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DISCONTINUOUS GROUPS AND THE EULER CLASS
William Mark Goldman
Department of Mathematics
University of California, Berkeley
Abstract
Let M be a closed oriented surface, x(M) < 0, and let T
denote its fundamental group. To every homomorphism ¢: T - PSL(2,R)
there is associated a bundle E¢ of hyperbolic planes over M with a
foliation transverse to the fibers; the hyperbolic structure on each
fiber is invariant under the local holonomy of the foliation. Taking
the Euler number of the underlying oriented disc bundle one obtains
a mapping e: Hom(m,PSL(2,R)) - Z. We prove that |e(d)| assumes its
maximm value (which by the work of Milnor and Wood equals |x(m)|)
if and only if ¢ is an isomorphism of 7 onto a discrete subgroup
of PSL(2,R). The proof consists of showing there exists a hyperbolic
structure on M with holonomy ¢ Dby constructing a section of E¢
transverse to the leaves of the foliation. The surface M is decom-
posed into smallest pieces, and the section is constructed over each
piece one at a time. To construct th‘e section over the pieces, it is
necessary to consider surfaces with boundary; an approi:ria‘te relative
version of the theorem is stated and proved. Applications of this
result include a homological criterion for structural stability of
projective actions of T on the circle and a characterization of
Anosov foliations among transversely projective codimension-one folia-

tions of circle bundles over M.
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Introduction

Let M be a closed orientable surface with a Riemann metric of
constant negative curvature. The metric defines a system of local
isometries of M with the hyperbolic plane X; hence the metric
gives M the (local) structure of hyperbolic geometry. Globally,
there is an isometry of the universal covering surface M with X.
Via this correspondence, the group m of covering transformations of
> M acts properly discontinuously, freely, and isometrically on X.

It is well known that a necessary and sufficient condition for an
isometric action of T on X, i.e. & homomorphism ¢: T + Isom(X),
to arise in this way is that ¢ be an isomorphism onto a discrete
subgroup of Isom(X). Since this is the action of a Fuchsian group,
we call such an action Fuchsian.

Let G = PSL(2,R) be the group of orientation-preserving isome-
tries of the hyperbolic plane. Corresponding to a homomorphism
¢: ™ > G we associate a geometric object, namely a hyperbolic foliated
disc-bundle, or, equivalently, a projective foliated circle-bundle,
over M. A hyperbolic foliated bundle E¢ consists of a X-bundle
over M together with a foliation transverse to the fibers leaving
invariant the hyperbolic structure on the fibers. A projective foliated

bundle 3E is the boundary of the natural compactification of a hyper-

[
bolic foliated .bundle; its typical fiber is the "circle-at-infinity"
93X which is JRPl with the structure of projective geometry.

If ¢ € Hom(m,G) is a Fuchsian, the associated projective foliated
bundle 3E¢ is the unit tangent bundle Tl(M) with an Anosov folia-
tion. There are two identifications of a unit tangent space over

x € M with the circle-at-infinity, obtained by flowing along a

1
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geodesic, either forwards or backwards, approaching asymptotically a
unique point of 08X. The corresponding Anosov foliations of Tl(M)

are just the foliations by the stable and unstable manifolds of the

geodesic flow.

The hyperbolic foliated bundle E¢ corresponding to a Fuchsian ¢
is topologically the tangent disc-bundle. ILike the canonical embedding
of a smooth manifold in its tangent bundle by the zero-section, a
manifold with hyperbolic structure embeds canonically as a section of
a hyperbolic foliated bundle. These canonical sections are charac—
terized by the property that they are transverse to the foliation as
well as the fibers. Indeed there is natural correspondence between
hyperbolic structures on M, Fuchsian actions, and sections of
hyperbolic foliated bundles which are transverse to the foliation.

The main result of this paper is that if a representation
¢: ™+ G determines a hyperbolic foliated bundle Eli’ which is topo-
logically the tangent bundle then ¢ is Fuchsian. In other words, Eq)
is the tangent bundle if and only if there exists a transverse (with
respect to the foliation) section M ~+ E¢.

Giving X an orientation, a hyperbolic foliated bundle becomes
an oriented disc bundle. Oriented disc bundles over M are classified
up to isomorphism by their Euler class (or Euler number if M is
oriented) which lies in HZ(M;Z) £%. If ¢ € Hom(m,G) then the Euler
class e(¢) of Eq> is an invariant of the representation ¢. Hence
the mapping

e: Hom(m,G) — Z

expresses the oriented bundle type of a hyperbolic foliated bundle,
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while forgetting its foliation. It amounts to enlarging the structure

group from G with the discrete topology to G with the usual topology.

Theorem A. If ¢ € Hom(m,PSL(2;R)), then |e(d)] < [x(M)];
equality holds, e(¢) = #x(M) if and only if ¢: m — PSL(2;R) is an

isomorphism onto a discrete subgroup.
A more geometrically stated version of Theorem A is:

Theorem B. (i) Let (E¢,F) be a hyperbolic foliatéed bundle over
M. Then E‘i’ is topologically the tangent disc bundle of M if and
only if it admits a section transverse to F.

(ii) Let (8E¢,F) be a projective foliated bundle over M. Then
8E¢ is topologically the unit tangent bundle of M if and only if F
is an Anosov foliation of 'I‘l(M).

The inequality |e()] < |x(m)] is aue to J. Milnor [39] and
J. Wood [56]. They prove this inequality is sharp; Theorem A is
therefore a converse to the sharpness of this inequality.

One consequence of Theorem A is that it provides necessary and
sufficient conditions for an isometric action on the hyperbolic plane
to be properly discontinuous (i.e. like a group of deck transformations
in a covering space) in terms of a characteristic class of the action.
The Euler class is the only "obstruction" for an action to be discon—
tinuous in the sense that ¢ € Hom(m,G) is Fuchsian provided that
le(¢)| is maximized.

In Anosov [1] it is proved that the geodesic flow on Tl(M) is
structurally stable. From this follows the structural stability of the

corresponding Anosov foliations, and hence all Fuchsian actions of ™
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on the circle Si =mp'. We will prove a converse: if ¢: m — SL(2,R)
defines a projective action on Sﬂln then this action is structurally
stable if and only if ¢ is Fuchsian. Hence maximizing the Euler
class also characterizes structural stability for a certain class of
projective actions on the circle. Indeed, [|e(¢)| = |x(M)| is equiva-
lent just to ¢ being approximated by structurally stable actions.
From the continuity of e:Hom{7,G)/G +%Z we derive the well-known
fact that the Fuchsian actions form a closed subset. For reasons hold-
ing more generally, this set is also open. Since the orientation-
preserving Fuchsian actions form a space which is a principal PSL(2,R)-
bundle over a -3y(M)-cell (Teichmuller space), it follows that
e_l(x(M)) and e-l(-)((M)) are each (3g-3)-cells and connected com—
ponents of Hom(m,G)/G (g denotes the genus of M). With regard to

the other components of Hom(m,G) we propose the following conjecture.

Conjecture. The fibers of the map e: Hom(m,G) — % are connected.

Hence the connected components are the 4g-3 sets e'l(n), |n] < 2g-2.

In general we develop the theme that the global (e.g. connectedness)
properties of spaces like Hom(w,G) for G any Lie group and
finitely presented are reflected in the topological properties (as
described by characteristic classes) of bundles with structure group G
over spaces with fundamental group m (for example, M = K(m,1)). In
this direction we prove that if 7 is the fundamental group of a

closed orientable surface then

Proposition C. Hom(m,PSL(2,€)) has two connected components.

Hom(m,SL(2,C)) is connected.
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This paper is organized as follows. The first chapter contains
background on geometric structures (sometimes called "integrable,"
"rigid," "flat," "locally flat," etc.) and their relation to foliated
bundles. In particular we characterize (G,X)-structures by their
developing sections, sections to their tangent G-foliated X-bundles.
Early in this chapter we define geometric structures transverse to
foliations and we adopt the point of view that a geometric structure on
a manifold or transverse to a foliation is just a section of a
foliated bundle transverse to the foliation.

The second chapter is background on hyperbolic geometry, projective
geometry and PSL(2,R). In addition to establishing notation and
terminology we suggest a picture of PSL(2,R) (which I learned from
Sullivan) in which we interpret some of our later techniques. In
particular, to get a model for a PSL(2,R)-structure o"ver a curve in M,
we desire a uniform way of lifting elements of PSL(2,R) to the uni-
versal cover %(ZJR); although we must sacrifice continuity, these
1lifts are still a useful tool in defining "special sections,” the sort
of sections we begin with over curves, before extending them over M.

In the appendix to §2 we classify projective structures on the
circle (originally due to Kuiper [35]). In addition to combining the
abstract theory of 81 with the discussion of PSL(2;R) in §2, these
structures appear naturally in our study of hyperbolic structures on
surfaces with boundary as "ideal sections" over the boundary. Alge-
braically, isotopy classes of EPl—structures on the circle correspond
to elements of the universal cover group ﬁ(ZJR).

In §3 we address the question of hyperbolic structures on surfaces.

These structures, of course, have been studied extensively as the
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subject of Fuchsian groups. The first part (3.1-3.2) reviews well-
known properties of Fuchsiaen actions. In 3.3 we discuss the variety
of representations. In 3.5 we unveil our plan to study the global
properties of representation spaces by means of the characteristic
classes of the associated foliated bundles.

The Euler class of a hyperbolic foliated bundle, e: Hom('n,G) +7Z is
discussed:in 3.6 where we state Theorem A. From it we deduce (3.7)
that Fuchsian actions constitute two connected components of Hom(m,G).
Its definition as an obstruction class appears in 3.9. Proposition C
is proved in 3.10 where we characterize components of Hom(m,PSL(2,C))
by W2. This allows us to calculate the irreducible components of the
(quasiprojective) algebraic variety Hom(m,PSL(2;R)). While there are
exactly two irreducible components, there are at least lLg-3 topological
components. We use Proposition C to study generic properties of repre-
sentations ¢ € Hom(m,G) in the appendix to §3. One consequence
(which is actually stronger than what we actually need for the proof
of Theorem A is that isomorphisms ¢: ™ — G are dense in all homo-
morphisms 7 — G, at least for the choices G = SL(2R), SL(2,T),
SU(2). Finally in 3.15 this genericity result is used to characterize
Fuchsian actions on the circle as the only structurally stable projec—
tive actions of T on the circle (which 1ift to SL(2;R)).

In 3.16 we introduce another point of view concerning the Euler
class: namely as an area for "singular" hyperbolic structures. This
leads us to conjecture a generalization of Theorem A to other semi-
simple groups G than PSL(2,R), where the Euler class is replaced
by a characteristic class of the foliation derived from an invariant

volume. The Euler class occupies a somewhat special position in that
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it is both an obstruction class and a "volume class."

The last three chapters discuss the proof of Theorem A. Basically,
we shall use the assumption that e(¢) = +x(M) to construct a section
f of Eq> transverse to the foliation. First we decompose M into
"smallest" subsurfaces M, with X(Mi) = -1, and state a relative
version of the Milnor-Wood inequality over the Mi’ i.e. IE(¢|M.)|
< 1. Then it should follow from an additivity property of the Euier
class that |e(¢)| < [x(M)| (the Milnor-Wood inequality). More impor~
tantly, equality is reached for M if and only if equality is reached
for each Mi' We prove a relative version of the sharpness statement,
Theorem B, "if e(¢) = #x(M) then E¢ admits a transverse section"
over each Mi’ and then glue together the sections over the Mi to
produce a global transverse section M - E¢'

However, to do this requires some technical definitions. We must
define boundary data both for the relative Buler class and for the
transverse sections we construct. This is carried out in §4. We call
a section O of a projective foliated bundle 8E¢ an "ideal section";
then the relative Euler class e($;0) of E¢ with respect to an
ideal section O over M is the obstruction to extending o to an
ideal section over all of M.

Ideal sections which are transverse to the foliation carry
natural real-projective structures. Real projective structures on the
circle are shown (Appendix, §2) to correspond to elements of the
universal covering group §§L(2,‘IR); different choices of 1lifts corres-
pond to different homotopy classes of ideal sections.

Since we desire a numerical estimate on the relative Euler class,

we must be careful in our choice of ideal section; thus we define
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"special ideal sections" which are to depend only on the holonomy
around the given boundary component. Special sections are "special"
only in that the relative Milnor-Wood inequality is true using them.
Since there is no continuous section PSL(2,R) — %L(Q;R), special
sections cannot even be chosen to depend continuously on the holonomy.

We also need suitable boundary conditions for the sections we
construct. Since we plan to glue the sections over the pieces toge-
ther, ideal sections are unsatisfactory boundary conditions. Instead
we realize special ideal sections as "special interior sections." For
example if ¢ 1is a simple closed curve in M and ¢(c) is hyperbolic,
a special interior section may take c to the ¢(c)-invariant geodesic.
More generally, special interior sections take values on invariant
cireles, horocycles, and equidistant curves.

Chapter 5 is the heart of the proof. There we attempt a detailed
analysis of hyperbolic foliated bundles over a pair-of-pants (i.e.
sphere minus three discs). The main results are summarized in
Theorem 5.1. We proceed to classify such bundles, or equivalently,
representations ¢ € Hom(m,G), by associating to ¢ a geometric
object, a triangular configuration in }RPZ‘ This configuration
completely determines ¢, at least as long as ¢ satisfies the generic
condition that ¢(m) is not solvable. This condition means that
¢(m) has no fixed point in IRP2, where the hyperbolic plane X is
represented as a conic in 1RP2 (the Klein model). This triangle A
is defined by the property that if IBC’ ICA’ and IAB are projective
involutions fixing the respective sides of A and leaving the conic

9X invariant, then
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6(a) = IoaIsg
6(B) = Ipply,

() = TyeTey

We say that "¢ has been factored into reflections (or symmetries),"
depending on whether the involutions reverse or preserve the orienta-
tion of X. Using the triangle A a transverse section is constructed
by truncating A to form a right hexagon, assuming certain geometric
conditions on the triangular configuration. Finally, we compute the
relative Euler class e(¢3;0) with respect to the special ideal section
0 over M by constructing deformations of ¢ to known examples.
Our conclusion is that e(¢;0) must be -1, 0, or +l, and if e(¢;0)
= -1, then generically E¢ admits an orientation-preserving transverse
section which restricts to a special interior section over M.

Finally in §6 we prove Theorem A. We use Theorem 5.1 to find a
section f: M — E¢ which is transverse over Uint Mi. To show that
this section is actually transverse over M, we use the fact that the

f are either all orientation-preserving or orientation-reversing.

M.
i

Consequently f cannot suffer a "fold" along some component of BMi,
vhich implies f is transverse. However, the section is constructed
for generic ¢ only, so it is now necessary to show that the generic
approximation was actually unnecessary. This follows from an analysis
on how the transverse sections are constructed: the approximation was
necessary only if,for some component C = BMiﬁsM‘j #(C) is elliptic,
but we show that unless ¢(C) is hyperbolic there cannot exist trans—
verse sections over Mi UMj with the correct boundary behavior. This

last step, incidentally, may be avoided by the use of the "known" fact
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that Fuchsian actions form a closed set in Hom(w,G); however we
prefer a more elementary proof and in any case deduce this fact as a

corollary to our main theorem.
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§1. : Geometric Structures and Sections to Foliated Bundles

This chapter is a brisk introduction to the theory of (G,X)-
structures on manifolds and transverse to foliations. Similar treat-
ments can be found in Kulkarni [36], Thurston [51] and Sullivan and
Thurston [54]. We develop the point of view that such (G,X)-structures
are canonically identified with sectionsof certain "foliated bundles."
These foliated bundles themselves possess transverse geometric struc-
tures, since the foliations are transverse to the fibers which carry
the geometric structure.

In this chapter alone do we apply the following general notation:
Let X be a connected real analytic manifold with an analytic trans-
formation group G which acts strongly effectively on X: two trans-
formations in G which agree on a nonempty open subset of X must be
identical. ILater on we will specialize to G = PSL(2;R) and X is

either the hyperbolic plane or IRPl.

Definition 1.1. A (G,X)-structure on a manifold M is defined
by an open covering {Ua} of M, and diffeomorphisms

Y

ot Uy wa(Ua) CX such that whenever Uy, ﬂUB # @, the mapping

waowél extends from we(UaﬁUB) to a transformation 8y8° X+ X in
G. Such a collection {(Ua’won)} is called a (G,X)-atlas. A (G,X)-
structure, then, is a maximal (G,X)-atlas.

A manifold with a (G,X)-structure will be called a (G,X)-manifold.
If M and N are (G,X)-manifolds, then f: M=+ N is a (G,X)-map if
and only if for every coordinate chart (Ua,wu) in the maximal etlas
for M, and every chart (Ve,tt)B) for N, with i’(Uu) nVS # @, then

9goteys’ extends to a tremsformetion X > X in G.

11
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Definition 1.2. For every classical geometry, we obtain a cate-
gory of (G,X)-manifolds. The simplest examples occur when G is the
group of isometries of a homogeneous Riemannian manifold X; then a
(6,X)-manifold M is just a Riemannian metric locally isometric to X.
Taking X = Sn, ZIRn, or ]Hn, we obtain spherical, Euclidean, and
hyperbolic structures. For these cases (G,X)-structures are Just

metrics of constant curvature.

(G,x) Geometric Structure
X =R" ¢=Are@") affine

X =Rp", G= PSLCIRn+l) (real)-projective

X = quadric in ZIR]Pn+2, G = 80(n+1,1) conformal

(We shall sometimes refer to, e.g. real projective structures on a
l-manifold as an IRPl—structuz‘e, ete.) Notice that JR]Pl-structures
are also (S0(2,1),quadric)- (i.e. flat conformal) structures.

By passing to the universal covering of X (and hence also a
covering of G), we may as well assume, in the study of (G,X)-struc-
tures, that X is simply connected. Following Thurston [5h] §3, we
say that a (G,X)-manifold is complete if M is obtained as X/T,
where T is a discrete subgroup of G which acts "freely and
properly discontinuously" (i.e. as covering transformations) on X.
The condition "properly discontinuous" is most neatly expressed as a
discrete group acting Dproperly. (An action of G on X is proper if

and only if the map

GXX— XXX
(g,x) > (gx,x)

is proper.)
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If X is a complete metric space upon which G acts by isome-

tries, then every (G,X)-structure on a compact manifold is complete.

