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NONSTANDARD LORENTZ SPACE FORMS

WILLIAM M. GOLDMAN

In their recent paper [8], Kulharni and Raymond show that a closed

3-manifold which admits a complete Lorentz metric of constant curvature 1

(henceforth called a complete Lorentz structure) must be Seifert fibered over a

hyperbolic base. Furthermore on every such Seifert fibered 3-manifold with

nonzero Euler class they construct such a Lorentz metric. Moreover the

Lorentz structure they construct has a rather strong additional property, which

they call "standard": A Lorentz structure is standard if its causal double cover

possesses a timelike Killing vector field. Equivalently, it possesses a Rieman-

nian metric locally isometric to a left-invariant metric on SL(2, R). Kulkarni

and Raymond asked if every closed 3-dimensional Lorentz structure is stan-

dard. This paper provides a negative answer to this question (Theorem 1) and a

positive answer to the implicit question raised in [8, 7.1.1] (Theorem 3).

Theorem 1. Let M3 be a closed 3-manifold which admits a homogeneous

Lorentz structure and satisfies Hι{M\ R) Φ 0. Then there exists a nonstandard

complete Lorentz structure on M.

In [8] it is shown that the unit tangent bundle of a closed surface admits a

homogeneous Lorentz structure. Therefore we obtain:

Corollary 2. There exists a complete Lorentz structure on the unit tangent

bundle of any closed surface F of genus greater than one which is not standard.

The homogeneous Lorentz structures are all classified in [8]. A circle bundle

of Euler number j over a closed surface F, χ(F) < 0, has a homogeneous

structure if and only if j\χ(F) (an analogous statement holds when M has

singular fibers, i.e. when F is an orbifold).

We also show:

Theorem 3. Let M3 be a 3-manifold which admits a complete Lorentz

structure. Then M3 is not covered by a product F X Sι, Fa closed surface.

Theorem 3 implies that the Euler class of the Seifert fiber structure of M3 is

nonzero.
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Corollary 4. // a closed 3-manifold M admits a complete Lorentz structure,

then M admits a standard Lorentz structure.

In [7] the deformation theory of standard Lorentz structures is extensively
discussed.

A key idea in the proof of Theorem 1 is the notion of a (small) deformation
of a complete Lorentz structure. It is convenient to think of a Lorentz structure
as a "locally homogeneous" geometric structure, defined by an atlas of charts
which are homeomorphisms of coordinate patches into a model space X such
that the coordinate changes on the overlaps lie in a certain group G of
transformations of X. (See [12].) In our case X will be a simply connected
complete Lorentz manifold of curvature 1 and G will be the identity compo-
nent of its group of Lorentz isometries. A convenient model for X is the
universal cover SL(2,R) of SL(2,R), with the Lorentz metric defined by the
Killing form on the Lie algebra £l(2,R). The group of all its isometries is a
4-fold extension of the quotient of SL(2, R) X SL(2, R) by a diagonally em-
bedded central Z. See [8] for further details on the resulting geometry.

One basic example of such a structure arises as follows. Consider any
discrete cocompact subgroup Γ of PSL(2, R). Then the quotient PSL(2, R)/Γ
has an induced left-invariant complete Lorentz structure. Such manifolds have
homogeneous Lorentz metrics (cf. Kulkarni-Raymond [8, 10]). If Γ is
torsionfree, so that PSO(2) \ PSL(2, R)/Γ is a smooth hyperbolic surface F,
then PSL(2,R)/Γ is the unit tangent bundle of F. By taking fiberwise
coverings, we obtain homogeneous complete Lorentz structures on other
oriented circle bundles over F\ these circle bundles are characterized by the
property that their Euler class divides χ(F). The class of Seifert fibered
3-manifolds which can be obtained as coverings of such quotients of PSL(2, R)
are precisely the Seifert fibered 3-manifolds which admit homogeneous Lorentz
structures. The nonstandard complete Lorentz structures constructed here will
be deformations of these homogeneous structures.

