and an associated homomorphism of Lie groups H --~ Aft (E). The 
image of H is a connected subgroup G c Aft (E); and since for each g ~ G the 
linear part of log g is a nilpotent transformation, the image of G in G L  (E) is 
unipotent. It follows that E has a basis putting this image in upper triangular 
unipotent form. The group of all affine automorphisms of E with such linear parts 
is simply connected. Thus G is simply connected. By construction, 7r c G. 

Define f : G ~ E by )~(g) = g(0). Then f is equivariant respecting the inclusion 
G c A t f ( E ) .  There  is an induced map f : ' t r \ G  ~ M. Now z r \G  and M are 
Ei lenberg-MacLane spaces of type K(~r, 1), and f is a homotopy equivalence. 
Since they are compact manifolds, they have the same dimension and f must be 
surjective. 

It follows that f :  G ~ E is surjective; therefore G acts transitively on E. 
Since dim G = dim E, f is a covering space projection. Since E is simply con- 
nected, f is a homeomorphism. Therefore  G acts simply transitively on E. Hence 
f : ~r\G ~ M is an affine isomorphism, as claimed. QED.  
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In a forthcoming paper  [13] we shall prove that a compact  complete affine 
manifold with solvable holonomy has a finite covering which is an affine solv- 

manifold. 

8. Polynomial tensors on afline mani/olds with nilpotent holonomy 

A tensor field on an affine manifold M is called polynomial of degree <-r if in 
affine coordinates its components  are polynomial functions of (total) degree --< r. It 
is of interest to know which fields are of this type, and which real cohomology 
classes are represented by polynomial exterior differential forms. (One can ask 
similar questions about  other classes of tensors. For example: which tensors on M 
correspond in affine charts to real analytic tensors defined on all of E?). 

The following theorem is the main result of this section: 

8.1. T H E O R E M .  Let M be a compact a~ine manifold with nilpotent 
holonomy. If  M is a complete a~fine nilmanifold the inclusion of the complex of 
polynomial exterior forms into the de Rham complex induces an isomorphism on 
cohomology. 

In Theorem 8.4 below a converse result is proved. 
The  proof  of 8.1 relies on the theorem of Nomizu [33] (see also Raghunathan 

[47]) which identifies the real cohomology of a compact  nilmanifold F \ G  with the 
cohomology of left-invariant differential forms on G. Therefore  it suffices to prove  
that when G is a simply connected nilpotent Lie group with left-invariant 
complete  affine structure, then every left-invariant tensor field on G is polynomial 
in affine coordinates. Now such a structure on G is defined by a simply transitive 
affine action of G on the vector space E ;  and left-invariant tensor fields on G 
correspond a (G)- invar ian t  tensor fields on E. Therefore  it is enough to prove: 

8.2. T H E O R E M .  Let G be a nilpotent Lie group and ct : G --> Aff (E) a 
simply transitive a~fine action. Then every a(G)-invariant tensor field on E is 
polynomial. 

Let  a be  as in 8.2; then by Theorem 1.5 o~(G) is a unipotent subgroup of 
Aff ( E ) c  G L  (E x R). Thus ct (G)  is a connected unipotent group of matrices. It is 

well known that such a group is a unipotent  algebraic group, and in a unique way. 
On algebraic groups there is a natural notion of an algebraic tensor field. 

The algebraic structure on G can be made explicit as follows. The exponential 
map exp : (~ ~ G is a diffeomorphism, as is its inverse log : G --~ (~. The  Lie 
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algebra ~ ,  being a vector space, has a natural structure as an algebraic variety. 
The  maps exp and log are isomorphisms of algebraic varieties. 

I t  is easy to see that every left-invariant tensor field on G is algebraic, that is, 
it is polynomial in the coordinates defined by exp. What  we have to prove is that it 
is also polynomial  in the coordinates defined by the developing map 

D : G ~ E, D(g)  = a(g)(0)  

defined by evaluation at the origin. To  this end we prove: 

8.3. P R O P O S I T I O N .  The developing map D : G ---> E is an isomorphism of 
algebraic varieties. In particular the composite maps 

(~ exP;G D > E  

and 

~ l o ~  G r,-, < E 

are polynomial. 