1.3 We now describe an object "tangent" to & (G,X)-manifold M. Use
the transition functions {EOLB} to put together a fiber bundle E
with fiber X and structure group G over M in the usual manner:

Elg =U,%X and E is obtained from U(U_xXx{a}) by identifying
o o &

(u,x,a) to (u,gan,B) whenever UaﬂUB is nonempty. Since the
"change-of-coordinates" UanUB — G is (locally) constant, it follows
that the structure group G reduces to GG, the group G with the
discrete topology. This is well-known to be equivalent to the sets
Uy % {x}, x €X defining a foliation F of E. Clearly F is trans-
verse to the fibration E - M.

Just as the tangent bundle to a smooth manifold admits a
canonical section (the zero section), which completely specifies the
differentiable structure, there is also a canonical section M + E

which specifies the (G,X)-structure on M. This section, which we call

the developing section, is defined locally as the map

Uu-—>Ua><x =

o

ub (u,yu) .

(The relation gasows = wa insures that the local sections over UoL

extend over M.) The developing section is the "graph" of a (G,X)-

-n

structure; it is clearly transverse to as well as the fibration
E+M. When M has a comﬁlete (G,X)-—structure, the developing
section is a "cross-section" to F, i.e. every leaf intersects f(M)

exactly once. In that case M is actually represented as the leaf

space E/F.
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The (G,X)-bundle E to M is "tangent" to the (G,X)-manifold in
the following sense. Let N be a sufficiently small tubular neighbor-
hood of the developing section in E. Then as a topological disc-bundle,
N is isomorphic to & tubular neighborhood of the diagonal M C MXxM,
i.e. N is topologically the tangent disc-bundle. In other words,
the normal bundle of the developing section defines the tangent
microbundle. (See Milnor and Stasheff [L40].) Even when
X ~ R (e.g. hyperbolic space), calculations are complicated by the
absence of a linear vector-bundle structure on E (except, of course,

for affine structures).

1.4 Let M be a (G,X)-menifold with tangent foliated (G,X)-bundle
(E,F). Transverse to F are the fibers X with the "universal"
(G,X)-structure (the (G,X)-structure with one chart, the identity map
X + X). Since our later work will have applications to the general
subject of geometric structures transverse to a foliation, we make the

following definition (compare Thurston [54], Haefliger [24]).

Definition. Let (M,F) be a foliated manifold. A (G,X)-
structure transverse to F is a maximal atlas {(Ua,\bu)} where {Ua}
is an open cover of M, and the charts wm: Uoc — X are submersions
such that the leaves of F v, are the preimages \p;l(x), x € X and

such that whenever UotnUB # @, there is some €48 € G such that
- Eaglp:
Note that the codimension of F must equal the dimension of X.

If F is the foliation of M by points, then a (G,X)-structure trans-

verse to F is just a (G,X)-structure on M.

1k
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1.5 Suppose that F is a foliation of M having a (transverse)
(G,X)—structure. Suppose that f: V+ M is a map transverse to F.
The induced foliation on V then carries a natural (G,X)-structure
too. When dim V = dim X, then f automatically defines a (G,X)-
structure on V. The foliation F defines an equivalence relation on
maps f as above, whereby two maps fl and f2 are equivalent if
and only if there is a map F: Vx [1,2] — M such that F yx{i} = fi
and the sets F({v}x[1,2]) are contained in leaves of F. One can
actually define (G,X)-structures transverse to F as assignments of
(G,X)-structures on V to maps V + M transverse to F such that

F-equivalent maps are assigned isomorphic (G,X)-structure.

1.6 Now we come to the key definition. For different treatments, see

Hirsch-Thurston [29], Lawson [37], Kamber-Tondeur [34], and Wood [56].

Definition. A foliated (G,X)-bundle (or “G-foliated X-bundle")

over M is a pair (E,F) where E is a fiber bundle over M with
fiber X and F is a (G,X)-foliation over E transverse to the
fibers. By the preceding remark, each fiber has.a (G,X)structure; there-
fore we require the (G,X)-structure on each fiber to be the universal

(G,X)-structure on X, i.e. the one with only one chart.

Notice that this last compatibility condition forces the fiber
bundle E > M to have structure group G, given the discrete topology.
Indeed one mey eesily define a foliated (G,X)-bundle to be a fiber

bundle with fiber X and structure group G, where G is given the

discrete topology (compare Steenrod [L8]).
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Examples
(1) The product bundle MxX — M has a foliation with leaves

Mx {x}; in this case the structure group can be reduced to G = {1}.

(2) If M has a (G,X)-structure then its tangent (G,X)-bundle
(defined in 1.2) is a foliated (G,X)-bundle.

(3) Suppose that = = Trl(M) and ¢: T — G is any homomorphism.
Then ¢ defines an action of T on Mxx which, on the first factor,
is by deck transformations of the universal covering > M, and, on
the second factor by T 9 G > Diff(X). The quotient, which we
denote by E(b’ fibers over M by [(m,x)] > [m] with fibers {m}xX.
On the other hand the foliation with leaves [Mx{x}] do not neces-
sarily form a fibration since ¢ need not define a free proper action
of m on X. We denote this foliation by F¢. Clearly (E¢,F¢)
defines a foliated (G,X)-bundle over M. We call (Ed),Fd)) the
foliated (G,X)-bundle associated to ¢, and ¢ the holonomy

homomorphism of the foliated (G,X)-bundle (E ¢,F ¢).

As is well-known, the last case (3) includes all foliated
(G,X)-bundles. To see this, let (E,F) be a foliated (G,X)-bundle
over M. Choose a base-point £ and a homeomorphism n: Exo — X
of the fiber of E over B with X. We use n and the foliation
F to define the holonomy homomorphism ¢: Wl(M;xo) —* G as follows.
First note that in E, a point is completely determined by which
fiber and which leaf it lies, at least locally. Therefore if U CM
is a sufficiently small open set, there are well-defined canonical
identifications nxy: Ex — Ey of nearby fibers, satisfying the

requirement that u € E, and nxy(u) lie in the same leaf of F.
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Hence we may cover a closed loop Y by such open sets and obtain a

n, sesesl, s of canonical identifications,
XX 7 XX, X
"1 %1% *x*0
PO € y; the composite n RN o) is the holonomy
0°%1 *x XXy X Xg

sequence T

¢(y). It is not hard to prove that the holonomy defines a homomor-
phism ’n‘l(M;xo) — G.

The holonomy is the only obstruction to "trivializing" (E,F),
i.e. representing (E,F) as the product foliated bundle. For if the
holonomy is trivial, there is no ambiguity to finding a global tri-
vialization E + X which collapses leaves to single points.

Thus when pulled back to the universal cover M of M, the
foliated bundle is a product and the fiber X is just the leaf space.
To pass back down to M, one needs to consider how the group T of
deck transformations identifies distinct leaves. This identification
is precisely the one arising from the action ¢, so (E,F) is
indeed (E¢,F¢).

As the only ambiguity in defining ¢ arises from n: Exo — X,
we may compose T with any transformation g in G; the correspond-
ing holonomy is then ¢8: y j— g(b(Y)g-l. A more drastic kind of
change arises when we compose with a homeomorphism h: M + M; then the
new holonomy is ¢oh,, where h, is the induced map on Wl(M;xo).

Let AutM(Tr) denote the subgroup of Aut(m) (7= ﬂl(M;xo)) induced
by homeomorphisms h € Homeo(M); then we consider the left action of

AutM(ﬂ) on the space Hom(m,G) of homomorphisms m + G, and the

right action of G defined by ¢g.

Theorem 1.7. There is a canonical bijection between isomorphism
classes of foliated (G,X)-bundles over M and elements of the orbit

space (AutM(‘lT) ) \Hom(7,G)/G.
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The space (AutM(ﬂ))\Hom('n,G)/G of foliated (G,X)-bundles is
often called the moduli space; the space Hom(m,G)/G is sometimes
called the deformation space. Elements of the deformation space
correspond to foliated (G,X)-bundles over M, together with a marking
of M, i.e. a fixed isomorphism ‘n’l(M;xO) — M. These spaces will be

discussed further in §3.3.

1.8 Let M be a (G,X)-manifold with marking m = ‘rrl(M',xo) and tan-
gent foliated (G,X)-bundle (E,F). By 1.5 there exists ¢ € Hom(7,G),
well defined up to conjugacy in G, with E = E¢, F= F¢; we call
¢ the holonomy of the (G,X)-structure on M. A central problem is to
determine which ¢ € Hom(m,G) arise as holonomy of (G,X)-structures

on M.

Theorem 1.8. Let ¢ € Hom(7,G). Then there is a natural bijec—
tion between (G,X)-structures on M with holonomy ¢ and sections of

E, transverse to F,.

¢ ¢

Proof. Consider the map which assigns to a (G,X)-structure its
developing section. We show that this map is bijective, in the sense
that every F¢—transverse section to E¢ is the developing section of
some (G,X)-structure.

Let f: M~ E¢ be an F¢-—transverse section. By 1.5, f defines
a (G,X)-structure on M. Explicitly. the charts are defined as follows.
Cover f£(M) by sets U& open in E¢ such that F¢ U& is induced by
a foliation chart ‘J’&’ U& + X. The (G,X)-structure on M has for
charts \(Ju: Uy > X, \Da = 'J)D'LOf where U, = f_l(Uu). Clearly f is

the developing section for the (G,X)-structure on M (see Fig. 1.1).
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We shall say that two (G,X)-structures are isotopic if there is a
diffeomorphism of M, isotopic to the identity, which carries the
developing section of one (G,X)-structure to the developing section of
the other. By definition isotopic (G,X)-structures have the same
holonomy, which is really only well-defined up to conjugacy in G.
Conversely, it is not difficult to prove ([17] or [54], 5.1) that two

"nearby" (G,X)-structures are isotopic if they have the same holonomy.

|
S e
: = Z
: =
’ =
=
=]
X
. £
Fig. 1.1
¥ £—)
U
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Remark. Theorem 1.8 directly generalizes to (G,X)-structures
transverse to a foliation. The "tangent foliated bundle" is topo-
logically the normal bundle of the foliation, in a neighborhood of the

developing section.

1.9 Suppose (E¢,F¢) is a foliated (G,X)-bundle over M with holo-
nomy ¢. Since E¢ =M ><¢ X (as in 1.5), a section f: M - E¢ is
just a map f: M > X which is ¢-equivariant, i.e. if g € ‘nl(M) then

the following diagram commutes:

tal

g i&t(g)
X

—_—
—_—

Rie—— =2

If f is the developing section of a (G,X)-structure, then the map ¢
is called the developing map of this structure. In some instances it
is more convenient to consider the developing map as an equivariant
local diffeomorphism although in the present work it is more concep-

tual to consider the sections themselves.
1.10 Now we state the Basic Problem in the study of (G,X)—structures:

Basic Problem. Given ¢ € Hom(wl(M),G) classify all (G,X)-
structures on M (if any) with holonomy ¢. Equivalently, classify
all sections of the (G,X)-bundle E¢ which are transverse to the
(G,X)~foliation F¢.

We shall "solve" the Basic Problem when X is the hyperbolic
plane and G its group of orientation-preserving isometries. Since X

is contractible all sections of an X-bundle E¢ are homotopic. In
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general one should also ask for the existence of a transverse section
in a given homotopy class of sections. Furthermore since every hyperbolic
structure on a closed manifold M is complete, there is only one
structure (up to isotopy) with a given holonomy ¢. We find necessary
and sufficient conditions on (E¢,F¢) to admit a transverse section.

In 1.2 we mentioned that one necessary condition is that E¢ be
the tangent disc bundle. This condition is independent of F¢ and
the main result of this paper is that this necessary condition is

also sufficient.

1.11 As in 1.8, a (G,X)-structure on M is just a transverse section
to a foliated (G,X)-bundle over M. An arbitrary section of a
foliated (G,X)-bundle (E¢,F¢) may be regarded as a singular (G,X)-
structure on M, where the singularities of the (G,X)-structure occur
where the section fails to be transverse to F¢- (Singular (G,X)-
structures play the analogous role for (G,X)-structures that Haefliger
structures play for foliations.)

The most singular kind of (G,X)-structure arises from a "constant"
section. Namely, a stationary point x € X for an action ¢ € Hom(m,G)
determines a section which is also a leaf. Such a section which lies
in a leaf is called constant. The associated developing map is a
constant map.

A necessary condition for a singular (G,X)-structure f to be
homotopic to a nonsingular (G,X)-structure is that a tubular neighbor-
hood of f(M) in E is the tangent microbundle. When M is open,
the Smale-Hirsch-Phillips-Haefliger-Gromov theorem (see Haefliger [23])

implies that this necessary condition is also sufficient. Of course,
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when M is the interior of a manifold with boundary, one has very little
control of the mapping of oM.

When M 1is closed, the homotopy-theoretic necessary condition is
quite far from being sufficient. One may try to remedy this by
allowing particularly nice singularities, such as folds. We say that
a singular (G,X)-structure f: M~ E¢ has folds along a closed
submanifold V CM if and only if the associated developing map
D.: M > X has folds on V C it (i.e. there are C0 coordinates
(Xl" . .,xn) in a neighborhood of ¥ € V¥ such that Df(x]_" . .,xn) =
(xi,xz,...,xn) and V is the set (O,xz,...,xn). See Fig. 1.2 for
an R~-structure on Sl folded along SO, with trivial holonomy.

For mappings of closed manifolds whose only singularities are
folds, ﬁliaéberg [10] has extended classical immersion theory. His
methods extend to the study of sections of foliated bundles. For
example, if dim M = dim X = 2 and f is a singular (G,X)-structure,
then f is homotopic to one whose worst singularities are folds if
and only if the normal bundle of f(M) in E¢ has vanishing Stiefel-
Whitney class Ve Again, one has very little geometric control over
the mapping of the folding locus.

Our immediate interest in folds, however, is that our method for
constructing sections will frequently give "folded sections" (sections
whose only singularities are folds) and we wish to detect these singu-
larities. Let f£: M~ E¢ be a (G,X)-structure whose only singulari-
ties are perhaps folds along components of a closed submanifold V of
codimension-one. Let us assume that E¢ is an orientable X-bundle
and that we have chosen an orientation on X. If f: M~ E¢ is

F-transverse then it makes sense to speak of whether f preserves or
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Developing Developing
section map

ﬁ
= X

Fig. 1.2 A folded structure on the circle
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reverses orientation. If f has folds in V +then fM-V is

transverse.

Proposition 1.12. If for every component Mi of M-V, the
section f|M. is orientation-preserving (resp. orientation-reversing),
then f is ’iransverse. Otherwise, f suffers a fold along BMiﬁan
where fIM- preserves orientation: and f'M. reverses orientation.
In terms c:tL‘ a developing map for f, there is a fold along V if and
only if a collar neighborhood of V in Mi and MJ get mapped to

the same side of the developing image of V.

Proof. Consider a developing map F for f. It suffices to
consider a tubular neighborhood of V. The theorem then follows from
the elementary topological fact that if h is any map Dn_lx [-1,1] — R
which is a homeomorphism on Ly [-1,0) and on ™1 x (0,11, then

h is a homeomorphism if and only if F 1 F n-1
D x(0,1] D x[-1,0)
both preserve or reverse orientation; in that case F(D®%x (0,1])

and F(Dn_lx [-1,0)) 1ie on opposite sides of F(Dn—lx {0}); other-

wise F suffers a fold on D™ Lx{0}.
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§2. Hyperbolic Geometry and the Projective Geometry of PSL(2R)

We shall mainly be interested in the case where X is the hyper-
bolic plane and G is the group of its orientation-preserving isome—
tries. In this chapter we review some facts about hyperbolic geometry
vwhich are used later in the sequel. We d~ got discuss discontinuous
groups acting on the hyperbolic plane in this chapter; see §3 for a
brief review. Since most of this material is gquite standard, we refer
the reader to one of the many existing treatments for details, e.g.
Harvey [25] §2, Thurston [54], Siegel [45], Coxeter [7], and Busemann
and Kelly [5].

One of our goals will be a global picture of PSL(2,;R) and how
it relates to hyperbolic geometry. We shall draw a picture of
PSL(2;R), and in the appendix give a geometric
interpretation of elements of the universal covering group l%f_.(Z,'IR)

as projective structures on the circle.

2.1 There are various models for hyperbolic geometry. One model

uses X = {z€¢: Im z>0} the upper half-plane with metric
y—z(dxz-l-dye) which has curvature (-1). Geodesics are then circular
arcs orthogonal to 08X =RU{w}. The group of (orientation-preserving)
isometries is equal to the group of (orientation-preserving) conformal
transformations of the sphere (U {w} = cpt leaving RU{=} = Rre®
invariant. Hence G is the projective linear group PSL(2;R). The
homomorphism SL(2JR) —PSL(2;R) has kernel {*I} so SL(2,R) is a
double covering of G, and every element of G can be represented

in exactly two ways.
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Another model, which we shall use frequently, is the projective

model due to Klein. Let {[x,y,z]EIRP2: —x2-1—y2+22= 0} be a conic in

]RP2. Its complement has two components, one of which is the disc
X= {[x,y,z]: -x2+y2+22< 0} and the other the Moebius band

x* = {[x,y,2]: —x2+y2+22>0}. The original conic is 08X = 0X* and
the group of projective transformations leaving X, X*¥ or §X
invariant is 80(2,1). Following Hilbert there is an S0(2,1)-invariant
hyperbolic metric, determined intrinsically by the domain X in pro-
Jjective space [5]. The identity component of S0(2,1) is the group of
orientation-preserving isometries and is jsomorphic to PSL(2,R). In
an analogous way, X* has a canonical SO(2,1)-invariant Lorentz
metric of constent nonzero curvature.

In all of these models, the boundary 09X plays an important role.
Intrinsically the "circle-at-iufinity" is defined as equivalence
classes of parallel (i.e. forward asymptotic) geodesic rays; two
oriented geodesics are parallel (see Fig. 2.1) if corresponding points
remain a bounded distance apart (in that case the distance necessary
approaches zero). The "circle-at-infinity" 98X is sometimes denoted
by Si and its points are often called ideal points.