A geometric structure modelled on the geometry of (G, X) is sometimes
called a "(G, Λr)-structure". To every (G, X)-structure on a manifold M there
are associated homomorphisms h from the fundamental group π = ir-^M) to
G such that for each "holonomy homomorphism" h there exists a local
diffeomorphism (called the "developing map") from the universal covering M
of M to X which is equivariant respecting h. (For a given (G, A^-structure, the
holonomy homomorphism and the developing map are respectively unique up
to conjugation and composition with a transformation in G.) If G is a group of
isometries of a pseudo-Riemannian metric on X, then there is a unique
pseudo-Riemannian metric on M such that the developing map is a local
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isometry of the induced structure on M with X. In the language of [8], a
manifold with a complete Lorentz structure is a "Lorentz space form".

A (G, Λr)-structure is said to be complete if its developing map is a covering
map onto X. We will always take X to be a simply connected homogeneous
space of G, so that the developing map will represent a complete (G, X)-
manifold as a quotient of X by a discrete subgroup of G acting properly and
freely. When X has a complete G-invariant pseudo-Riemannian metric, com-
pleteness of a (G, Λr)-structure is equivalent to the usual notion of geodesic
completeness of the corresponding pseudo-Riemannian metric. However, un-
less G acts properly on X no general criterion for a (G, Ar)-structure on a
closed manifold to be complete is known. (Indeed there are many well-known
geometries (G, X) (such as affine geometry) for which incomplete (G, X)-
structures exist on closed manifolds, see e.g. [11].) It is not known whether a
Lorentz structure on a closed manifold is necessarily complete.

A Lorentz structure is standard if it (or perhaps a double cover of it)
possesses a timelike Killing vector field £. In terms of (G, X)-structures a
standard complete Lorentz structure is a (G, ΛΓ)-structure whose "holonomy
group" h(π) normalizes the isometric flow generated by ξ. Alternatively we say
that a standard Lorentz structure is a (Go, X)-structure, where Go is the
normalizer of ξ. Every homogeneous Lorentz structure on a closed manifold is
complete (since Go acts properly on X, standard implies complete for closed
manifolds).

The space of homomorphisms π -» G forms a real analytic variety
Hom(ττ, G). Suppose M is a closed manifold with a (G, X)-structure (denoted
Λf0) with holonomy homomorphism Λo: 7r -> G. Then there exists a neighbor-
hood U of h0 in Hom(π, G) such that for each ht e £/, there is a (G, X)-
structure M, with holonomy ht. (In this generality, this fact was first observed
by Thurston [12]; See Lok [9] for a detailed discussion.) (Indeed, it is possible
to define a deformation space of (G, X)-structures with a natural topology in
such a way that the (G, ΛΓ)-structures Mt form a continuous family near Mo.)

Let M be a 3-manifold which admits a homogeneous Lorentz structure, e.g.
the unit tangent bundle of a closed surface F. Let /z0 be the holonomy
representation π -> SL(2, R) corresponding to one of the homogeneous Lorentz
strucures above. Let B be a one-parameter subgroup in SL(2,R) acting by
right-multiplication on SL(2,R). We shall deform the homomorphism h0 e
Hom(ττ, G) using a deformation of the trivial representation in Hom(τr, B).

For v G Hom(7r, B) in a sufficiently small neighborhood of the trivial
homomorphism, the homomorphism (ho,v): π -> Hom(7r,G) (where Λo acts
on the left and υ acts on the right) will be the holonomy representation of a
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complete Lorentz structure near the homogeneous structure on M. In other
words:

Proposition 5. Let h0: π -> SL(2,R) be the holonomy of a homogeneous

complete Lorentz structure as above. Then there exists a neighborhood U of the

trivial representation 0 in Hom(ττ, B) such that for all u E [ / , (ho,v) is a free

proper action of π on X with quotient a closed manifold.