Proof. As remarked  above, a : G  ~ a(G) is an isomorphism of algebraic 
groups. Now D is the composit ion of a with the map  

A f t ( E )  ~ E, g~-*g(O) 

which is evidently algebraic. This proves that  D : G ~ E is algebraic. 
To  prove  that  D -1 : E ~ G is algebraic we induct on dim G = dim E. The  

case dim G = 0 is trivial. 
Le t  A : G ~ G L  (E) be  the linear part  of a ;  dear ly  A is algebraic. 
Since A is unipotent  there exists a nonzero linear functional g~ : E ---> R which 

is A-invariant. Thus if g ~ G  then ~Ooa(g)(x)-d~(x)=tkoD(g) for  all x ~ E .  It  
follows easily that  tkoD defines a homomorph i sm G -*  R.  Let  G1 denote  the 
kernel  of this homomorph i sm and let E1 = Ker  ~. Clearly a(G1) acts simply 
transitively on E~. 

Suppose,  inductively, that the inverse map  f l :E1--~  G1 to DI=DIo,  is 
algebraic. The  homomorph i sm G ~ R has a left-inverse so we may  write G as a 

semidirect product  G = G1 >~{g,},~lt where t~-* g, is a one -pa ramete r  subgroup of 
G which acts on E/E1 by translation by t. Thus in a basis of E containing a basis 
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of El,  ot(gl) is represented by 

[0!!:oi:!; 
where Q : l i  --~ GL  (El) and r, p : R ---} E1 are polynomial maps. Define 
f : E I~ )R  = E ---~ G by 

f (x ,  t) = g, �9 [Z  o O ( -  t ) ( x -  p(t))]. 

Clearly f is a composition of algebraic maps and hence algebraic. Furthermore for 
t e l l  and h e G ~ ,  

fo D(g~h) = f (a(g,)D(h))  = f ( (Q(t )D(h)  + p(t), t)) 
= g, �9 f~ (Q(- t ) ( (Q( t )D(h)+ p ( t ) ) -  p(t)))= gt" f~(D(h))= g,h 

so that f is inverse to D. Thus D -1 is algebraic, and the proof of 8.3 is complete. 
QED.  

Now that 8.3 has been established, 8.2 and 8.1 are consequences because of 
Nomizu's theorem, as explained above. 

Remark. In general we do not know a sharp bound on the degree of a 
left-invariant tensor field. A (probably crude) bound can be obtained by estimat- 
ing the degrees of polynomials in the proof of 8.3. In the notation of 8.3 we have 
algebraic maps 

f : E - - ~ G ,  Q : R ---} G L  (El),  P:R---~E1.  

We give R and E1 their natural vector space structure; thus deg p is well-defined. 
From the definition of p it is easy to compute that 

deg p -< n = dim E. 

We give G L  (El) matrix coordinates coming from linear coordinates on El .  Then 
deg O is well-defined and one sees easily that deg O - n - 1. Now G is a subgroup 
of Aft (E). In a natural way Aft (E) c GL  (E • R), and we give G L  (E x R) matrix 
coordinates. Thus d e g f  is defined; and deg f l  is defined similarly. From the 



520 

formula 

D. FRIED, W. GOLDMAN AND M. W. HIRSCH 

[(x, t) = g,- Lfi o 0 ( -  O ( x -  p(t))], 

taken f rom the proof  of 8.3, we find 

deg f---< (deg f~)(deg Q + deg p) -< (deg f0 (2n  - 1). 

By induction on n we get 

d e g f  <- 1 �9 3 . 5 .  �9 �9 ( 2 n -  1) = (2n - 1)!/2"-1(n - 1)!. 

Now let X be a left-invariant vector field on G, considered as an a ( G ) -  

invariant vector field X : E ~ E. Let  x e E ;  set f ( x )  = g ~ G. Then 

X ( x )  = X ( D  of (x) )  = X(D(g) )  = X(a(g)(0))  = h(g)X(0).  