An isometry of X defines a projective transformation of 3X.
This is easily seen in the upper half-plane model where isometries
act by linear fractional transformations. In the Klein model there
are various ways of identifying a conic, such as 98X, with ]RPl (see
Fig. 2.2). (In higher dimensions projective geometry is replaced by

conformal geometry as the natural geometry to use on the sphere-at-

infinity).
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2.2 Since the Lorentz inner product in ]R3 defines a duality on IR3,
i.e. an isomorphism of E3 with its dual vector space, a conic in

]RP2 defines a projective duality. That is, to every point p  in

IIRP2 (corresponding to a line in 133 containing 0) there is a dual pro-
Jjective line p* (corresponding to the dual "annihilating" plane con-
taining 0), and vice versa. Points in X correspond to lines com-
pletely contained in X¥ and points in X¥ correspend to lines
intersecting 9X in two points, i.e. geodesics in X (Fig. 2.3). 1In

this way every point in IIRP2 is interpreted in the geometry of X.

2.3 DNow we shall classify the elements of G. This may be done either
algebraically, by using Jordan normael form for matrices in SL(2;R),
or geometrically, using the synthetic geometry of X. Either method
implies that an element T € G, T # 1, has either exactly one fixed
point, in X (elliptie), in 98X (parabolicd), or three fixed points,
one in X¥ and the other two on 09X (hyperbolic). We proceed to
discuss these three cases.

Elliptic elements of G stabilize a unique point x € X. Such a
transformation is rotation through some angle 6, -m < 6 < 7 and is

represented by a matrix conjugate to

cos s -sin s ]
D= 2 2
e sin 2 cos g J
2 2

Note that the centralizer of such an elliptic element is the elliptic
one-parameter subgroup fixing x, which is compact and conjugate to
PSO(2) C PSL(2;R). However, the parametrization of the one-parameter

subgroup is not uniquely determined, for we may write
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Fig. 2.3 The projective duality defined By a conic
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Ty = exp('re)
where
o -fm ]
=g € s1(2,R)
2+ Tk 0 J

for every k € Z. To remedy this situation we define the

principal-value logarithm of an elliptic transformation by the formula

_y| cos —g- -sin g 1 0 -g
Log P o o [P=P"8 S|P
sin 3 cos g3 2

where PE G and -7 < 6 < 7. Note that Log has discontinuities at
elements with 6 = *m; such elements are rotations of angle 180° = 7
and may be characterized as those elements of G of order two. We
call such elements symmetries and we denote the subset of G consist-

ing of symmetries by Sym. Note that the map

X — Sym

x b (symmetry about x)
is a homeomorphism which naturally identifies X with a subset at G.
2.4 Parabolic elements are limiting cases of elliptic elements as
their fixed points tend to 93X = Si. Parabolic elements of G fall

into two conjugacy classes, depending on the direction they move

points on 9X; they are represented by matrices

23
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As with elliptic elements, the centralizer of a parabolic element is
precisely the one-parameter subgroup containing it. Unlike elliptic
elements the parametrization of parabolic one parameter subgroups is
unique, that is, if T is parabolic, there is a unique solution

(Log T) to exp(Log T) = T. Specifically, if T is represented by

10
1 T,
01

T &€ G, then Log T is the unique element of s1(2;R) given by

0 6

Tl T
0 0
The orbits of elliptic one-parameter groups are the concentric

circles about the fixed point in X. As the point moves towards
¥ € 93X, then the circles approach curves which are the orbits of the
parabolic one-parameter set group fixing y. These horocycles are
realized in the Poincaré model as circles tangent to 9X at y and

may be defined synthetically as the orthogonal trajectories to the

family of geodesics asymptotic to y.

2.5 Hyperbolic elements are those elements of G which leave a
geodesic (necessarily unique) invariant. Once again the centralizer
of a hyperbolic is the one-parameter subgroup containing it. A hyper-
bolic element has three fixed points in IRIP}?: the endpoints in X
of the invariant geodesic as well as the dual point in X¥. We call
the fixed point in X* the preferred fixed point because although it
is not the unique fixed point, it nonetheless characterizes the hyper-

bolic one-parameter subgroup.
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Fig. 2.4
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As with the parabolic case, the parametrization of a hyperbolic
one-parameter subgroup is unique. Thus we may define the logarithm of

a hyperbolic element by the formula

_y| cosh 6 sinh 6 1 o e
Log P P=P P
sinh © cosh 8 e o/

The orbits of a hyperbolic one-parameter subgroup in X are all
curves (called equidistant curves) which run between the two fixed
points on 3X. However, only one of these orbits is a geodesic.

Thus we have classified the elements of G other than 1 into
three types. We have defined a logarithm Log: G — g = sl(2;R)
which is uniquely determined except in the elliptic case. Log is
continuous except along the set Sym of symmetries; there it must
necessarily suffer a discontinuity. We say that a path gy €6 is
admissible (or special) if the map t }— Log & is continuous.
Certainly if & $ Sym, then - is admissible. Admissible defor-

mations will play an important role in our proof of the Main Theorem.

2.6 Now we wish to digress very briefly to discuss one class of
orientation-reversing isometries, the reflections. Given a geodesic
in X, there is a unique orientation-reversing involution fixing
that line; conversely every involution which reverses orientation,
reflects in a line. Indeed, the fixed point set of this map is the

projective line in ]RZIP2 extending the geodesic and the dual point
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in X*. A reflection RL in a line L commutes with the hyperbolic
one-parameter subgroup leaving L invariant; on the other hand, if
T is a parabolic transformation fixing an endpoint of L, then
RLTRL = T_l. Thus all parabolic elements are

conjugate in S0(2,1). It is also interesting to note that for every
non-parabolic element of G, there is some involution in 80(2,1)
commuting with it; in fact the only elements of G which commute
with a reflection (other than the identity 1) are symmetries and

hyperbolic elements.

2.7 The first picture we draw will be of G = PSL(2,R). From the
Killing form G has a bi-invariant Lorentz metric of constant
curvature. G is topologically an open solid torus. Let 1 € G be
the identity element. Then the light cone emanating from 1 is pre-
cisely the set of all parabolic element ParU{l}. Inside it lies
the union of elliptic one-parameter subgroups. Halfway around the
pinched torus {1}UParUEll 1lies the hyperbolic plane embedded as
Sym. Finally adding the hyperbolic one-parameter subgroups fills
out the whole IRZIP2 field-of-vision around 1 € G.

The stabilizer of a point in :IRIJI?2 is the normalizer of the
corresponding one-parameter group; these also turn out to be the
maximal solvable subgroups. Elliptic one-parameter subgroups are
their own normalizers. On the other hand the stabilizers of ideal
points are 2-dimensional and are conjugated to Aff(R). The stabi-
lizer of a geodesic (ultra-ideal point) contains the hyperbolic
one-parameter group as a subgroup of index two; in addition to trans-

lating along the geodesic, the stabilizer contains symmétries about
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points on the geodesic. Such a symmetry interchanges the two ideal
fixed points of the hyperbolic elements. Hence, if T is a subgroup

of G, the following are equivalent:

T' solvable
« T fixes a point in _T:'\JFZ

® T is either a group of rotations about a point, a group
of orientation-preserving affine transformations on R

or a group of isometries on a line

To better picture the conjugacy classes in G = PSL(2,R) we
shall use the trace mapping trace: SL(2,R) — R. Since trace(-A) =
—trace A, the trace mapping itself is not defined on G, but |1:race|
and 1:1‘ace:2 are. However, in the following picture we draw the level
sets of t = trace: SL(2,R) —R.

It is well-known that the trace of an element of SL(2,R) (or
SL(Z,C)) is a conjugacy invariant; except for the case trace = #2
the trace of a matrix in SL(2) is a complete conjugacy invariant. One

knows the type of element of SL(2;R) by compnting its trace:

|trace A] > 2 hyperbolic
|trace A| = 2  +(parsbolic or identity)

|tra,ce Al <2 elliptic

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Fig. 2.5a A picture of PSL(2;R)
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|
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] “— Special elemem:s—’:9
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'
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§ ~
Fig. 2.5B A picture of PSL(2;R)
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Appendix to §2. Real Projective Structures on the Circle

We begin the study of PSL(2,R)-structures by the classification
of the closed IRIPl—m.anif‘olds. In addition to illustrating the theory
of §1 and §2, real projective structures in dimension one play a key
role in our study of PSL(2,R)-structures on surfaces. Indeed one may
see certain analogies between the situation in dimensions one and two.
We shall find a natural interpretation of conjugacy classes in the
universal covering group G = §L(2,IR) and real projective structures
on the circle. The classification of closed ]RIPl—manifolds is due to

Kuiper [35] although the connection with SL(2;R) is new.

2.8 First we discuss those projective structures on the circle Ml
which are affine structures. Recall that the affine group Af‘f+(]R)
of the real line R is the isotropy group of PSL(2,R) acting by
projective transformations on ]HPl. Labeling the fixed point on JR]Pl
as ©, the complement ZIRIPl-{w} is R with the group Af‘f+(JR)
acting by (orientation-preserving) affine transformations x |— ax+b,
a > 0.

Since the developing image of a compact affine manifold contains
no fixed points of the affine holonomy [14] and Trl(M) is cyclic, the
holonomy group leaves invariant either the 1-form dx or (translating
any fixed points to 0) x—ld.x, depending on whether a # Lor a = 1. In
the first case the holonomy acts by translations and the affine mani-
fold M =R/Z; in the second case M is covered by one of the compo-
nents of R-{0}, say the positive part :IR+, and as an affine meani-

fold M is a "Hopf circle" ]R+/{s,n: n€Z}. It is easy to see that
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these are the only possibilities. Thus the space of all isotopy
classes of affine structures on a closed l-manifold M is naturally
identified with the half-closed infinite interval [1,w).

When generalizing to the case of projective structures there are
two new complications which arise. First, the holonomy may have no
fixed points at all on ]RJP:L and hence not be conjugate to a subgroup
of Aff(R). Secondly, the developing map M+ R may fail to be

injective. Indeed we have the following characterization:

Theorem 2.9. Let M be a closed ]R]Pl—-manifold‘ Then M is
projectively equivalent to an affine manifold if and only if its

developing map > ZIRI[P:L is injective.

In further contrast to affine structures on the circle, note that
]RIP:L itself has its "universal" projective structure. The developing
map is the universal covering map >M= IRZIPl and the holonomy is
trivial. Unlike the affine case the developing image consists entirely
of stationary points of the holonomy. One obtains infinitely many
similar examples by passing to an n-sheeted covering (]R]Pl)(n) of this
universal ]RIPl-ma.nifold.

To understand these and other examples we introduce a further
invariant of projective manifolds, which Nagano and Yagi term
modified holonomy. Let ﬁl - JR]Pl be the universal covering and

choose a 1lift of a base point in ]RIPl to ]”FT’]P1 as initial data.
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Since M is simply connected, there is a unique 1lift D of the
developing map to ﬁPl which extends the initial data

~

1
1]R]P

if —2— mpt

As the action of PSL(2,R) on IIRIIP:L 1lifts to an action of the

ed development D is

equivariant with respect to a lift of the holonomy homomorphism to

—~ ~1
covering group SL(2,R) on RP, the modi

—~—
SL(2,R), which we call the modified holonomy.

L SL(T;R)
[

}
i —4 PsL(2,R)

Theorem 2.10. There is a natural bijective correspondence
between the set of isotopy classes of marked ]R]Pl-structures on Sl
~—
and conjugacy classes in SL(2,R) - {1}, defined by assigning the

modified holonomy of a projective structure.

Proof. First we show that (marked) RP'-structures on M ~ S'
with the same modified holonomy are isotopic. Let # €  be a base
point and let ]31 and 52 denote the modified developing maps of two
projective structures with the same modified holonomy ¢: 1rlM =Z
- SE(?,{R)- By a trivial deformation we may assume that ﬁl(ﬁ) = ﬁg(ﬁi).
Now let g, denote the preferred (i.e. coming from the marking)
generator of ﬂl(M), and let I denote the interval in M with
endpoints m and glx'ﬁ. Then Ei is completely determined by its

restriction to the fundemental intervel I C M, which 'is an immersion
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(and hence a homeomorphism) of I onto an interval in REL ~ R.
Since any two homeomorphisms from an interval into R which agree on
the endpoints are isotopic (relative to the endpoints), there is an
isotopy b : -7, htlaf = idaf and ho = idi such that
Blohl = 52. By extending h, to > vy hto(gi) = (g;-l)at\t we
have constructed an isotopy between ﬁl and ]32 which defines an
isotropy between D;L and D2. Hence two projective structures are
isotopic if their modified holonomy are identical.

Now we show that every element ¢ € S’-L(\2;1’R), ¢ # 1 occurs as
the modified holonomy of some projective structure. Since ¢ # 1,
there exists a point p & ﬁPl which is not stationary under ¢.
Define the modified development D: M —> ﬁl by taking D to be a
homeomorphism from a fundamental interval I onto the interval with
endpoints p and ¢p and extending equivariantly to M- f{TPl. This

concludes the proof of Theorem 2.10.

Proof of Theorem 2.9. The fact that the developing map of an

affine l-manifold is injective follows from the fact that every
immersion R >+ R is injective. Conversely suppose Ml is a compact
]R]Pl—manifold whose developing map D: M — fi\fPl is injective; we
show that M is actually affine. If the holonomy is trivial or
elliptic, then the image of a fundamental intervel I in M under D
will wrap around IR:IPJ' at a constant angular rate. Then there will
be some n > 0 such that ¢(si)nD(i) intersects D(I). Consequently in
this case D is not injective. Hence xb(gl) is either hyperbolic or

parabolic; in particular ¢(gl) has a stationary point.
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A projective structure is affine if and only if the holonomy
fixes a projective hyperplane disjoint from the developing image.
Therefore it suffices for Theorem 2.9 to prove that any fixed point p
lies outside D(M). Suppose otherwise; then p lies in the image of
some fundamental interval I C M. Since 4)(51)1) =p, it lies in the
image D(g;lf) of every fundamental interval, contradicting the
injectivity of D. This completes the proof of Theorem 2.9, and
together with Theorem 2.10, the classification of closed affine

l-manifolds.

2.11 Note that when ¢ =1, we obtain a "developing map" for a
singular projective structure which is a constant map, obtaining the
constant projective structure. In this way we have a concrete geome—
tric object (either an honest projective structure or a constant
projective structure) which exactly corresponds to an arbitrary
element of the covering group m).

We shall like to find some natural way of associating to an
element of PSL(2,R) some projective structure having that as holonomy.
It is impossible to do this in a continuous fashion since there is no
continuous cross-section. to:the covering projection gm—,ﬁ) — PSL(2,R).

One procedure begins as follows. Write M = R/Z so the
preferred generator 8 of the group Trl(M) of deck transformations
of ff is t I t+l. Then a developing map will be a map R D, ]RIPl
which is equivariant in the sense that D(t+1) = ¢(Sl)D(t) where ¢
is the holonomy. Notice that if +t b exp t log ¢(gl) is a
one-parameter subgroup which has ¢(gl) as its time-one map, then

such a D may be defined by

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

D(t) = (exp -t(log ¢(g)))y

If y is not a stationary point for the holonomy then D is non-—
singular. Moreover specifying log ¢(gl) to be the principal-value
Log ¢(g)) (defined in 2.3-2.5) we obtein, for each ¢(g;) € PSL(2R),
a projective structure with that as holonomy (which is constant if
d)(gl) =1). We call this singular projective structure special. We
emphasize that the assigmment of special structures is discontinuous; it
fails to be continuous precisely at the set Sym where Log fails to be
continuous.

We examine these special structures as well as the other projec-
tive structures by picturing their foliated bundles. We shall repre-
sent the foliated IR]Pl-'bundle over M as a square, with opposite
sides identified, making it into a torus. The ]R]Pl-fi'bers will be

vertical lines which we do not draw; the leaves however will be drawn.

Case 1: ¢(gl) =1

In this case all the leaves are closed and we have the product
foliation of MXIR]Pl. The special section is just a leaf, that is,
it is the constant projective structure. On the other hand, elements
of 1r1PSL(2,'IR) = Ker(%) — PSL(2/R)) which are n times a
generator cf TrlPSL(Z,'IR) correspond to n-fold covers of the universal
]R]Pl—manifold JR]Pl. If f is the developing section and
p: MX ]R]Pl — IRIPl denotes projection, then pof is a covering of

degree n. Pictured in Fig. 2.6 are the cases n =0, 1, 2.

Case 2: ¢(gl) is parabolic.
In this case all the projective structures are nonsingular. The

special one is just the Euclidean structure on TR/%Z. The various

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i

Fig. 2.6 Developing sections for RP -structures
- with trivial holonomy

To the right is constant” -
section, which is the
developing section for the =~ [ ——
"special” projective struc-
ture with trivial holonomy.
Below are pictured the
developing sections for the
"univetsil projective struc—
ture" RP~ (left) and its
four-fold cover.
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projective structures with holonomy ¢ are distinguished by the inter-
section number of the developing section with the unique closed leaf.
In Fig. 2.7 we draw developing sections, one for the special structure

and one which intersects the compact leaf twice.

Case 3: ¢(gl) is hyperbolic.
This case is almost exactly the same as the previous one, except
there are two closed leaves. Fig. 2.8 shows a special develop-

ing section and one which intersects each of the compact leaves once.

Case b: d>(gl) is elliptic.

In this case the foliation is a linear foliation of the torus.
Suppose first that d)(gl) is a rotation of angle 0 # 0, -m< 6 < T.
Then in every homotopy class of sections there is a transverse section.
Any fiber serves as across-section to the foliation, and as the first-
return map is rotation by angle 8 the leaves of the foliation can
be teken to have slope tan 1% (This forces the slope to be less than
one in absolute value. For a linear foliation of Islope| > 1 one
can perform Dehn twists about the fiber taking the original foliation
to one with ]slope[ < 1, preserving the foliated bundle structure.)
Then the "horizontal" curve is a special section. The first picture
in Fig. 2.9 is of a special séction. Clearly as 6 -+ O the special
sections converge to the constant section, as we would expect since
Log is continuous near the identity.