When B is either a hyperbolic or parabolic one-parameter subgroup, then
the resulting quotient manifold has a nonstandard complete Lorentz structure.
Thus Proposition 5 implies Theorem 1. Observe that we obtain two quite
different families of nonstandard complete Lorentz structures, depending on
whether B is parabolic (lightlike) or hyperbolic (spacelike). By small deforma-
tions of the holonomy, we construct "nearby" Lorentz structures with the
deformed holonomy. Proposition 5 is proved by showing this deformed struc-
ture is complete.

We begin by describing one viewpoint on (G, X)-structures in which the
existence of deformed (G, X)-structures is quite transparent. Let dev: M -> X
be a developing map which is equivariant with respect to a homomorphism
h e Hom(τ7, G). The equivariance of dev with respect to h implies that the
graph of dev is a section of the trivial X-bundle M X X over M which is
invariant under the action of TΓ on M X X defined by γ: (w, JC) -» (γw, h(y)x).
It follows that the graph of dev defines a section (the "developing section") /
of the (G, Λr)-bundle X(h) whose total space is the quotient (M X X)/π.

The bundle X(h) has a flat structure, i.e. a foliation transverse to the fibers.
The leaves of this foliation are the images of the sets MX {x0}, where
x0 <Ξ X. The nonsingularity of the developing map is equivalent to the trans-
versality of / to the flat structure. Conversely, any section of a flat (G, X)-
bundle which is transverse to the flat structure defines a (G, X)-structure: local
charts for this structure are found by composing the submersive local charts of
the foliation with the section. In this way every transverse section of the flat
(G, X)-bundle X(h) is a "developing section" of a (G, X)-structure with
holonomy h. For more details on this picture of (G, A^-structures, the reader is
referred to Goldman [3], Goldman-Hirsch [5], Kulkarni [6], or Sullivan-
Thurston [11].

We can now understand the deformation theorem as follows. Fix a (G, X)-
structure on M as well as a holonomy homomorphism h0, developing section
/0 of X(h0), etc. We will prove that there is a neighborhood W of h0 in
Hom(π, G) such that every h e W is the holonomy of a "nearby" (G, X)-
structure. First choose a contractible neighborhood W of hQ in Hom(ττ, G).
Then there is a natural (G, Λr)-bundle over M X W whose total space is the
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quotient of M XW' X X by the action of π given by γ: (u,hnx)<-+
(yu, ht, ht(y)x). The covering homotopy property implies that this bundle is
equivalent to the product X(h0) X W\ as an X-bundle. Fix a smooth triviali-
zation of this bundle over W. The foliation defining the flat structure on
X{ht) varies continuously with respect to ht in the C1 topology. Using the
trivialization over W, we find a smooth section / ' of this bundle over M
extending f0. Since /0 is transverse to the flat structure it follows that the
restriction ft of / ' to MX {/i,} is also transverse, at least for ^ in a
neighborhood W oί h0 in W. Thus for each ht G W there is a (G, X)-structure
with holonomy ht. We shall refer to the new structures with holonomy ht as
structures "nearby" the original structure with holonomy h0.

We shall need an elementary property of this construction:
Lemma 6. Suppose that MQ is a closed (G, X)-manifold whose holonomy

homomorphism h centralizes a connected subgroup H of G which acts properly

and freely on X. Consider deformations Mt of Mo induced as above by deforma-

tions ht ofh0 which have the form ht(y) = h(y)φt(y), where φt is a deformation

of the trivial representation in Hom(77, H). Let dev, denote the corresponding

developing maps of Mt, and let pH denote the projection map X -> X/H. Then,

as ht varies, the composite map pH°devt remains constant. In particular, if Mo

is complete, then pH °dev, is afibration with fibers the orbits of the corresponding

local H-action.

Proof of Lemma 6. The actions of π on the quotient X/H defined by ht

are all equal. The family of associated flat Ayi/-bundles (X/H)(ht) over M is
a bundle over W. Since W is contractible, this bundle is trivial. Furthermore
there exists a trivialization over W of the family X{ht) of A'-bundles over M
which extends the trivialization of the associated flat X/H-bundlcs(X/H)(ht).
Let pt denote the bundle map X(ht) -> (X/H)(ht) which on each fiber is
given by the projection map pH: X -> X/H. With respect to the trivialization
the developing sections, ft are all equal. Thus pt ° ft is constant in the
ί-parameter. Passing to the universal covering M we see that ρH°devt is
constant as well, q.e.d.