Thus X ( x )  = h(f(x))X(0).  This expresses X : E ~ E as the composition 

X :  E ~ G --% G L ( E )  ~ E 

where h is evaluation at X(0). It  is clear that )t and h both  have degree 1. Thus 
deg X < deg / .  Similarly the degree of a left-invariant 1-form is bounded by deg/ .  

It  follows that if T is a left-invariant (p, q)-tensor field on G then as a tensor 
field on E 

deg T-< (p + q) deg f--< (p + q)(2n - 2)!/2"-1(n - 1)! 

I t  would be interesting to have a sharper bound. In Fried [4] there is an 
example  where a 4-dimensional G has a left-invariant vector  field of degree 5. If 
dim G < 4 ,  however,  every left-invariant tensor of type (p, q) has degree -<2(p+  

q )  (see [13]). 
We note  that  for any Lie group with left-invariant affine structure, all 

right-invariant vector fields are polynomial of degree <-1 since in affine coordi- 
nates they generate 1-parameter  subgroups of Aft (E), so they are attine vector 

fields on E. 
The following theorems complement  6.11 and 7.1 by characterizing compact  

complete  affine nilmanifolds in terms of differential forms. 
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8.4. T H E O R E M .  Let M be a compact affine manifold with nilpotent affine 
holonomy group. Then the following conditions are equivalent: 

(a) M is a complete a~ne nilmanifold. 
(b) M is orientable and every de Rham cohomology class is represented by a 

polynomial differential form. 
(c) M has a polynomial volume form. 
(d) M has a parallel volume form. 

Proof. Theorem 8.1 shows that (a )~(b) .  Clearly (b )~(c ) ;  and 6.11, 7.1 show 
that ( d ) ~  (a). 

We must show that ( c ) ~  (d). If the linear holonomy is unipotent (d) is obvious. 
We shall prove that if the linear holonomy is not unipotent there is no polynomial 
volume form. 

Denote  the attine holonomy by a : 7r ---, Aft (E) and the linear holonomy by 
h : 7r ~ G L  (E). Let  E = E v ~ F  be the Fitting splitting of h. We assume h is not 
unipotent, i.e., F ~  0. Since M has a volume form, M is orientable. By 6.5 there 
exists gl ~ 7r such that h(g~) 1F is a contraction. Since h(Tr) I Ev is unipotent, and 
Det  h(g~) > 0 because M is orientable, we have 

Det  h(gl) = 8, 0 < 8 < 1 .  

Fix Xo ~ E. It follows from the unipotence of h(gO on Ev and the contracting 
of h(gl) on F that there is a polynomial p in one variable such that for all m ->0, 
Io~ (g~)"Xol--- p(m). 

Suppose that 0 is a polynomial n-form on E invariant under the affine 
holonomy a(rr).  Let  tx be a nonzero parallel n-form on E and write O(x)= f(x)v. 
where f : E - - - ~ R  is a polynomial. Then 0 ( x ) = ( D e t h ( g ) .  O(a(g)x) for all 
g~-rr, so f (x)=(Deth(g)) f(a(g)x)  particular, for all m>--O, f(x)= 
(Det  h(gO)mf(a(gl)"x), or 

f(x) = 8 ~f(~ (gl)mx). 

Since f is a polynomial, tf(a(gl)mXo) is bounded in absolute value by a polynomial 
q(m) (which depends on x). Hence 

If(xo)[<-Smq(m) for all m->0. 

Since 0 < 8 < 1, it follows that f(xo) is zero. As Xo was arbitrary, this completes the 
proof of Theorem 8.4. 
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I t  is to  b e  n o t e d  t ha t  A u s l a n d e r  [4] a n d  A u s l a n d e r - M a r k u s  [10]  have  

c o n s t r u c t e d  m a n y  e x a m p l e s  of  c o m p a c t  c o m p l e t e  a f f i ne -n i lman i fo ld s  h a v i n g  p a r a l -  

lel  L o r e n t z  met r ics .  See  a lso  M i l n o r  [31]  for  a d d i t i o n a l  exam p le s .  
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