Now we come to the more delicate case when ¢(gl) € Sym. Recall
that Log is continuous as 6 # T.. Then we may take 6 = T, slope =1
and the special section looks horizontal. But taking 6 = -m the

horizontal section is no longer special and we must twist one about a
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Fig. 2.7 Projective structures with parabolic holonomy

! N

A special section is disjoint

from any compact leaf and

defines an affine structure This section is not special
since it intersects a compact
leaf four times

Fig. 2.8 Projective structures with hyperbolic holonomy

J )

A gpecial section, defining A "non-special' section
an affine structure
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Fig. 2.9. Projective structures with elliptic holonomy
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A special sectipn

Fig. 2.10. Special sections with holonomy in Sym
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fiber. In Fig. 2.10 are pictures of special sections in this case.
For the classification of the affine structures on the 2-torus,

see Arrowsmith and Furness [2] or Nagano and Yagi [41]. In [16] the

real projective structures on T2 are classified. One of the conse-

quences of [16] (which is unfortunately not stated) is:

Theorem. Let M be a 2-torus or a Klein bottle with an
]RJPz—structure. Then either the projective structure is an affine

structure or the developing map is not a covering onto its image.

The first examples of non-affine projective structures are due

to Smillie [57] and to Sullivan and Thurston [51].
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§3. Fuchsian Actions and the Milnor-Wood Inegquality

Now we turn to the subject of this paper: hyperbolic structures
on surfaces. Let M be a closed orientable surface, ¥(M) <0 and
let 7 = wl(M;xo) for some base-point xy. Let M > M be a universal
covering space with m as its group of deck transformations. Let X
denote the hyperbolic plane and G the group of orientation-preserving
isometries of X. A (G,X)-structure on M will be called a hyperbolic
(-geometry) structure on M; a foliated (G,X)-bundle will be called a
hyperbolic foliated bundle.

Let 93X = Si denote the circle-at-infinity. A foliated (G,9X)-
bundle will be called a projective foliated bundle. Note that every
hyperbolic foliated bundle E‘1> determines a projective foliated bundle
such that E,UJE, is a G-foliated closed-disc bundle over M;

¢ [ R
the bundle BE¢ is the ideal bundle of E¢.

JE

It follows from 1.7 that the correspondence ¢ > E¢ defines a

bijection between the deformation space Hom(m,G)/G and isomorphism

classes of hyperbolic (resp. projective) foliated bundles over the
marked surface M. The space Hom(w,G)/G will be one of the main
objects of study.

Suppose now that M has been given a hyperbolic structure. Then
by 1.8 there is a hyperbolic foliated bundle E¢ over M and a
section f: M — E¢ transverse to the foliation. (The holonomy {¢}
is well-defined as an element of Hom(m,G)/G.) In general it is
difficult to characterize which representations ¢ occur as holonomy

of (G,X)-structures, but because of the special nature of our choice

of (G,X), a great deal is known. Because a
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hyperbolic structure is a Riemannian metric, it follows from the
Hopf-Rinow theorem that if M is closed then every hyperbolic
structure is complete as a Riemannian metric. It is not hard to show
(see, e.g. Thurston [54], 3.6-3.7) that this is equivalent to complete-
ness of the (G,X)-structure (see 1.2), that is, a developing map for
this hyperbolic structure is a homeomorphism M + X. Hence the
holonomy action of T is a faithful, free, proper, isometric action
on X, 1i.e. an action by deck transformations. This, in turn, is
equivalent to the homomorphism ¢: T - G being an isomorphism onto a
discrete subgroup. Such an action ¢ of 7 (either on X or 9X)
will be called a Fuchsian action.

We are interested in characterizing Fuchsian ¢ among all
¢ € Hom(m,G). We list several classical equivalent conditions (for the

proofs, the reader is referred to, e.g. Harvey [25] or Siegel [145]).

Proposition 3.1. For ¢ € Hom(m,G) the following conditions
are equivalent:
(i) ¢: ™"+ G is an isomorphism onto a discrete subgroup.
(ii) The action of T on X defined by ¢ is a faithful, free,
proper action.
(iii) ¢ is injective and ¢(m) acts properly discontinuously
on X.
(iv) ¢ is the holonomy of a hyperbolic structure on M.
It follows from 1.8 that we may add the following condition:
(v) The hyperbolic foliated bundle E¢ admits a transverse
section.

Later on in this chapter we shall add the next two conditions:
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(vi) ¢ 1ifts to 7 — SL(2,R) and the projective action of
on 93X = JR]PJ' defined by ¢ is structurally stable.
(vii) ¢ 1ifts to SL(2;R) =2nd the action on 0X may be
approximated by structurally stable actions.
In terms of the projective bundles we have the following condi-
tion, its equivalence with (i)-(v) being a tautology:
(viii) 3E¢ is the unit tangent bundle of M and F¢ is an Anosov
foliation.
The basic result of this whole paper is that we can adjoin
another condition:

(ix) 3E¢ is the unit tangent bundle of M.

Chapter 3 discusses the equivalence of these conditions. Proofs
of the nonstandard material needed for the equivalence of (i) through
(viii) are given in the appendix. The equivalence with condition (ix)

is given in the last three chapters.

3.2 The subject of discrete subgroups of G = PSL(2;R) is a well-
developed subject with roots dating back a century. We will not dis-
cuss either the history or the details but rather refer to the
reference [25]. We will only discuss those aspects which are relevant
to our purposes; in particular we wish to characterize discrete
subgroups as "subgroups consisting practically entirely of hyperbolic
elements."

In general discrete subgroups I contain parabolic and elliptic
elements as well as hyperbolic elements; however such-elements correspond to

various special properties of the quotiént surface X/T. If T has
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no elliptic elements, the quotient X/T is diffeomorphic to a smooth
surface; then conjugacy classes of cyclic subgroups of I containing
parabolic elements correspond to noncompact ends of X/T' of finite
area (see [25] or Thurston [54]). Conjugacy classes of cyclic ellip-
tic subgroups of I (such subgroups are all finite in discrete T)
correspond to branch points on X/I', where the projection X + X/T
is a ramified covering. Since every discrete subgroup I contains a
normal subgroup I'' of finite index without elliptic elements
(Selberg [L4]), we can realize X/T as the quotient of the unbranched
surface X/T' by the finite group T/T'.

Now suppose the hyperbolic surface X/T has finite area. Then
all the ends of X/T' have finite area and correspond to conjugacy
classes of parabolic subgroups. By removing finitely many horodiscs
we are left with a compact hyperbolic surface ;ﬂith horocycle boundary.

Finally suppose X/T is compact. In all other cases I is a
free group; in this case it is the fundamental group of a closed sur-~
face. Then T acts properly with compact fundamental domain. By
passing to a normal subgroup of finite index we may assume I' has no
elliptic elements and X/T is a closed unbranched hyperbolic surface.
Every element of T'. except the identity, then, is hyperbolic;

conversely, we have the following fact:

Proposition 3.2. If T CG consists entirely of hyperbolic
elements (except for the identity) and is nonabelian, then T is

discrete.

This theorem is originally due to J. Nielsen and was generalized

by Siegel [U45] as well as by Fenchel and Nielsen. More recently,
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Jgrgensen [32] has found a further generalization which deals with the
corresponding question for subgroups of SL(E,C) (this is much harder).
We do not give a proof of 3.2, although probably a proof follows from
our technigques. We later use this fact in characterizing Fuchsian

actions by their structural stability.

3.3 In this section we discuss the local properties of the variety of
representations Hom(T,G) and the corresponding deformation spaces
Hom(7,G)/G and moduli spaces Aut(m)\Hom(m,G)/G. The space of repre-
sentations Hom(m,G) is in a natural way an "algebraic variety" in

GX -+ xG: let T = (yl,...,yk|Rl(Yl,...,Yk) = =RE(yl,...,yk) =1) be
a firzjkite presentation; then Hom(mw,G) is the set {(gl,...,gk)e(;x- %G|
Rl(gl, . ,gk) = =Rl(gl’ . ,gk) =1}. The variety Hom(m,G) admits a
natural (Aut(m)xG)-action, defined by composition with Aut(m) and
conjugation by G.

In general one cannot expect these spaces to be well-behaved.
There are basically three kinds of pathology which occur. TFirst the
variety Hom(m,G) can be singular. Secondly G may not act properly,
even on the set of simple points Hom(m,G)~. The G-orbits define a
singular "foliation" of Hom(m,G), whose "normal bundle" is the "bundle"
of cohomology groups, Hl(W;GAd ¢) where G is the Lie algebra of G.
When, for example, some leaves are not closed, the deformation space
Hom(T,G)/G may fail to be Hausdorff. Finally there is a third kind of
pathology which can occur if the action of Aut(m) on Hom(w,G)/G is not
required to be proper or free. In our case (G = PSL(2;R), X = the
hyperbolic plane, m = 1r1(M2), X(M2) < 0) Aut(m) acts properly but not
freely (see [25], §2, §7) and the moduli space has (cone~like) singu-

larities which locally look like orbit spaces of finite groups acting
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(i.e. "orbifold" singularities). This comes from representations

¢: ™ > G which are invariant under nontrivial subgroups of Aut(m). For
projective structures on the (oriented) circle, only the second type of
pathology occurs, i.e. G doesn't act properly and freely. The deforma-
tion space is the quotient (gL(\ZJ/R)—{l])/Ad (see Fig. 2.5). For real
affine structures on the 2-torus all three types of pathology occur.
Curiously, the deformation space for the real projective structures is
a disjoint union of the space of affine structures and countably many
disjoint ]Rh’s.

However for T = 111(M2) and G = PSL(2,R), the space Hom(T,G) is a
real quasiprojective variety (because PSL(2,R) is the Zariski open
subset {[a,b,c,d]|ad-be # 0} of ]R]PB). Indeed there is a rather precise
description of the local singular behavior of the deformation space.

This follows from the following fact, which is taken from Gunning [20],

[21], [22]:

Proposition 3.3 (Cunning). Let G = §L(2,0), and 7 = m (),
x() < o.

(1) The singular variety of Hom(m,G) is the collection of all
reducible representations.

(2) The group G acts properly on the set Hom(m,G)” of simple
points (i.e. irreducible representations, by (1)) and the projection

Hom(m,G)” — Hom(m,G)”/G is a principal G-bundle.

The same proof applies to G = PSL(2,¢) instead of SL(2,8).
Since by Whitney [55], complexifying & real algebraic variety preserves
simple points and singular points, 3.3(1) carries over now to
G = PSL(2,R). Since PSL(2,;R) C PSL(2,€), it follows directly from

3.3(2) that the action of PSL(2;R) on Hom(m,PSL(2,R))” is proper.
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Consequently Hom(m,PSL(2,;R)™/PSL(2,;R)) is a real analytic
manifold of dimension -3x(M) = dim Hl(vr;GAd ¢) for ¢ € Hom(w,PSL(2,R))”
(for more details on the computation of the tangent space of

Hom(7,G)/G, see Gunning [20] or Goldman [17]).

3.4 Our goal is to characterize Fuchsian actions among all actions in
Hom(m,G). Therefore it is of interest to know how the space consist—
ing of Fuchsian ¢ sits inside Hom(T,G). More to the point we
consider the set of G-conjugacy classes of Fuchsian ¢ as a subset of
Hom(m,G)/G. This space is precisely the set of all isotopy classes of
hyperbolic structures on M, and is a disjoint union of two copies of
the Teichmuller space of M.

Suppose that ¢: T + G is Fuchsian. Then there is a homeomor-
phism M — X/¢(m) which defines a hyperbolic structurc om M. Since
G preserves orientation we are entitled to orient X; since M is
orientable we choose an orientation for M also. Then the homeomor—
phism M — X/¢(m) may either preserve or reverse orientation. By
simply changing the orientation on M we establish a bijection
between these two collections of Fuchsian actions. Hence the space
consisting of Fuchsian actions Rt(wr,G) C Hom(m,G) consists of two
copies of the space R(m,G) of orientation-preserving Fuchsian actions.
The space R(m,G) 1is well known to be a principal G-bundle over the
Teichmuller space of M.

We shall not go into the theory of Teichmuller space any deeper
than the well-known fact that the Teichmuller space for M is a
3|x(M) [-dimensional cell. This fact was known to Fricke and Klein,

where the present point of view--a set of isomorphisms T + G --was
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adopted. There are a number of excellent modern accounts of this,
using coordinates derived by Fenchel and Nielsen; for this and much
more see Harvey [25], Thurston [54], Fathi-Laudenbach-Poénaru [11].

Since Teichmuller space is a deformation space for (G,X)-struc~
tures, viewing it as the set of holonomy representations, it is an
open subset of Hom(m,G) (see Goldman [17] or Thurston [54], 5.1).
Since M is compact, every hyperbolic structure on M is complete,
and the map

{ isotopy classes Hom(T,G)
d B

of (G,X)-structures on Mj

which assigns to a (G,X)-structure its holonomy is injective. Hence
we may regard Teichmuller space as an open subset of the deformation
space Hom(T,¢)/G. (This fact is originally due to A. Weil [60], [61].)

It is also true that Teichmuller space is a closed subset of
Hom(m,G). This fact seems to have been known classically, although we
shall give another proof, based on Theorem A. One proof, by Helling
[27], describes representations by means of their characters, and
exhibits the isomorphisms onto discrete subgroups as a closed subset.
Another proof comes out of a more general theorem concerning Kleinian
groups. This result (due, in various parts, to Chuckrow, Marden,
Yamamoto, and Jérgensen) states the following: if 4, € Hom(T,SL(2,¢))
is a sequence of isomorphisms onto discrete groups, which converges to
a representation ¢, then ¢ is itself an isomorphism onto a discrete
subgroup. See Jgrgensen [31], Thurston [54], §9, and Harvey [25].

Theorem A is a quantitative elucidation of the fact that
Teichmuller space is closed in the deformation space. We exhibit it

as the fiber e_l(X(M)) of a continuous map e: Hom(m,G)/G — Z.
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Since it is open and connected, we deduce that Teichmuller space is
precisely one connected component of Hom(m,G)/G. Counting the other
component with reversed orientation, we see that two of the connected

components of Hom(T,G)/G are (6g-6)-dimensional.

3.5 For the moment let us consider the following general situation: G
is a real algebraic group (i.e. quasiprojective variety over R such
that GXG — G, (a,b) > abl is an algebraic morphism), X is a
G-space, and T is the fundamental group of a compact polyhedra M.
Then conjugacy classes {¢} € Hom(T,G)/G of representations ¢ are
identified by isomorphism classes of foliated (G,X)-bundles E¢ over
M. Thus the canonical map which forgets the foliation but expresses

the topological type of the bundle is a map

f X-bundles over M }

*
™ Hom(r,)/G — |with structure group G

Now the space Hom(7,G) is a real algebraic variety, and it
follows from Whitney [55] that Hom(m,G) has finitely many connected
components. Hence there are only finitely many X-bundles over M
which admit G-foliations (Sullivan [50]).

If ¢, is a deformation in Hom(7,G), then thE% x {t} is an ¥-bundle
over MXI. By the covering homotopy property the isomorphism type of
the X-bundle E¢t does not vary. Since an algebraic variety is locally
path-connected, the map (#) is continuous. The classification of all
X-bundles over M is accomplished using obstruction theory (Steenrod
[48]) which assigns to a given bundle, characteristic classes, which

are generally elements of some cohomology group of M. (Compare

Chapter I of Hirzebruch [30].) We develop

5T
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the theme that global properties of spaces of representations are
detected by the associated characteristic classes.

The first of these characteristic classes arise as follows. Let
G, be the identity component of G and G/Go = no(c) be the group
of components of G. Taking X = G the bundle E¢ is a principal
G-bundle and the first obstruction to its triviality is the class
Ol(¢) € Hl(M;’IrO(G)) which via the Hurewicz isomorphism Hl(M;TrO(G))

= Hom(ﬂ',G/Go) is just the composite
26— /Gy .

For example, if G = 50(2,1), then cl(q)) is just the first
Stiefel-Wnitney class w)(¢) € HY(M;Z/2). Elements of
Hom(m,50(2,1))/S0(2,1) correspond to not necessarily oriented hyper-
bolic foliated bundles over M; thus it follows from the exact
sequence

PSL(2;R) — 50(2,1) — %/2

that Hom(m,PSL(2,;R)) is the preimage of O under w,: Hom(m,50(2,1)
— B (wm/2).

The next obstruction takes values in HZ(M;wl(G)). If G is
connected, so U1(¢) e Hl(M;'no(G)) =0, then 02(1)) is defined. By
definition cl(¢) vanishes if and only if ¢ 1ifts to T > G, TFor
example, if G = GL(n,R), S0(n), S0(n,C), n > 2, then Tl'l(G) =z/2
and 02(¢) is just the second Stiefel-Whitney class “2(¢) of the
associated n-plane bundle. For G = PSL(2,R) and X = the hyperbolic
plane, then w2(¢) is just the mod 2 reduction of the Euler class

e(¢) of the oriented G-foliated X-bundle Eq) over M with holonomy

6.
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3.6 Now let M be a closed oriented surface, T = wl(M), X is the
hyperbolic plane and G is the group of orientation-preserving isome—
tries. Orient X; then the Euler class of a (G,X)-bundle is defined.

Thus we obtain a continuous map
e, .2 ~
Hom(m,G) — H (M;Z) £ %

(where H2(M;Z) 2 Z is essentially the orientation) where e(¢)

is to be the Euler number of the hyperbolic foliated bundle E¢. This
map expresses precisely the topological type of E¢ as an oriented
disc-bundle but forgets the foliation with its transverse hyperbolic

structure.

Theorem 3.6. If ¢ € Hom(m,G), then |e(¢)] < [x(M)[; equality
e(¢) = x(M) (resp. -x(M)) holds if and only if E¢ admits an
orientation-preserving (resp. orientation-reversing) transverse

section.

The inequality |e(¢)| < |x(M)| is due to Milnor [39] in the
special case that ¢ 1lifts to SL(2,R). Wood [56] proved this
inequality for the case of an arbitrary foliated circle bundle (i.e.
¢ T — Homeo(Sl)). They also proved that the image of e is
precisely the interval {n€%: |n|_<_ |x(M)|}. Alternate proofs and
generalizations to higher dimensions can be found in Benzecri [3],
Dupont [8], Sullivan [50], and Smillie
[46]. We also give a complete proof, since it is necessary for the
proof of the sharpness statement in 3.6.

The "if" assertion is an immediate consequence of the theory

developed in §1. Since X is contractible any two sections of E¢
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are homotopic, soa tubular neighborhood of a section depends only on
the bundle. If E¢ admits a transverse section, then e(¢) is the

Euler class of a tubular neighborhood of this section which is

+e(TM) = #x(M), the sign depending on orientation.