Proof of Proposition 5. Let Mo be the (G, X)-manifold X/ho(π). Let U be
a neighborhood of 0 in Hom(τr, B) such that for each υ e U, every (ho,v) is
the holonomy of a nearby (G, X)-manifold Mυ. We shall show that Mυ is
complete.

Let dev: M -» X denote the developing map of Mv. We must show that dev
is bijective. By the lemma, the composition pB ° dev: M -> X/B is equivalent
to the composition of pB with the developing map of Mo and hence is a
fibration. Let βx be the Killing vector field on X which generates the action of
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B. Let βM be the Killing vector field on M which corresponds to βx, i.e.

p*(βM) = dev*(βx), where p: M -» M is the covering projection. Since M is

compact, the vector field βM is complete and hence p*(βM) *s a l s o complete.
L e t {Φ,}{5eR} b e t h e flow o n M generated by p*(βM) and { ψ , } { j e R } the

flow on X generated by βx. Clearly dev ° φs = ψs o dev.

dev is surjectiυe: Let i; e X Since pB °dev is surjective, there exists w e M

such that /?^(dev(w)) = pB(v). Since the fibers of /?# are the orbits of B (i.e.

the trajectories of p*(βM))9 there exists 5 e R such that φ5(dev(w)) = υ. It

follows that dev(ψ5(w)) = υ, as desired.

dev is injectiυe: Suppose that w0, uλ e M satisfy dev(w0) = devίwj. Since

/?β °dev is a fibration with fibers the trajectories of p*(βx), there exists s e R

such that Φ5(wo) = Wχ Thus ψ5(devw0) = dev(wx) = dev(w0). As B acts freely

on X, it follows that s = 0, and w0 = wx. Thus dev is bijective and M is

complete, q.e.d.

Remarks, (i)^ It seems plausible to conjecture that for every representation

υ e Hom(ττ, SL(2,R)) sufficiently near a standard representation, the homo-

morphism (Λ0,ι>) e Hom(τr, G) defines a properly discontinuous free action

on X. It would also be interesting to know explicitly, for given h0, which

v e Hom(τ7 , 5 ) define properly discontinuous actions.

(ii) By taking B to be a parabolic one-parameter group, we note that the

deformation space for complete Lorentz structures is not Hausdorff. Let (Ao, υ)

be a holonomy homomorphism for a nonstandard complete Lorentz structure

as above, where v: π -> B. Let N be a hyperbolic one-parameter subgroup

normalizing B\ then the orbit of (Λo, υ) under conjugation by iV on the second

factor contains the original homomorphism (A 0,l) in its closure. Thus the

space of equivalence classes of holonomy representations, and hence the

deformation space of complete (G, X)-structures, is not Hausdorff.

(iii) In a similar way, when B is parabolic every homomorphism v: π -> B is

realized as the second component of the holonomy of a nonstandard Lorentz

structure on M. For the deformation arguments above realize an open neigh-

borhood U of 1 in Hom(τr, B) and every homomorphism 77 -> B is TV-

conjugate to one in U.

Proof of Theorem 3. Let M be a closed 3-manifold which is a product

F X Sι

9 where S is a closed surface and χ(F) < 0. By [8] the holonomy

representation h: π -> G composed with the projection

/ : G -> C = G/center(G) = PSL(2,R) X PSL(2,R)

is of the form (hl9h2), where either Λx or A2 is a Fuchsian representation. We

may assume that h1 is Fuchsian. Suppose the genus of F is g and that



NONSTANDARD LORENTZ SPACE FORMS 307

l 9 BX,' , Ag, Bg\[Al9 Bλ] [Ag, Bg] = /) is the standard presentation
for π' = 7rλ(F) = 7r/center(τr). (Compare [8, 7.1.1].)