Corollary 3.7. If M has genus g, then e_l(Z—Zg) is a

connected component of Hom(T,G)/G and corresponds to the Teichmuller

space of M.

There is an immediate generalization of these theorems to arbi-
trary discrete cocompact subgroups I of G = PSL(2,R). By Selberg's
theorem [U4] T contains a normal torsionfree subgroup T of finite
index d in T; then X/m is a closed surface M. To every
¢ € Hom(T',G), the restriction tb',” € Hom(m,G) satisfies the hypo-
theses of 3.6. Define a rational Euler class e(¢) = d—le(¢|,,r )s
‘then the Milnor-Wood inequality |e(¢)| < d_lX(M) = 21—11 area(X/Jf')
follows from 3.6; if equality holds, then |e(¢l1r)l = |x(M)] so
¢ - is Fuchsian. It follows that ¢ itself is Fuchsian: clearly
¢(T) is discrete;and if ¢ is not an isomorphism then two distinct
elements in T which are conjugate by an element in Ker ¢ have the

same ¢-image. For an intrinsic approach to the rational Euler class,

see Thurston [54], §13.3.

Concerning the other components of Hom(w,G), we propose the

following:

Conjecture 3.8. The map e: Hom(T,G)/G — Z has connected

fibers.
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3.9 1In general for a discrete group 7 and Lie group G, there is a
general method for constructing characteristic maps, which reduce to
the maps Vi, €, and v, as special cases. These are "obstruction
classes" defined as follows:

Let M be a K(m1) and construct the foliated principal

G-bundle E, over M with holonomy ¢ € Hom(m,G). Then the first

¢
obstruction to a trivialization, i.e. a section of E¢, is the class
Ul(d)) € H’l(M;TrOG) defined by T 9, G — mG where G — mG pro-
Jjects G onto its group of connected components. An example is

wh: Hom(m,50(2,1)) — H-(133/2).

If G is connected, then this first obstruction vanishes. The
second obstruction 02(¢) € H2(M;Trl(}) then starts the classification
of ¢ by their associated bundle types. This class is the obstruction
to 1lifting ¢: m — G to T+ 5 Now 3.8 implies, together with the
Milnor-Wood inequality, when T = 1rl(M2) that Hom(m,PSL(2,R)) has
Lg-3 connected components. The subset of those ¢: m - G which 1lift
to T - SL(2;R) then has 2g-1 components, since the obstruction to
lifting ¢ is precisely w2(¢) = e(¢) (mod 2).

More generally, we propose the following conjecture concerning

fundamental groups of closed surfaces:

Conjecture 3.9. Let T be the fundamental group of a closed

surface of genus g >1 and G a connected Lie group. Then the map
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0,: Hom(m,G) — m, (G)

2

has connected fibers.

In the appendix to 83 we shall verify this conjecture for

G = PSL(2,C) and several other Lie groups. Namely, we shall prove

Theorem 3.10. The inverse images of Wyt Hom(m,PSL(2,C)) — Z/2
are the connected components of Hom(m,PSL(2,€)). (According to
Gunning [22], part 3, a proof of this can be worked out following

Helling [27].)

We present a proof of Theorem 3.10 in the appendix (3.18) to §3.
Using similar methods, we may prove 3.9 for G = SL(2,€), SU(2) and
S0(3) as well. The case G = SU(2) has been treated by Newstead [42];
Newstead actually computes some of the higher homotopy groups of the
spaces Hom(T,SU(2)).

It follows from Gunning's result (see 3.3) that each connected
component of Hom(m,PSL(2,C)) is irreducible; thus Hom(m,PSL(2,¢€))
has two irreducible components. Since Hom(m,PSL(2,C)) is the
complexification of the real algebraic variety Hom(mw,PSL(2,R)), it
follows (Whitney [55]) that the variety Hom(w,PSL(2JR)) has exactly

two irreducible components, namely, the preimages of

w,: Hom(m,PSL(2,R)) — Z/2 .

2
Hence, as Hyman Bass pointed out, the Euler map

Hom(m,PSL(2,R)) — Z

cannot be algebraic on the real algebraic variety Hom(m,PSL(2;R)).
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However there is a recipe for computing e(¢), or more generally
0‘2((15). A standard presentation of T, the fundamental group of a
surface of genus g, is <A1’ e ’Ag’Bl’ een ,Bgf [Al,El] v [Ag’Bg] =1)
where we employ the notation [X,Y] = Iy lxy. For ¢ € Hom(T,G),
choose lifts $(Ai), %(Bi) of q>(Ai) and ¢(Bi) to the universal
covering group G. Since different 1lifts E, B of A, BEG to G
differ by elements of Trl(G) C center G, the value of the commutator
[£,B1 € G is independent of the choice of lifts. We denote the
commutator [K,8] by [A,B]; thus we define a map [ , ]: GXG — G.
Applying the relation [Al,Bl]n-[Ag,Bg] to $(Ai) and Ey(Bi) we
obtain f¢(A1),¢(Bl)]---T¢(Ag),¢(Bg)] € Ker(8+C) = m (G). Clearly
the left-hand side is the obstruction to lifting ¢ to m > G. For a
more geometric description of 02(¢) see Proposition 4.9, which
follows Milnor [39] (or Wood [56]).

For general T, one can define 02(¢)-u, where u € H2(Tr), by
representing the homology class u by a "surface" W — K(m,1) and
using the above formula for T = T[l(Mz).

Before turning to the Euler class, we shall discuss the Stiefel-
Whitney class w,(¢). If ¢ € Hom(T,PSL(2;R)), then composing ¢

with the natural inclusion PSL(2JR) C PSL(2,¢) we obtain a map
i: Hom(m,PSL(2,R)) — Hom(m,PSL(2,C))
which makes the following diagram commute:

Hom(7,PSL(2,R)) — Hom(m,PSL(2,€))
e We

Z ——Z/2
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For ¢ € Hom(m,PSL(2,C)), the characteristic class w2(¢) vanishes
whenever the associated foliated CPl—bundle over M with holonomy is
a product bundle; otherwise this bundle is the twisted Se-—'bundle

over M.

Geometrically, w2(¢) is the obstruction to finding a section of
the CPl—bundle with holonomy ¢ which has at worst fold singularities
with respect to the foliation transverse to fibers (see 1.11). We do
not discuss the intriguing question of existence of transverse sections
to the foliated CPl-bundle with holonomy ¢, i.e. complex~projective
structures on Riemann surfaces, but see Hejhal [26], Gunning.[22], and

Sulliven and Thurston [51].

3.11 The Euler class of a hyperbolic (or projective) foliated bundle

is a topological invariant of its bundle. It is important to note

that global properties of the foliation can be used to determine e(¢).

Viewing e(¢) as the Godbillon-Vey invariant of F¢ involves an

interpretation of e(¢) as the area of a singular hyperbolic structure.
Let (E¢,F¢) be a hyperbolic foliated bundle over M. Let

f: M> E, be a section, i.e. a "singular hyperbolic structure" with

¢
holonomy ¢. There is an exterior differential form w® on E¢ which
vanishes on each leaf and represents the hyperbolic volume form on

each fiber. Using ®w we define the area of f; then there is a "Chern—

Gauss-Bonnet" theorem:

a3

e(9) = = fo*w
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This can be proved much the same way as the usual Gauss-Bonnet
theorem.

This interpretation of e(¢) as an area leads to the following
generalization. Let G be a semisimple Lie group with maximal compact
subgroup K. Let T be a discrete cocompact subgroup of G. Let
X =G/K and M= 7\G/K. Let « be a G-invariant volume on X.

To every homomorphism ¢: T + G there is a foliated (G,X)-bundle

over M. If f: M-+ E,  define

E ¢

]

vol(f) = j Fy
M

It is not hard to see that vol(f) depends only on the homotopy class

of f, and hence depends only on ¢. We write vol(¢) = vol(f).

Conjecture 3.12. (i) |vol(¢)] < [vor(M)]

(ii) Equality holds, i.e. |vol(¢)| = vol(M) if and only if ¢

is an isomorphism onto a discrete subgroup.

When X is n-dimensional hyperbolic space and G = Isom+(X) =
SO+(n,l), this conjecture may be proved along the lines of Gromov's
proof of Mostow's rigidity theorem, as given by Thurston [54], §6 (see
also Munkholm [59] for another exposition, as well as Gromov [19] for
related ideas). It is now known (by Haagerup and Munkholm [58]) that
Gromov's proof is valid in all dimensions n > 3. The proof of 3.12(i)
follows immediately from the identification of vol(M) as v, Ml (see
[54], 6.2) and a simple modification of the monotonicity assertion
6.2.1 of [54]. (Here v, denotes the maximel volume of a simplex in

X and | | denotes Gromov's L'-norm on homology. )
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The verification of 3.12(ii) in this case is more difficult,
although it follows exactly the same lines as Thurston's argument
(6.4). The hypothesis of a map F: M + N between closed hyperbolic
n-manifolds satisfying vol(M) = |deg F|vol(N) is replaced by a
section f: M > E¢ of a hyperbolic foliated bundle with vol(M) =
vol(f). Indeed the case of a map F is just the special case of a
section when ¢(m) is discrete and cocompact in G. One uses the
assumption about vol(f) to extend a developing map f: M+>X toa
measurable map 9%: S:_l - S:_l (where we have used the hyperbolic
structure on M to identify M with X), just as in [54], 6.4.k. The
rest of the proof is just as in [54], showing thet f takes the
vertices of almost every regular ideal simplex to the vertices of a
regular ideal simplex, and hence is conformal. This proves that
1rl(M) (as & subgroup of G) is mapped by ¢ to a conjugate subgroup
of G, and hence that ¢ is an isomorphism onto a discrete subgroup.
In this way, Conjecture 3.12 may be regarded as & generalization of
Mostow's theorem; in particular this proof is invalid in the case
n = 2. (I am grateful to W. Thurston for pointing out this

generalization.)
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3.13 Let ¢ € Hom(mw,G). If ¢ is Fuchsian, then the Anosov foliation

F, of OE, is structurally stable (see Hirsch [28], Anosov [1]).

¢ ¢
To see this, give M a hyperbolic structure determined by ¢. Then
there are two realizations of F¢ with foliations of the unit tangent
bundle Tl(M) (corresponding to the two natural identifications of
T, (M), with 3X), namely the stable-menifold and unstable-manifold for
the geodesic flow on 'l'l(M). Let F° and F' be these two invariant
foliations of Tl(M); then F° and F' intersect transversely in
the trajectories of the geodesic flow. If F is a small perturbation
of Fu, then F and F° intersect transversely in a new flow close
to the geodesic flow. Anosov [1] proved that the geodesic flow
is structurally stable. Therefore it follows from Anosov's theorem
that F and F° intersect in a flow & topologically conjugate to
the geodesic flow. Since F and Fs are the only invariant folia-
tions under the geodesic flow, it follows that F is the unstable—
manifold foliation for &. Since £ is topologically conjugate to
the geodesic flow, F is conjugate to F-.

It follows from the fact that an Anosov foliation (3E ¢,F ¢) is
structurally steble that the action ¢: 7 — GCTop(Sl) on IRPl is

structurally stable (see also Floyd [12]). Conversely we have the
following:
Theorem 3.14. Let ¢ € Hom(m,G) 1ift to ¢: 7 — SL(2;R)

(i.e. w2(¢) = 0). Then the projective action determined by ¢ of
on the circle ZIRPl is structurally stable if and only if ¢ is

Fuchsian.

This theorem is proved in the appendix (3.21) to this chapter.

66
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3.15 We prove . (3.21) that Anosov foliations are characterized as
the only structurally stable projectively foliated circle bundles
over M (under a slightly annoying additional assumption--see 3.20).
Theorem A gives another characterization, namely, every projective
foliated~bundle structure on the unit tangent bundle TI(M) must be
an Anosov foliation with one of its canonical transverse projective
structures. Together with some results from the theory of foliations,
we may obtain further characterizations.

In hig thesis [52], Thurston gives sufficient conditions (e.g.
no leaves are compact) for isotoping a foliation of a circle bundle
over M to be transverse to the fibers (see also Levitt [38]). If
we assume that F is a foliation with a transverse projective struc-
ture, then isotoping F transverse to the fibers makes F a projec—
tive foliated bundle 3E, over M, for some ¢ € Hom(m,PSL(2;R))

]

(§1.6). The condition HBEdb = Tl(M)" is equivalent to asserting
e(¢) = +x(M). Theorem A implies that ¢ is Fuchsian and F must be

an Anosov foliation.

Theorem 3.15. If F is a transversely projective foliation of
Tl(M), and F has no compact leaves, then F must be an Anosov

foliation.

3.16 It is also worth pointing out that the Euler class e(¢) arises
again as the Godbillon-Vey invariant of F¢ on 3E¢, integrated over
the fibers of 8E¢. This follows from the interpretation of e(¢) as

a "volume" class (3.11), and the identification of the volume charac—

teristic class as the Godbillon-Vey invariant of F¢, following
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Dupont [8] and Bott [4].

It is interesting to note that in this transversely projective
setting, it is hard to vary the Godbillon-Vey invariant. If W3 is a
circle bundle over a surface M, and F is an analytic foliation,
then by the results of Thurston F can be reduced to foliation without
compact leaves (hence transverse to the fibers) by "erasing the compact
leaves." This means that there is a standard procedure for introducing
compact leaves and this procedure is the only way that a compact leaf
may arise, if F cannot already be isotoped transverse to the fibers.
It can be proved that this procedure does not change the Godbillon-Vey

invariant, and hence for circle bundles over surfaces, the Godbillon-Vey

invariant of a transversely projective foliation depends only on the
underlying manifold.

Another related guestion is whether the Godbillon-Vey invariant of
an analytic codimension-one foliation of the unit tangent bundle can be
continuously varied. Thurston gives examples (Thurston [531, Rosenberg
and Thurston [43], Bott [4]) of analytic foliations of circle bundles
over surfaces transverse to the fibers for which the Godbillon-Vey
class does vary; however the construction only yields bundles whose

Euler number is less than the Euler characteristic of M.

3.17 Finally we close with one more conjecture which is an immediate

generalization of Theorem A.

Conjecture. Let ¢: m — Diffr(sl) bea ' (2 <r < w) action
of the fundamental group T of a closed surface M. If e(¢) = *x(M),

then the action is topologically conjugate to a Fuchsian action.
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If this conjecture is true, then we may replace "transversely

projective" in 3.15 by "' ."
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T0

Appendix to §3: The Space of Foliated (L’Pl—'b\mdles over a Surface

3.18 The goal of this section is to prove:

Theorem 3.10. Let G = PSL(2,C) and let T be the fundamental
group of a closed orientable surface of genus n > 1. Then the fibers

of the map

Wy Hom(7m,G) — %/2

are the connected components of Hom(m,G).

Proof. Let A = (Al,...,An), B = (B ,...,Bn) and let Rn(A,B)
be the word [Al,Bl]"'[An,Bn]. Then T has the presentation
qByo--oB R (A,B)=1). Let [, ]: 6XG — G = SL(2,8) be

the canonical 1ift of commutators in G. Let R;: %G — G be the

(Al,...,A »B.

corresponding product of 1lifts.
Then the preimages of W, are exactly the preimages of wl(G) = {#1}
under R;: ¢*xG" — G (where Tll(G) is the center of G). Hence it

is clearly sufficient to prove:

() For every €& =5L(2,¢) the set X (C) = {(A,B) € xc":

R;(A,B) =C} is nonempty and connected.

We shall reduce the proof of (A) to the case n=1. When n =1
(A) says that every element P € ¢ is a commutator P = EX,Y] and
that the ways of expressing P as EX,Y] form a connected set.
Suppose inductively that (A) has been proved for n =1 and n = k-1,

where k > 2. Then we may write

5 (0) = U ln ()X (F7ro))
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exhibiting XK(C) as the union of nonempty connected sets (using the
induction hypothesis), parametrized by the set of all P = fX,Y] € 5,
(X,Y € G), which is all of G (by the case n = 1). Hence Xk(C)

is a union of nonempty connected sets along a connected set, and so
it is connected.

Hence all that remains to prove is:

(B) For every C € G = SL(2,¢) the set x(c) coxc is

connected and nonempty.

We shall break the proof of (B) into various special cases,
depending on C. If C =1, then (A,B) € xl(c) if and only if A
and B have lifts which commute. This occurs precisely when A and
B lie on the same one-parameter subgroup. Clearly we may deform
such a pair (A,B) along a one-paremeter subgroup to (1,1), proving
that XIL(C) is connected (it is obviously nonempty).

Similarly, for C = -1, a direct computation shows the
(A,B) € xl(C) if and only if there exists P € G such that P_lA.P
and P_lEP are represented by the matrices [g -?J-J and [; _S]
respectively. Since G is connected and nonempty so is Xl(C).

In the remaining cases for C it is useful to have a formula.
Let A = A(p3;)A) be represented by the matrix [eop eip] and
B = B(a,b,c,d) be represented by [2 EJ, ad-bc = 1. We have the

following formula for t = tracelA,B]:

(€) t=(2-4 sinh®) + b ad sinhZp - 2(a-d)(sinh ple + 222

Now if C € G satisfies t = trace C # *2 then every (' € [

with trace C' =t is conjugate to C. Hence the set

T
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x(t) = {(a,B) GGXGItraceTA,B] =t}
may be written as

U x,(c)

trace C=t

which expresses X(t) as a fiber bundle over the connected set
{CE€G|trace C=t} with fiber X (C). Hence X (C) is comnected and
nonempty if and only if X(t) is connected and nonempty.

Clearly for any value of t the equation (C) may be solved, so
X(t) is nonempty. We must show that the set of solutions of (C) has
at most two connected components, corresponding to the two-fold ambi-
guity of B = B(a,b,c,d) = B(-a,-b,~c,-d). Since A may be chosen '
to be any nonzero complex number without affecting the conjugacy
class of A(p;A), we may vary (A,B) so as to keep cA constant.
By further holding sinh p constant we see that a and 4 (and
hence b) are allowed to vary in a connected set. A pair (A,B) with
P = 0 may be approximated by a nearby pair with p # 0; in the
former case we may take A = 0 and we see that the solutions of (C)
holding fixed sinh p and A =0 as well as t (t # #2) form a
connected set. Hence X(t) is connected for t # 2.

There are four conjugacy classes of C € G with |trace C[ =2,

represented by
11 1-1) -1 01 -1 -1
01}’ 01J’ 0-1)° 0-1) °
We shall exhibit x(t)-xl(gz) = {(A,B) €cxc: fA,B](,*.wrl(G) and [A,B]

has trace t} as a fibration over the two conjugacy classes of C

with trace *2. The fiber is xl(c) (or xl(c'l) over the other
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component); the involution (A,B) | (B,A) must interchange these
two components.

Once again we examine the solutions of (C), this time for
t = 2. Only when A=1 can we not assume A #0; this case may be
discarded for then [A,B] = 1. As before the case p = 0 may be
approximated by p # O by taking |A| large. When now p # 0 we

may conjugate A in order to take A = O. This simplifies (C) to:
.2
(D) t =2 - kbe sinhp

For t =2, then clearly Xl(l) consists of the solutions of (D)
with b =c = 0. Then clearly X(2) -Xl(l) has four components (two
from the ambiguity in #(a,b,c,d) and two from the choice Cﬂ'), as
desired. Finelly, for t = -2, we identify Xl(—l) with the solu-~
tions of (D) with sinth =be = -1. Once again we see that the set
of remaining solutions form four connected components.

This concludes the proof of 3.10.

Thus Hom(m,PSL(2,€)) has two connected components. The compo-
nent w, = O consists of all ¢ € Hom(m,PSL(2,¢)) which 1ift to
$ € Hom(m,8L(2,¢)). Although there are 2g 1lifts ¢ of a given ¢,
they are all deformable one to another. The proof of this fact is
routine, uses similar sortsof deformation arguments, and is omitted.
We may conclude that Hom(w,S8L(2,C)) is connected.

A precisely analogous theorem mey be proved for G = SO(3) or
G = PSU(2) C PSL(2,C). In this case we obtain a result of Newstead

[42] that Hom(m,SU(2)) is connected.
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By CGunning [20] the singular variety of Hom(m,SL(2,6)) consists
of all reducible representations. That same proof adapts to show that
its image under Hom(m,SL(2,C)) — Hom(m,PSL(2,8)) is the singular
variety of Hom(m,PSL(2,C)). Hence the component W, #0 of
Hom(m,PSL(2,€)) is a connected smooth variety. It is easily proved
that the set of all irreducible representations in Hom(m,SL(2,T))
form a connected manifold; hence the connected components of
Hom(m,PSL(2,E)) are precisely its irreducible components as an
algebraic variety.

Hence the irreducible components of the real algebraic variety
Hom(m,PSL(2,R)) are the sets w;]'(o) = e'l(zg-z) Yoo Ue-l(o) U-eo
UeHe-2g) ana w;M(1) = eM(2g-1) U-er Ve (1o2g).

Generic Properties of Representations

Now we shall prove some genericity results concerning hyperbolic
and projective foliated bundles over a surface M. These results will
be applied to characterize Fuchsian actions as the only structurally
stable projective actions of T on ]RP:L (or, rather, the double
covering IRAP]'). These results are also used in §6 as a preliminary
step in the construction of a transverse section of a hyperbolic
foliated bundle which is topologically the tangent bundle.

The basic result we shall prove is:

Theorem 3.19. Let T be the fundamental group of a closed
surface M (x(M) < 0). The set of all ¢ € Hom(T,SL(2,R)) which are

injective is dense in Hom(w,SL(2;R)).

i
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The proof we give applies to SL(2,C) and SU(2), and indeed any
connected Lie group G containing SU(2) or any covering group of
SL(2,R) such that Hom(m,G) is connected. (The condition that
Hom(T,G) is connected is conjectured to be equivalent to the Levi

subgroup of G being simply connected.)

Proposition. Suppose G is a Lie group and let T be a counta-
ble group. Then in any irreducible component C of Hom(w,G) either:
(i) for all ¢: T+G, ¢ €C, ¢ is not injective;

or (ii) injective homomorphisms are dense in C.

Proof. Suppose there exists an injective ¢1 € C. We must show
that such injective ¢ are dense in C. Since Hom(w,G) is an
analytic variety and thus a Baire space, it suffices to show that for
all w &€ m, the set of all ¢ € C with ¢(w) = 1 is a nowhere dense
closed subset. Suppose not; then there is a nonempty open set U C C

such that ¢(w) =1 for ¢ € U. The mapping

w: Hom(m,G) — G

¢ = o(w)

is then an analytic map which is constant on an open set. Hence it is
constant on the whole irreducible component C containing U,

contradicting ¢l € C Dbeing injective. Q.E.D.

Proof of Theorem 3.19. By Gunning [20] and Whitney [55] as in

3.18, Hom(m,SL(2JR)) 4is an irreducible variety. A Fuchsian ¢ is
clearly injective; by the proposition, injections are dense in

Hom(T,SL(2,R)). Q.E.D.
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The same proof works for Hom(m,SL(2,C)). By modifying the proof
of the proposition, the proof can be made to work for Hom(m,SU(2)).
For if w€&€ m 1is constant on a nonempty open set U in Hom(m,G),
it must also be constant on a neighborhood of U in the complexification
Hum(’n,Gc) (this follows from the Weierstrass preparation theorem).
Hence either (i) there is no isomorphism ¢: T + Gy in a given compo-
nent C, or (ii) isomorphisms ¢: T -+ G are dense in C. If
G = SU(2), then a Fuchsian ¢: T + SL(2,R) C SL(2,€) is an isomor-
phism, so (ii) applies to show that isomorphisms are dense in
Hom(m,SU(2)). (As a corollary, there is an embedding of 7 in SU(2);

the proof of this, however, does not give an explicit embedding.)

Remark 3.20. Unfortunately we cannot prove that isomorphisms are
dense in FHom(T,PSL(2,;R)), Hom(m,PSL(2,¢)) or Hom(m,S0(3)) since
we do not know whether in the components of Hom(m,PSL(2,)) with

w2 # 0 there are any isomorphisms. This is equivalent to:

Conjecture 3.21. There exists an embedding of the group

(A A ,B.,...,B

poeeohy : ([Al,Bl]“'[AE,Bg])2=l) in SL(2,0).

Structural Stability of Fuchsian Actions

Our goal is to prove the following theorem. Let 7 be the

fundamental group of a closed surface of genus n > 1.

Theorem 3.14. A projective action of 7 on the circle IRPl

which comes from ¢ € Hom(m,SL(2;R)) is structurally stable if and

only if it is Fuchsian.
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Proof. For the structural stability of Fuchsian actions (equiva-
lently Anosov foliations) see 3.13 and the references given there.
Conversely, suppose that ¢ defines a structurally stable projective
action on IRPl‘ ¢ 1is an isomorphism, since isomorphisms are dense in
Hom(m,SL(2;R)). It only remains to prove that ¢(m) is discrete.
Otherwise there exists some w € m such that ¢(w) dis elliptic or
parabolic, by 3.2. Now the proof of Proposition 3.19 shows that for
any t €R, the set of all ¢ € Hom(m,SL(2,R)) such that trace P(w)
# t is either a dense open set or empty. Since ¢ lies in the same
irreducible component as a Fuchsian action (or the trivial representa—
tion), this set is dense. Consequently in any neighborhood U of ¢
there will exist Y € U such that Y(w) is an elliptic element whose
rotation angle is different than that of ¢(w), contradicting

structural stability. Q.E.D.
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§4. Ideal Sections and Relative Euler Class

In this chapter our aim is to state a relative version of
Theorem 3.6. Because the usual Euler class of a 2-disc bundle E¢
over a surface with OM # § always vanishes (H2(M) = 0), it is neces-
sary to include some sort of boundary data and define the relative
EBuler class with respect to this boundary data.

This boundary data will be called ideal sections. Consider a
projective or conformal foliated bundle JE ¢; then the ideal bundle to
E¢, 8E¢ is the associated (n-1)-sphere bundle to the disc bundle E¢.

When n =2 a section of BE¢ (i.e. an ideal section) is equivalent

to a trivialization of aE¢ and hence of Ed)_ The Euler class of E¢

is then the primary obstruction for the existence of an ideal section.

Hence we make the following definition:

Definition 4.1. Let E¢ be a closed n-disc bundle over an
oriented n-manifold M. Let o denote an ideal section over @M. The
relative Euler class e(E;0) € H'(M,3M) 2 Z is the obstruction for

extending o: oM — 3E au to an ideal section M — 3E.

The main formal property of the relative Euler class is the

following property of additivity:

Additivity Lemma 4.2. Let E denote a closed n-disc bundle over
an n-manifold M and suppose V is a closed (n-1)-submenifold such
that (i) M Cv;

(ii) V separates M into M-V = (int M)U---U(int M),

Let o: V — 3E v be an ideal section over V. Then

k
e(E;o BM) = iZle(EI i;cr ) .

M,
i

78
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This formula is just the addition formula in elementary obstruction

theory (see Steenrod [48], §36) so we omit the proof.

4.3 As an example of the relative Euler class, let fi (i =1,2) be

two sections of an Sl—bundle JE over Sl. The difference d(fl’fz)’
which is the obstruction to finding a homotopy between f‘l and f2,

is the relative Euler class e(p*E;f) where p: Mx[1,2] — M is
projection and f: Mx {1,2} — 3E is £, on Mx {i}, i =1,2. Since
sections of 8E are classified up to homotopy by H2(Sll>< [1,2] ,Sl>< {1,2})

£ %, for any fixed ideal section fl, there is a one-to-one corres-

pondence
{homotopy classes of ideal sections} <> Z
(£} — ale,,7,)
L.ho I E'1> is a hyperbolic foliated bundle then BE¢ is a conformal

foliated bundle. If dim X = 2, the'conformal' geometry of oX = Si

is the projective geometry of '.lRPl. Hence an ideal section over a
l-menifold is a singular projective structure. Since every section of
9E is homotopic to either a transverse or constant section (2.11),
or constant.

We have defined special projective structures over closed curves
in 2.11. These sections of 3E depend only on the holonomy of these
curves (although they do not quite depend continuously on‘the
holonomy). It is this property which forces us to sacrifice a
continuous assignment of ideal sections. Since projective structures

—~
correspond to elements of SL(2,R), we are in effect asking for a
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cross-section to SL(2;R) — PSL(2,R). Since no continuous cross-
section exists, we must be content with the discontinuous "special
sections introduced in 2.11.
We will actually need a slight variant of these special ideal
sections for the following reason. The idea of the proof is to cut
the closed surface M along a closed curve V into M—V:MlU UMk'
Using additivity, one of the results of §5 and the assumption
e(¢) = x(M), we get e(¢i;boundary data on Mi) = X(Mi) for each M,.
Using more results from §5 we construct a section over Mi with
prescribed boundary values. Hence we must begin the proof by choosing
a preassigned section over V. This section must be a section of E¢
and not 8E¢ since V Cint M and we plan to extend the section to one
which is transverse over. int(M). Hence we need an "interior realiza-
tion" of the special ideal sections, the "special interior sections".
Recall that if C CM is a single closed curve, the special
ideal section is defined by the formula

R >R x 93X

(k.5)
t > (t,exp(~t log ¢(e))y

where we have chosen a "parametrization" C —>TR/Z and some point
¥y € 39X not fixed under ¢(C) (if such a point exists).
To define the special interior section, we simply allow y to be some

point in X,:not.fixed under ¢(C). (If ¢(C)=1, then y can be arbitrary.)
4.6 since the orbits of elliptic (resp. parabolic) one-parameter

subgroups are circles (resp. horocycles) centered at the stationary

point, we see that special interior sections map onto invariant circles
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(resp. horocycles). By projection from this point we obtain a natural
correspondence between special ideal sections and special interior
sections. When the holonomy is hyperbolic this projection occurs along

lines orthogonal to the invariant geodesic and equidistant curves.

Definition 4.7. A continuous deformation ¢1: € Hom(m,G) is
admissible if and only if for each Y € T homotopic to a curve in M

0, (1) ¢ sym. (In terms of |trace| this means [trace ¢t(Y)| is

never zero.)

If ¢t is admissible, then log dwt(y) is continuous in t for
Y homotopic to OM. Consequently the special ideal sections LA of
¢t over 0OM vary continuously in t. By the covering homotopy
property the bundles E¢t are all equivalent and the ideal sections

E

over 9M are homotopic; hence e(xtt;Ut) = e{¢30). Hence e(¢;0) is

continuous in ¢ as long as ¢ varies aGmissibly.

4.8 Now suppose that M is a surface-with-boundary and E¢ is a
hyperbolic foliated bundle over M. We are interested in knowing which
special interior sections aM — E¢ might possibly extend to trans-
verse sections over M.

The necessary conditions that a special interior section
s: oM — E¢ extend to a transverse section over M can be seen by
considering a developing map. Say that a component ¢ of M is
hyperbolic, parabolic, or elliptic depending on whether ¢(c) is
hyperbolic, parabolic, or elliptic respectively. If f: M — X is a
nonsingular developing map corresponding to a transverse section of E¢,

then it is natural to hope that f is an embedding on some fundamental
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Fig. 4.1. Projecting an ideal section to an interior section
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domain I for 1 acting on M. Indeed, the sections we construct
will all have this property.

Corresponding to the boundary components Bl,...,Bk of M there

will be lifts El,..

embedding then all f(ﬁi) are disjoint.

ﬁk to boundary segments on [I. If f I is an

Now suppose f'aM is a special interior section. That is, for
each By C M, there is ¢(Bi)—invaria.nt curve to which B; develops.
If ¢(Bi) is elliptic or parabolic, then we shall want f to map a
collar of ﬁi to the outside of a ¢(Bi)—invaz-iant circle or horocycle.
If q;(Bi) is hyperbolic, then f maps a collar of ﬁi to one of the
two regions bounded by the equidistant curve f(ﬁi). Therefore in addi-
tion to the special interior section, we specify one of the regions
bounded by the ¢(B)-invariant equidistant curve, if ¢(B) is hyperbolic.

Suppose now that we are given this information: for each Bi C oM,
a :b(Bi}—inVaria.nt circle, horocycle, or equidistant curve, and if
¢(Bi) is hyperbolic, also one of the regions Ri ‘bounded by the
invariant equidistant curves. For each elliptic or parabolic ¢(Bi)

Ri will denote the region outside the (p(Bi)—inva.riant disc or horodisc.
We want to choose the Ri sufficiently large so that for any distinct
Ri’ RJ’ the union Ri UR, = X. This will have the effect of making

J
the developing map of the boundary "sufficiently small".

Definition 4.9. A special interior section s: M —» E¢ is
sufficiently small if and only if there is a developing map f for s,
and for each (b(Bi), regions Ri bounded by f(ﬁi) as above, such

that for every distinct Ei, B;j C 3M, the union Ri URJ = X.

83
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The reason for the terminology in the above is that if s is
any special interior section over 9M, then s can always be made
smaller around the elliptic and parabolic (D(Bi) in the sense that
there exists another special interior section s' with a developing
map which maps the invariant circles and horocycles to smaller ones in
the hyperbolic plane. If the fixed points of the elliptic and para-
bolic ¢(Bi) are all distinet, then there exists a sufficiently small

interior section s. Compare Fig. 4.2.

Proposition 4.10. Let ¢ € Hom(w,G) and let O be an ideal
section of Eq; over 08M. Then e(¢;0) €EZ may be computed by the
following algorithm:

Represent 7 as (A,Bi,... ,Ag,Bg,Cl, v ,ckl [Al,Bl] s [Ag,Bg]
Cl~~'Ck=l) where OM is the disjoint union ClU "'UCk. Each
commutator ¢([A;,B;]) hasawell-defined 1ift 3( [4;,8,1) +to &
associated to the ideal sections 0 is their modified holonomy
C; €G. Then & [Al,Bl])---Cl-“Ck lies in Ker G — G = vl(G) =z

and is the relative Euler number e(¢;0).

This may seen directly by cutting M along curves obtaining a
polygon with some of its sides identified. Going around the side of
the polygon gives the word W = [Al’Bl] .. '[Ag’Bg]cl. .

Begin to extend the ideal section o from oM +to int M. In

fact extend O to an ideal section over M- {y} for some y € int M.
Now the word W applied to the lifts of ¢([4;,B,1) and o(cC;)
represents the total winding number of ¢ over a small circle centered

at y. This is clearly the obstruction to a section of JE.

8l
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The shaded regions are the
complements of the R_{

small, but (as Below),
it is easy to find one which
is sufficiently small.

Here is ome which is
sufficiently small.
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§5. Hyperbolic Structureson a Pair of Pants

In this chapter M will denote a compact oriented surface (with
‘boundary) diffeomorphic to a sphere minus three discs, i.e. a pair of
paiats. Denote the three components of M by A, B, C and give them
orientations compatible with those of M. Let %o denote a base
point in the interior of M and let the corresponding elements of
wl(M,xo) also be denoted by A, B, C. The fundemental group
m= Trl(M,xo) is generated by A, B, C subject to the relation ABC = 1.

We shall be interested in the classification of hyperbolic
foliated bundles E¢ over M where ¢ € Hom(m,G). Let o = o(¢)
denote a special ideal section over 0OM. The goal of this chapter

is to prove the following theorem.

Theorem 5.1. (i) e(¢30) = -1, 0, or +1.

(ii) e(¢30) = 0 provided that one of the following occurs:

(a) one of ¢(A), ¢(B), and ¢(C) equals 1 and none are symmetries;
(b) ¢(m) has a fixed point in RP°~X; (c) two of ¢(A), 6(3), ¢(C)
are hyperbolic and their axes intersect in XUJX.

(iii) e(¢30) = -1 (resp. +1) implies that either (a) ¢(m) is
solvable, and there are two components A, B of M such that ¢(4),
¢(B) are elliptic, or (b) E¢ admits an orientation-preserving (resp.
orientation-reversing) transverse section f: M — E¢ which restricts
to a special interior section over 8M. If, in case (b), ¢(4) is
elliptic or parabolic, then f maps a collar neighborhood of A in M
to the outside of a ¢(A)-invariant disc or horodisc, in local foliation
charts. Otherwise, in case (b), f maps A to a ¢(A)-invariant

geodesic.