Let μ be the element of π corresponding to the fiber; since μ is central in π,
hλ(μ) centralizes hλ(π) and A2(μ) centralizes h2(π). Since Λ1(τ7) is Fuchsian,
h^π) must lie in the center of PSL(2,R), i.e. hx(μ) = 1. If h2(π) is non-
abelian, then its centralizer is trivial and h2(π) = 1. Otherwise /i2(

7Γ) i s

abelian, in which case some power of h2(μ) (which is a product of commuta-
tors in A2(π)), is the identity element of PSL(2,R). Thus some power of h(μ)
must lie in the center of G. By passing to a finite covering of M we may
assume that h(μ) = I and that h factors through a homomorphism W\
TΓ' -> G. Let h[ and Λ2 be the two components of the composition //°A':
7Γ -H> PSL(2,R)X PSL(2,R).

Now consider lifts A(Λ;)j>f A (^^(respectively h{Bt) of A (£,-)) to the
universal covering G = SL(2, R) X SL(2, R) of G. Let S = [Aί^),
A(-Bi)] * [A(^4g), A(5g)]. Since Ax is Fuchsian, the projection of s on the first
factor must be z2~2g. Since h factors through π', the projection of s on the
second factor of this element is also z2~2g. Thus the Euler class of each
representation h[9 h2 equals 2 — 2g. (Compare the proof of Theorem 7.2 in
[8], as well as 7.1.1.)

We claim that this implies that the Lorentz volume of M is zero. For the
G-invariant volume form on X determines a continuous 3-dimensional
cohomology class ω e H3(BG8) such that if /: M -> BG8 is the classifying
map of the flat G-structure on the tangent bundle, then /*ω = vol(M)[M].
(Here G8 denotes G with the discrete topology. See [1], [2], [3] and [4] for more
information on such classes.) Now the continuous cohomology of G can easily
be computed from the extensions Z ^ G - > G a n d Z ^ > G ^ > PSL(2, R) X
PSL(2,R), in terms of the continuous cohomology of PSL(2,R) and its
universal cover SL(2,R). The continuous cohomology of PSL(2,R) has one
generator a in dimension 2 corresponding to the Euler class, and the continu-
ous cohomology of SL(2, R) has one generator b in dimension 3 corresponding
to its bi-invariant volume form. If Z -> S -> T is an extension of groups there
is an exact Gysin sequence

• -> H\T) -> Hi(S) -> Hi+2(S) -> Hi

(all the Hi denoting continuous cohomology), where the first map H\T) ->
H\S) is induced from the homomorphism S -* T and the second map
H\S) -> Hi+2(S) is given by cup product with the characteristic class in
H2(S) corresponding to the extension Z -> S -> T. In the Gysin sequence for
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the extension Z -> SL(2,R) -> PSL(2,R) the generator of i/3(SL(2,R)) corre-

sponding to the invariant volume form maps to the class in if2(PSL(2, R))

corresponding to the Euler class [2].

Now let j : G -> G be the involution given by (x, y) -> (y, x); on X, j is

represented by an orientation-reversing Lorentz isometry (thinking of X as

SL(2,R), this isometry is just x -> x~ι). Let bl9 b2 be the generators of the

continuous cohomology of G coming from the volume forms on each factor.

Because j preserves the image of Z -> G and takes the class ω e H3(G)

corresponding to Lorentz volume to — ω, we see that the image of ω under

H\G)-+ H\G) is bx - b2.
Now consider the extension Z -> G -> PSL(2, R) X PSL(2, R). One sees that

the image of ω e H3(G) under the map H\G) -> i/2(PSL(2,R) X PSL(2,R))

is the class aλ — a2. It follows that the volume ω(/z) is given (up to a

normalizing constant) by the difference of the Euler classes e(hx) - e(h2).

Thus if £?(*!> = e(h2\ then vol(M) = ω(h) = 0.
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