86
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Fig. 5.1 A pair of pants
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(iv) Suppose that ¢(4), ¢(B), and ¢(C) are all hyperbolic.
Then e(O;U) = *1 if and only if Eq; has a transverse section f
which restricts to a special interior section over OM. For each

hyperbolic  ¢(A), f|, is geodesic.

5.2 There is a simple method for constructing representations

¢ € Hom(7,G) geometrically. Using this method we obtain a natural
picture of Hom(m,G) as a kind of "configuration space". Let JLA, Q,B,
and LC be any three lines in IRP2 none of which are tangent to 8X.
Then there are unique projection involutions Il(,Q,A), ete. which fix

J?,A, etc., and leave X inveriant. Therefore I(L(4)), I(&(B)),

I(8(C)) € s0(2,1); since the * are involutions, it follows that
(1% (1) (rPB) = 1

A A_B

C, #8) = 1°%, o(c) = 81 ve obtain a

thet by taking ¢(A) = I°T

representation ¢: T — S0(2,1). The image ¢(T) is contained in G

if and only if IA, IB, and Ic either all preserve the orientation

of X or reverse it; i.e. when .?,A, JLB, JLC

are either all reflections
or all symmetries. We shall say that ¢ has been factored into the
involutions IA, I}3 and IC.

Thus a representation ¢ € Hom(m,G) factors into involutions if
and only if ¢ extends to § € Hom(%,G) where # 2 Z/2%Z/2%%/2

contains T as an index~2 subgroup in the following way: If A is

freely generated by involutions ICA’ IAB’ BC? then

Al Toalns

Bl IyTsc

Cl— IBCICA

88
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gives the desired embedding T< 7.

This process is described more neatly and geometrically by
Thurston's notion of an "orbifold" (see [54], §13). There is a
2-orbifold I which M double covers (Fig. 5.2), and the map induced on
fundamental groups by the covering M — # is the inclusion w& 7.

Our goal in this chapter, essentially, is to use the assumption
Ie(d>;6)| = 1 to construct a hyperbolic structure on M by first
constructing a hyperbolic structure on 1‘71

First we prove the following theorem:

Theorem 5.2. Suppose ¢(m) is not solvable. Then at least one
of the following must hold:
(R) ¢ can be factored into reflections, i.e. ¢ extends to
$: # — 50(2,1) so that §(I,p), B(1p,), and #(1y,) are
all reflections in lines of X.
(8) ¢ can be factored into symmetries, i.e. ¢ extends to

$: T —a.

In 5.8 we show how to pass from a hyperbolic structure on M to
one on M; section 5.9 gives the basic picture of a hyperbolic struc-
ture when ¢ is Fuchsian. In 5.10-5.11 we construct hyperbolic
structures on M. Finally, in 5.12-5.16 we compute the relative Euler
class and prove Theorem 5.1.

The proof of 5.2 involves the geometric investigation of a certain
triangle associated to ¢ as follows. Every nontrivial element of G
has a preferred fixed point in ZIRP2 (see 2.5); thus if ¢(m) is not
solvable, the preferred fixed points Pp» Pgs Py Of o(a), ¢(B), o(c)

respectively are the vertices of a triangle (in fact four triangles)
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A in ]RPZ.

Let &, ete. be the extended sides of A, i.e. the projective

CA®
lines containing Pe and pA, etc. That ¢(m) is nonabelian implies
A cannot consist of a single point. Later on(5.6)weprove:that A is
actually nondegenerate, but our first step is to understand how the

1

w

lines & etc. intersect 93X = S

CA”

Lemma 5.3. If ¢(w) dis solvable, no line ch, etc. can be

tangent to 9X.

Proof. By symmetry it suffices to show ch is not tangent to
3. If %, is tangent to X at p € K, then ¢(C) and ¢(4)
are both hyperbolic elements fixing p. Then ¢(B) = ¢(A)'l<p(c)‘l

also fixes p which implies ¢(w) is solvable, a contradiction.

Lemma 5.4. Suppose ¢(m) is not solvable and oy does not

intersect 8X. Then neither LA.B nor Q‘BC intersects 9X.

Proof. The condition "'Q'CA does not intersect 3X" is equivalent
to ¢(C) and ¢(A) being hyperbolic with their invariant axes inter—
secting in X (indeed, the point of intersection is dual to the line
R‘CA)' Hence we must prove that if ¢(C) and ¢(A) are hyperbolic with
intersecting axes, then ¢(B) is hyperbolic and its invariant axis
intersects each of the invariant axes of ¢(C) and ¢(A).

We may choose coordinates on 09X mIIRZIPl so that the fixed points
of ¢(c) and ¢(A) are {1,-1} and {r,»} respectively. Then o(c)

and ¢(A) may be represented by the matrices

cosh 6 sinh 6 &P _or sinh p
sinh 6 cosh 6 | ° 0 e®
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respectively. The condition that their invariant axes intersect is

that -1 <r < 1. Now

trace ¢(B) = trace ¢(B)-l = trace ¢(C)¢(A)
= 2cosh pcosh® - 2r sinh psinh 6
= (1+r) cosh (p+8) + (1-r) cosh (p-6)

>2

proving ¢(B) is hyperbolic.
Now suppose that the invariant axes of ¢(B) and ¢(A) do not
intersect in X. Define a deformation ¢t by deforming (b(C) and

¢(A) along one-parameter subgroups:

$,(C) = exp t log ¢(C)
¢, (A) = exp t log ¢(4)
oo ), 12520

8,(3)

By the above argument ¢t(B) is hyperbolic. Moreover as t - 0 the
preferred fixed pB(t) point of ¢t(B) approaches the line ECA'

Thus for t near O the projective line lAB(t) containing Py and
pB(t) does not intersect 9X. For each t # 0, the image ¢t('rr)

is not solvable. Since ILAB('G) is continuous in t and £,,(1) = LS
intersects 90X there must be some t for which JLAB(t) is tangent to

9X. However this contradicts Lemma 5.3. Q.E.D.

Remark 5.5. Lemmas 5.3 and 5.4 can be interpreted in terms of the
Lorentzian geometry of G = PSL(2,R) as follows. Giving G the
bi-invariant Lorentz metric coming from the Killing form, the one-

parameter subgroups become geodesics. Since exp: G— G is surjective
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there is a geodesic triangle with vertices ¢(4), ¢(B), ¢(C). An
observer sitting at 1 € G looking out along geodesics sees the
triangle pAPBPC in his JR]P2 field-of-vision. The preceding lemmas
show that there are strong restrictions .on how the geodesic triangle
may intersect the light cone. If the triangle is nondegenerate 5.3
says no line intersects it tangentially and.5.4 saysthat if some extended
side doesn't intersect the light cone, then no extended side inter-
sects the cone. The various situations which have been ruled out as

impossible are shown in Fig. 5.3.

5.6 Proof of Theorem 5.2. We continue to assume ¢(m) fixes no

point in ]RIIP2. Consider the triangle A at its extended sides !LCA’
etc. 5.3 implies that for each extended side & there is an involu-
tion J € S0(2,1) fixing each point of £ (and the dual point £%).

J are either all reflections or

T
AB”> “BC

all symmetries. We claim these involutions satisfy

By 5.4 the involutions JCA’

o(A) = Joudpp
#(B) = Jppdpe

#(C) = Tp T,

By symmetry, it suffices to prove only one of these relations.

First, we show there exists some J € 50(2,1), J2 =1, with

o(A) = Jopde If py €XUBX (so ¢(A) is elliptic or parabolic)
then J,, reflects each ¢(A)-invariant circle or horocycle. It
~1 -1 . 2 .
follows that JCA¢(A)JCA = ¢(a)", i.e. (JCA¢>(A)) =1 as desired.
If ¢(A) is hyperbolic, then Jga 1S symmetry about some point on

¢(A)-invariant geodesic; hence it reflects that line and conjugates
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#a) to (a7t

Now we show J = JAB' Certainly J fixes pA. On the cirele of

. Again this implies JCqu(A) is an involution.

directions about Py the involution J = JchJ(A‘; reverses orientation.
However since an orientation-preserving involution cannot have an
isolated fixed point, 1 lies on the fixed line of J. It remains

to show that pB also lies on the fixed line of J. Now
T0(B)T = T, 6(A)B(B)I,0(B) = T4,0(0) 35, 0(8) = $(0)6(a) = 6(m)

so that J reverses orientation in a neighborhood of Dg> 88 above;
hence the fixed line of J contains Py- Therefore J = JAB s0

¢(a) = JCAJAB’ completing the proof of Theorem 5.2.
Corollary 5.6. The vertices of A camnot be collinear.

Remark 5.7. The mein point of Theorem 5.2 is that it gives a
geometric object corresponding to a representation ¢ €Hom(T,G),; namely
a.set of triangleswith vertices Pps Pps> Pg in ]RP2 which satisfies
5.3, 5.4 and 5.6. Namely, the projective lines E, EB—pC* and
4};; are distinct and intersect 93X in two points. For each line
;E: there is a unique involution IAB of IRP2 fixing iﬁ and

leaving X invariant. By defining ¢ by

Al ICAIAB
B~ IABIBC

Chk IBCICA

we have associated a homomorphism ¢ to a triangle in A. In this
way we establish a one-to-one correspondence between ¢ € Hom(T,G),

¢(m) not solvable,and triples of distinet nonconcurrent lines each
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intersecting 9X in two points.

5.8 Now we turn to the proof of part (ii) of Theorem 5.1. Continuing
to assume ¢(m) is not solvable, we see Theorem 5.2 implies that if
e(d30) # 0, then ¢ can be factored into reflections. In that case
we can construct a transverse section M — E¢ with reasonably good

boundary behavior.

Proposition 5.8. Let ¢ € Hom(w,G) satisfy

(a) ¢(m) is not solvable

(b) ¢ factors into reflections By Byes RCA'
Let @, (resp. Qg Q,c) be a ¢(A) (resp. ¢(B), ¢(C)) -invariant region
bounded by cireles, horocycles or equidistant curves such that the
three of them are pairwise disjoint. Then there exists a transverse
section f: M — E./p and a developing map f’: ﬁ — X, with lifts

E, B,C of A, B, C such that () = 9, F(B) = 3, (@) = 3.

We will construct a transverse section by describing a developing
map. To do this we need only specify an immersion II — X (where II
is a fundamental domain for T on M) and identifications of various
edges of 09X which generate the holonomy.

A fundamental domain for 171 can be formed by taking two hexagons
and glueing them together along a side. If H is one of the hexagons,
denote the sides A, B, C, &, B, Y in order. Let J denote a
reflection in the side Yy of H which maps H diffeomorphically onto
the other hexagon JH. Then HUQJJH is the fundamental domain corres-
ponding to M and has eight sides JAUA, B, C, o, JBUB, Ja, JC, JB

(see Fig. 5.lba) The pair-of-pants M is obtained by identifying o
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with Jo and B with JB (see Fig. 5.4b).

Now let Ra, RB be the local reflections in a tubular neighbor-
hood of o and B respectively. Then the deck transformation in I
which maps the fundamental octagon HUJH to the adjacent one which
is on the other side of o (resp. B) is given by R,J (resp. RBJ).

A hyperbolic structure on M can be obtained from a hyperbolic
structure on the "orbifold" H. That is, first factor ¢ into reflec-
tions RAB’ RBC’ RCA' Then a developing map for H (which determines
a developing map for M) is obtained from an immersion f: H— X
such that the reflections RA.’B‘ (resp. RBC’ RCA) fix the line vy
(resp. @, B). The developing map on JH is just Rygofod; if
W(J,JA,J'B) is a word, then the developing map on W(J,J’A,JB) is just
W(RAB,RBC,RcA)ofoW(J,JA,JB)_l. This defines a developing map with
holonomy ¢, and hence a transverse section to E¢.

The boundary conditions we shall require are the following. For
a component C of 3M, we seek a special interior section over C
which develops C to some ¢(C)-invariance circle, horocycle, or
equidistant curve. Hence the developing image of the side of H
denoted A (resp. 4, C) will be a segment of a ¢(A)- (resp. ¢(B),

¢(C)) invariant curve.

5.9 Our goal is to build a developing section for M with holonomy ¢
from the triangle A. So far we have not specified a triangle A but
rather the triangular configuration determined by three points or three
lines in IIRPQ. One of our first objectives is to find one of the four
triangles with vertices Pp» Pps P and turn it into a fundamental

hexagon.
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Let ¢ € Hom(m,G) be such that ¢(m) is not solvable and factors
into reflections. Let pA’ PB’ PC be the three preferred fixed points
of ¢(4), ¢(B), ¢(C) respectively. We shall try to find a triangle A
with vertices Pp> P> Pg which intersects X in a convex set. A
fundamental hexagon will be constructed by truncating A at its ver-
tices along the corresponding invariant curves.

The model case (when ¢ is Fuchsian and factors into reflections)
occurs when all three of the vertices of A 1lie outside X, each
side of A intersects 9X, and ANX is a convex set. Then ¢(4),
(B), ¢(C) are hyperbolic and we truncate A at each vertex along
the corresponding invariant curve, obtaining a right hexagon in the
hyperbolic plane (see Fig. 5.5). The group generated by reflections in
the three sides of A is isomorphic to 7, and the natural represen—
tation 7 — 50(2,1) is Fuchsian. The quotient X/¢(7) is then a
complete hyperbolic pair-of-pants, and the developing image of U yH
is the convex hull of the limit set of ¢(7m). More generally for each
vertex p, Wwe could choose a ¢(A)-invariant equidistant curve Cpo
and, assuming that cAﬁcB = cBﬁcc = (:CﬁcA = @, truncate A along
these equidistant curves obtaining as a fundamental hexagon for ¢ a

right hexagon with curved edges.

5.10 Now we classify the various possibilities for triangle A,
hoping to construct a fundamental domain for a hyperbolic structure on
M resembling the previous one (two right hexagons). We shall find
transverse sections M — E¢ by constructing polygons satisfying the

hypotheses of Proposition 5.8
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For simplicity, we consider only the case when none of ¢(4), ¢(B),
¢(C) are parabolic. The situation when one of them, say ¢(A), is
parabolic is essentially a limiting case of the situation when ¢(A)
is elliptic and is handled in the same menner.

Suppose first of all that ¢(4), ¢(B), ¢(C) are all elliptic
(i.e. when Pp> Pgs Py lie in X). Then there is a unique triangle A
with vertices Pp> Pps Pg such that A CX (in fact A is just the
convex hull of {pA,pB,pc}). Choose discs centered at the vertices
chosen sufficiently small so they are pairwise disjoint. After remov-
ing these dises from A we obtain a right hexagon A', three of
whose edges are circular arcs. Choosing a decomposition of M into
two hexagons, an involution J: M — M which interchanges the two
hexagons H and JH, and a homeomorphism H — A', we construct the
desired transverse section M —- E¢ using the procedure 5.9 (see
Fig. 5.6).

Now suppose that one of the vertices, say Dy> is ultra-ideal
(i.e. ¢(A) is hyperbolic). Then there are exactly two triangles A
with vertices Pps Pps Pg such that ANX is connected (Fig. 5.7).
Choose one of these triangles A; then there exists a region QA
bounded by a ¢(A)-invariant equidistant curve and disc Q’B (resp. Qc)
centered at py (resp. pc) such that A- (QAUO,B UQC) is a right
hexagon. By 5.9 we can construct a transverse section M —> Eqb taking
M to invariant circles and equidistant curves.

Unfortunately, there may not exist a transverse section which
takes A onto a geodesic. Let pf denote the ¢(A)-invariant line.
If p}{ separates Py and Pgs OF if pj{ contains Py O DPg»

then there is no triangle A with vertices Pp> Pps Pg such that
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A~ (half-plane bounded by pX) is a quadrilateral contained in X.
Consequently it is necessary to use non-geodesic equidistant curves to
truncate A (see Fig. 5.8)

The case when two vertices, say PA’ PB’ are outside XUDQ3X is
handled similarly. In that case the dual lines PX and pg separate
X into three regions, and there is a unique triangle A with ver-
tices p,, Pgs Py such that Aﬂ(pKUPE) CX (Fig. 5.9). Then there
exist, as before, a disc QC centered at P and regions QA (resp.
Q’B) bounded by ¢(A)- (resp. ¢(B)-) invariant curves such that
A- (QAUQBUQC) is a right hexagon. By 5.9 one may construct a trans-
verse section M — E¢ which develops A (resp. B, C) C3M to the
invariant curve aQA (resp. SQ,B, SQC).

Iif P lies in one of the closed regions in X bounded by one
of pz and p§ then it will be impossible to choose both QA and Q‘B
to be half-planes. As a result, the section constructed will map A
and B to geodesics if and only if P lies in the interior of the

connected region bounded by p} and. pf. (Fig. 5.10).

Definition 5.11. Let A be a triangle in ]RP2 and let X denote
the interior of a conic in JRZIPZ. Then A is acute (with respect to
X) if and only if for every vertex p of A such that P €EX the
vertex angle of A at p (measured with respect to the hyperbolic
metric of X) is less than g If one of the vertex angles is greater

than g (resp. equals %), then A is said tobe obtuse (resp. right).

The importance of acuteness is the following. Suppose
¢ € Hom(m,G) factors into reflections, ¢(m) is not solvable, and

¢(A) is not hyperbolic. Then we have shown there exists a transverse
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Fig. 5.9
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Fig. 5.10
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section M — E, which, in local foliation charts, takes boundary

L
components A, B, C into appropriately chosen corresponding invariant
curves. The section is constructed by finding a triangle A whose
vertices p,, Pps Do are the preferred fixed points of o(a), ¢(B),
¢(C). If ¢(B), say, is hyperbolic, then we have seen that it may or
may not be possible to find a section f: M — E¢ such that £(B) is
geodesic. However, if A is acute, then such a section may always be
found. Recall that if ¢(C) is elliptic then a section f with f£(B)
geodesic exists precisely when po and p, lie in the same ¢(B)-
invariant open half-plane in X. Depending on the choice of A, the
vertex angle of A at either Py Or Py Wwill be obtuse (Fig. 5.11).
When ¢(C) is hyperbolic, then there is a unique triangle A such
that (pK Upé) NX C A and the vertex angle at Py is obtuse (or
right) whenever Py does not lie in the open region bounded Ly the
invariant lines pK and pg (Fig. 5.12). This is precisely the
condition needed for the existence of a transverse section f with
£(A) and £(C) geodesic.

Now we come to the case when all three of Pp» Pps Py are ultra-
ideal. Since ¢ factors into reflections and not symmetries, the
projective line containing pA and pB, etc. intersects 00X in two
points. Let pﬁ, pg, p"c* be the lines dual to Dps Pgs Pg> ete.
respectively. Then either there is one line, say p}{, such that each
of the two components of X—p}{ contains one of pg and pg (Fig. 5.13a) or
each of the three lines bounds a region not containing another line
(Fig. 5.13b). In the first case (Fig. 5.13a) no triangular region
intersects X in a hexagon and there is no natural way to find and trun-

cate a triangle A to produce a transverse section of the desired sort.
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In the second case (Fig. 5.13b) there is a natural transverse section

mapping OM to geodesics; indeed this is the model case treated in 5.9.

5.12 Now we compute the relative Euler class e(¢;0) of ¢ € Hom(m,G)
with respect to a special ideal section o over oM. We shall compute
e(¢;0) by constructing deformations of ¢ to "canonical" examples,
watching carefully how o changes. Deformations of representations [}
can be visualized as deformations of the corresponding triangles, by
Proposition 5.2. We remind the reader that the special ideal section
Ut = G(¢t) corresponding to a deformation ¢t is continuous provided
that ¢, (C) €sym for all t and all components C C M. In that
case we say ¢, 1is "admissible".

Since T 1is free on two generators, Hom(m,G) » GXG is
connected. Since the map

Hom(m,G) — Z

¢ > e(930(9))

has disconnected image, it cannot be continuous. On the other hand
we shall really be considering the open subset W = {¢ € Hom(m,G):
¢(C) ¢ sym for all components C C M} where the map ¢ > e($;0(4))
is continuous. Indeed, we show that it is onto {-1,0,+1}.

To begin with consider the trivial representation ¢0, ¢0(‘n) =1.
Clearly a special ideal condition over oM extends over M, so
e(¢0;c) = 0.

Now consider ¢ such that ¢(m) fixes a point of 8X. Then
none of ¢(A), ¢(B), and ¢(C) are elliptic. Consider the deforma-

tion ¢t defined by
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¢t(A) = exp t log ¢(A)
¢t(B) = exp t log ¢(B)

0,(0) = 0,(8) o, ()

Then ¢ = tbl and (bo is the trivial representation. Since none of ¢t(A),
¢t(B)’ ¢t(C) are ever elliptic, ¢, is admissible, so e(¢;0) = e(¢0;0)

= 0. This proves conditions (b) and (c) of Theorem 5.1(ii).

5.13 The next case we discuss occurs when ¢(4), ¢(B), ¢(C) are all
hyperbolic. We can assume ¢(7) is not solvable; then by 5.2 either ¢
factors into reflections or factors into symmetries. This gives three
cases for the associated triangular configurations, depending on whe-
ther ¢ factors into symmetries, ¢ factors into reflections and no tri—
angle intersects X in a hexagon (see Fig. 5.13a), or ¢ is Fuchsian and
factors into reflections. The three cases are pictured below in

Fig. 5.1k.

We claim that if either of the first two possibilities occur then
e(¢;0) = 0. If ¢ factors into symmetries, there exists a triangle A
which is disjoint from X. There exists a one-paremeter family of
triangles A, (%i t<1), Ay = A, such that t>:T/2(At) is a point out-
side XUJX and no extended side of any At meets 89X (Fig. 5.1L4). From
this we obtain a deformation ¢t which for each t factors into symme-
tries and ¢1/2(1r) lies in a hyperbolic one-parameter subgroup. Since
¢t(A), d>t(B), ¢t(c) are never elliptic, ¢ is admissible. Thus
e($50) = e(¢; /530) = 0.

Similarly in the second case (Fig. 5.13a) there exists a triangle

A such that exactly two sides meet 3X. Then there is a continuous
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shrinking of A to one of these sides (Fig. 5.14) which defines, as

before, an admissible deformation. The limiting case is the trivial

representation, so e(¢;0) = 0
It remains to show that if.¢ factors into reflections and is
Fuchsian, then e(¢;0’) = *1. One can show this by similar deformation
arguments, keeping careful track of the special ideal sections. However,
we prefer a different proof. Let A be the unique triangle inter-
secting XUO3X in a hexagon and let pz, p% and pé be the three
geodesics along which we truncate A into a right hexagon H. (5.9).
Choose one of them, say pK, and reflect A in it, obtaining a right
octagon HURA(H) (Fig. 5.15). ©Now HURAH is the fundamental domain
for a hyperbolic structure on the sphere-minus-four-dises M'. There
are unique hyperbolic elements which take pé to RAp’cE with invariant
axis W (resp. pg to RAPE with invariant axis W).
Since these isometries identify the corresponding boundary components
of the hyperbolic surface M', we have constructed a hyperbolic struc—
ture on the double 2M, a closed surface of genus two. Let ¢2
denote the holonomy of this hyperbolic structure; then e(¢;0) =
%e(;pz) = #l. The sign of e(¢;0) depends on the orientation of this
hyperbolic structure which in turn depends on the cyclic ordering of
the vertices of A as viewed from a point inside X.

We have just completed the proof of part (iv) of Theorem 5.1.

5.1 If ¢(A), ¢(B), ¢(C) are allowed to be parabolic, as well as
hyperbolic, the situation changes little. Although ¢ factors into
symmetries only if all three are hyperbolic, ¢ might determine a

triangle with one or two ideal vertices which cannot-be truncated in

the desired manner (Fig. 5.16).
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Fig. 5.16
These triangles with
some ideal vertices
cannot be truncated
into right hexagons.

The relative Euler
class is zero.
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However, in either of these cases pictured in Fig. 5.16, one proves
easily that e(¢;0) = 0. Similarly ¢ may factor into reflections

and be Fuchsian, in which case e(¢;0) = *1 (Fig. 5.17).

5.15 Now we consider the general case when ¢ factors into reflections
and ¢(m) is not solvable. Choose a triangle A with vertices
Py PB’ Po such that A C X if possible, and for each ultra-ideal
vertex Pys e have pKﬂA C X. TFor each vertex Pg € X we consider
deforming A, gradually moving Pq until it lies on 09X. In the
limiting case the sides containing the limiting ideal vertices lie
inside X. That such a deformation exists, which induces a deforma-
tion ¢t (%f_ t < 1) of ¢, = ¢ may be seen from Fig. 5.18. Since
the ideal vertices of A1/2 lie on sides interior to X, e(¢l/2;0)
= #1, by the previous section. Unfortunately, the deformation ¢t
might not be admissible. If Py € X is a vertex, then the rotation
angle of ¢(A) is exactly twice the vertex angle of A at py- Hence
¢(A) € Sym precisely when A has a right angle at P+ In the
deformation described, the rotation angle of ¢t(A) steadily decreases
to 0, so ¢t(A) is an admissible deformation if and only if A has
an acute angle at p,. Therefore if A is acute, then e(¢;0) = *1.
Suppose A 1is ot'use. By our assumptions on A, there is at
most one obtuse angle. By an admissible deformation we may assume the
other vertices are ideal or ultra-ideal. By a further admissible
deformation we may assume the other vertices Pp» Pg ideal (Fig. 5.19).
Then there is an admissible deformation, to the trivial representation,
such that Py and Dy are fixed and Py approaches the line ‘;;pc)

Hence if A is obtuse, e(¢;0) = 0.
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Fig. 5.17
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Combining these calculations with the construction of transverse

sections (5.10-5.11) we conclude the following:

Proposition 5.15. Suppose ¢ is not solvable and factors into
reflections. Let A be the associated triangle. Then A is obtuse
if and only if e(¢;0) = 0, and A is acute or right if e(¢;0) = 21.
If A 1is acute or right, then there exists a transverse section to

E. which restricts to a special interior section over oM.

¢

Thus we have proved part (iii) of Theorem 5.1.

5.16 In order to prove part (i) and part (a) of (ii) of Theorem 5.1,
we must now consider the case ¢(m) is solvable. First suppose that
¢(T) 1lies on an elliptic one-parameter subgroup. Let the rotation
angles of ¢(A), ¢(B), ¢(C) ve SA, 655 SC respectively, where

=M <8 <m. Then (8,+6,+6.) =0 (mod 2m) and JeA+eB+ec| <3m. It
follows from Proposition 4.9 that e(¢;0) = ;—ﬂ(eA+eB+ec) . Hence
e(¢;0) = -1, 0, or +1.

If, say, ¢(A) =1, then 6A= 0 and e(¢;0) = 0 unless ¢(B)
(and hence ¢(C)) is a symmetry (in that case e(¢;0) = 1). This
proves (a) of Theorem 5.1(ii).

The only remaining case to consider is when ¢(B) and ¢(C) are
both symmetries. In this case the associated triangle has two right
angles (at py and pc) and p¥ = (I;B?C) By moving py and D
towards each other, we admissibly deform ¢ until its image lies in
an elliptic one-parameter subgroup (Fig. 5.20). 1In any case,

le(¢s;0)] < 1, proving 5.1(i).
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Fig. 5.20

Here is a triangle
with two right angles.
Although ¢(w) is
solvable, the relative
Euler number is +1.
There is an admissible
deformation to:ithe
highly degenerate case
when ¢(n) has order
two.
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§6. Constructing Hyperbolic Structures

Let M be a closed oriented surface, x(M) = 2-2g < 0, and
= 'rrl(M). Our goal is to prove Theorem A: for ¢ € Hom(w,G),

le(®) | < [x(m)

5 equality holds, e(¢) = #x(M), if and only if E¢
admits a transverse section.

We decompose M intc subsurfaces Mi’ where each Mi is homeo-
morphic to the pair-of-pants of §5. There are many such pairs-of-pants
decompositions (such as Fig. 6.1) but for our purposes any one of them
will do. Let V be the union of all the BMi; then M-V = e_gL_J_lZint M.

The idea will be to construct a sufficiently small sper:iall_interior
section to E‘1’ over V and, using 5.1, extend it over the int(Mi).

We shall want to speak of wrl(Mi) C wl(M) so we make the
following convention’concerning basepoints. Ckoose a basepoint
x; € int(Mi) for each Mi; then connect the x, by an embedded
contractible l-complex X (i.e. a tree) in M. By allowing transla-
tions only along K we obtain a unique collection of canonical isomor-
phisms by 5 Trl(M;xi) — Trl(M;xj) satisfying hy; = id, hijhjk =Ty
In this way we obtain well-defined canonical inclusions 'vrl(Mi) =
nl(Mi;xi)L»n (Fig. 6.2).

6.2 If ¢ € Hom(m,G) we have by additivity
e(¢) = f(e(tb 50 ) s
i1 i“l(Mi) o,

where 0 1is a special ideal section over V. From 5.1(i) follows

@ ‘e(‘b‘nl(Mi);“laMi)l R
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proving the Milnor-Wood inequality
(2) le(@)] < [x(m)]

Now suppose equality holds in (2). By reversing the orientation
on M if necessary we may assume that e(¢) = x(M). Then the only
way that e(¢) can assume its minimum value in (2) is if
e(d)’Wl(Mi);gleMi) achieves its minimum value in (1). Hence from

e(¢) = x(M) we conclude that

=-1.

(3) e(¢|7rl(Mi) |3Mi)

By 5.1(ii) this equality implies that either d>(1ll(Mi)) is solvable
and is generated by nontrivial elliptic elements or there exists an
orientation-preserving transverse section fi over Mi such that
fiBM. is a sufficiently s~ " special interior section.

1We eventually prove that the rirsiu ~ssibility (when ¢(ﬂl(Mi))
is solvable) cannot occur if e(¢) = x(M). However, for the moment,
let us just be content to say that the first possibility does not
generically occur. This follows immediately from the genericity
results 3.19, since, for example, a generic ¢ is injective whereby
¢(111Mi) is free and hence not solvable. Thus, after perturbing ¢,
Theorem 5.1 guarantees the existence of a transverse section

fi: Mi — B Furthermore, the perturbation may be chosen as

ol -

small as desired.

6.3 The next step, still assuming ¢ generic, involves using 5.1
to glue the transverse sections f‘i together to give a global section

f: M— E,. To this end we must choose, for each A C BMi a

]
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¢(A)-invariant disc, horodisc, or half-plane Q‘A such that the fi
may be chosen so that a collar neighborhood of A in Mi develops
under fi to the complement X—QA. By 5.1(iii) as long as Q‘A’ Q‘B
and QC are pairwise disjoint for AUBUC = BMi, there exists such
a transverse section. Since a given A CV 1lies on at most two Mi’
we may consistently choose the smaller Q,, except when ¢(4A) is
hyperbolic (Fig. 6.3). In that case 5.1(iii) tells us that there
exists an fi such that f‘i(A) is geodesic. Therefore there exists
a special interior section over V which extends to a transverse
section f‘i over each Mi and maps a collar neighborhood of any AC BMi
to the complement of a ¢(A)-invariant disc, horodisc, or half-plane.
Choose such a special ideal section f: V — E¢ v then 5.1
implies that f extends to a section f: M — E¢ such that f M

o]

is transverse and orientation-preserving.

i

6.4 Since the section f of E, has the property that it is trans—

¢
verse over each Mi’ its worst singularities are folds
along subsets of V. However since over each Mi the section is

orientation-preserving, the section must actually be transverse over

V as well (Proposition 1.12). Thus f is transverse.

6.5 So far we have proved that if ¢ € Hom(m,G), e(¢) = x(M),
there exists ¢' arbitrarily near ¢ such tuat E¢, admits an
orientation-preserving transverse section. If Eq) itself does not
adnit & transverse section, then for some i, the group ¢(m (M;))
is solvable; in fact there is some component C of BMi such that

#(C) is elliptic by 5.1(iii). Since ¢' approximates ¢, it
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follows that ¢'(C) is elliptic.
Now there exists some Mj such that C = 1\71i ﬂﬁj. As we have
seen, there is a section f over Mi UMJ. which is transverse. By
construction a developing map for f maps C to a ¢(C)-invariant
circle.: Moreover the respective collar neighborhoods of C in Mi
and Mj are mapped to the exterior of the ¢(C)-invariant circle.
Clearly this means that not both of £ M. and f M. are orientation-
preserving; thus f suffers a fold a.lon; C, a contradiction.

This concludes the proof of Theorem A.

6.6 If M is compact but oM # § a relative version of Theorem A
can be proved by the same methods. Let m = wl(M), ¢ € Hom(T,G) and
0 a special ideal section of E¢ over oM.

Suppose that e(¢;0) = x(M). Decompose M along a closed
1-submanifold into pairs-of-pants Mi' Suppose further for each
component C of oM that ¢(C) € Sym. This insures that there is
an admissible deformation ¢' of ¢ such that ¢'(Trl(Mi)) is not
solvable. (To see this, we may embed M in a closed surface M¥
and ¢ in a representation ¢¥*: 1T1(M*) —> G. The condition
"¢$(C) € Sym for components ¢ C 9M " being open, together with the
density  (3.19) of isomorphisms in Hom(m,G), implies that there is
a sufficiently near ¢' which is injective on 1rl(M) and is deformable
to ¢ along a path ¢, such that ¢,(C) & sym for all C C aM.)

It follows from additivity (4.2) and 5.1 that there exists a
section f: M — E¢, which restricts to a special interior section
over 9M UV and such that over each Mi’ the section f is trans-

verse and preserves orientation. By 1.12, the fact that for adjacent
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Mi and Mj’ the orientations of f Mj_ and f Mj agree implies that
f 1is a transverse section over M. Thus E¢, admits an orientation-
preserving transverse section which restricts to a special interior
section over M.

Let CCV be BMi al SMj for adjacent Mi and Mj' Unless
¢'(C) 1is hyperbolic, a developing map for f maps collar neighbor-
hoods of C in Mi and Mj to the same side of a ¢'(C)-invariant
curve. Hence if f 1 and f ; both preserve orientation, ¢'(C)
must be hyperbolic.

Now we return to ¢. If the perturbation ¢' were necessary,
then by 5.1(iii) for some such C, ¢(C) would be elliptic. Since
elliptic elements are open in G, ¢'(C) is elliptic, in contradiction
to what has just been proved. (Of course for this argument to work,
we must find such a simple closed curve C not homotopic to an
such a curve exists unless M is a pair-of-pants.)

In summary we have proved the following extension of Theorem A

to manifolds-with-boundary:

Theorem 6.6. Let M be a closed surface, not homeomorphic to a
pair-of-pants, x(M) < 0, and let m = TTl(M). Suppose ¢ € Hom(m,G)
and e(¢;0) = x(M) where 0 is a special ideal section. Suppose
that for no simple closed curve C not homotopic to oM, o(c) $ Sym.

Then E admits an orientation-preserving transverse section which

¢
restricts to a special interior section over M. If C is a compo~
nent of dM with ¢(C) hyperbolic, then a developing map for

takes C to an invariant geodesic.
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In general e(¢;0) = x(M) does not imply that ¢ is Fuchsian.
It does, however, if for every component C of M, ¢(C) is
hyperbolic. This may be seen by embedding M in a closed surface Ml

and ¢ in a homomorphism 4, ﬂl(Ml) — G with e(¢l) = X(Ml).

There are many ways of accomplishing this, for example by "doubling" M.

Explicitly, let 2M denote the double of M and J: 2M — 2M
an involution, fixing 8M, with fundamental domain M. Let C be a
component of 9M, and let R, De the reflection in the ¢(C)-invariant
geodesic. Define the holonomy ¢2 of a hyperbolic foliated bundle
over 2M by

¢2|‘"1(M) =0

¢2|nl(JM) = Bgodedy 5

then the hyperbolic foliated bundle ]Z‘(b2 defined over

(int M)UCU{int JM) extends uniquely to a hyperbolic foliated bundle
over 2M. Now E(¢|3Trl(JM);0'3JM) = e(¢;0) = x(M) so e(¢2) =
2e(¢30) = 2x(M) = x(2M). By Theorem A, it follows that ¢,> and
hence ¢ = ¢2I7T1(M)’ is Fuchsian.

If ¢ satisfies the hypotheses of Theorem 6.6 and M' CM is a
compact cornected subsurface such that no component of dM' is
homotopic to 3M, +then we have shown that for each component C of
oM', ¢(C) is hyperbolic. Although ¢ itself may not be Fuchsian

it follows that ¢ is Fuchsian.

wl(M')
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Fig. 6.4. Doubling a hyperbolic structure
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