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Abstract. We introduce the notion of recurrent geodesic rays in
a complete flat Lorentz 3-manifold. We completely classify the
dynamical behavior of geodesics in cyclic quotients, and apply this
classification to more general quotients. In particular we show that
for any pair of closed geodesics γ1, γ2 there exists a unique geodesic
which spirals around γ1 in forward time and γ2 in backwards time.
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1. Introduction

In this paper, we investigate dynamical properties of geodesics in flat
Lorentz 3-manifolds M . We assume M is geodesically complete, that
is,M is the quotient A2,1/Γ of 3-dimensional Minkowski spacetime A2,1
by a discrete group Γ of affine isometries acting properly on A2,1.
The first section develops preliminaries on Minkowski space and its

isometries. Section 3 is devoted to the particular case of cylinders:
quotients of spacetime by a cyclic hyperbolic group 〈γ〉. Such basic
examples already display rich and interesting behavior. By means of a
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〈γ〉-invariant function, we show that recurrent geodesic rays (which are
the images of nonproper maps) must lie in one of two codimension-one
submanifolds. Further, since not every geodesic ray in those submani-
folds is recurrent, we give a characterization (in terms of their directing
vectors) of recurrent geodesic rays in cylinders. The notion of a geo-
desic ray spiralling around a closed geodesic is introduced.
The most interesting examples are Margulis spacetimes, when Γ is a

free purely hyperbolic discrete subgroup of the isometry group of A2,1,
that is a Schottky group. Drumm [2, 3] showed that every noncocom-
pact discrete subgroup of SO(2, 1) admits proper affine deformations.
Nonclosed birecurrent geodesics can only be found when the rank of
the fundamental group is greater than one.
The main results of this paper may also be found in [1].

2. Geometry of Minkowski spacetime

2.1. Minkowski 2+1-Spacetime. Let R2,1 denote a three-dimensional
real vector space equipped with the standard symmetric bilinear form
of signature (2, 1):

B(x, y) = x1y1 + x2y2 − x3y3,

where x = (x1, x2, x3) and y = (y1, y2, y3). A vector v ∈ R2,1 is spacelike
(resp. timelike, lightlike) if B(v, v) > 0 (resp. B(v, v) < 0, B(v, v) = 0).
(Lightlike vectors are also called null.)
Denote by A2,1 the affine space modeled on R2,1: for every p ∈ A2,1,

the tangent space
A2,1p = {q − p : q ∈ A2,1}

is endowed with the bilinear form B(·, ·). Clearly, A2,1
p
∼= R2,1.

Any line in A2,1 can be described as p + Rv, where p ∈ A2,1 and
v ∈ R2,1. Two lines p + Rv, q + Rw are parallel if v = kw for some
k 6= 0. The line p+Rv is called spacelike, timelike or lightlike according
to the causal character of v.
The set of non-spacelike vectors, with the origin removed, has two

connected components. A choice of component is a time orientation
on R2,1. We will adopt the standard time orientation: a non-spacelike
vector v = (v1, v2, v3) is future-pointing if v3 > 0 and past-pointing
otherwise.
The Lorentz-orthogonal plane of v ∈ R2,1 at p is the set of all vectors

based at p which are Lorentz-orthogonal to v:

p+ v⊥ = {q ∈ A2,1 : B(q − p, v) = 0}

= {p+ x : B(x, v) = 0, x ∈ R2,1}.
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2.2. Isometries. An affine isometry of A2,1 is an affine transformation
γ whose linear part preserves the bilinear form B(·, ·). Thus the linear
part of an affine isometry of A2,1 lies in O(2, 1). The isometry group of
A2,1 is denoted Isom(A2,1). The connected component of the identity
of O(2, 1), denoted SO(2, 1)0, consists of those linear isometries which
preserve orientation and time orientation.
An affine isometry is said to be hyperbolic if its linear part is hyper-

bolic: that is, it is an element of SO(2, 1)0 which has three real distinct
eigenvalues.
If g ∈ SO(2, 1)0 is hyperbolic, then its eigenvalues are λ < 1 < λ−1,

for some positive λ ∈ R. The λ- and λ−1-eigendirections are lightlike
and the 1-eigendirection is spacelike.
Let g ∈ SO(2, 1)0 be a hyperbolic isometry with smallest eigenvalue

λ < 1. Set x+(g), x−(g) to be future-pointing eigenvectors of λ−1,
λ, respectively, normalized so that ‖x±(g)‖ = 1, where ‖ · ‖ denotes
Euclidean length.
Choose x0(g) to be the unique spacelike 1-eigenvector, satisfying

B(x0(g), x0(g)) = 1, such that the null frame
{x0(g), x−(g), x+(g)}

is a positively oriented basis. For hyperbolic γ ∈ Isom(A2,1) with linear
part g, set:

{x0(γ), x−(γ), x+(γ)} = {x0(g), x−(g), x+(g)}.

The following facts are well known:

Lemma 2.1. Let γ ∈ Isom(A2,1) be hyperbolic. Then there exists a
line Cγ ⊂ A2,1, parallel to x0(γ), which is invariant under the action
of γ. Moreover, γ acts by translation on Cγ. Furthermore, Cγ is the
unique γ-invariant line if and only if γ acts freely on A2,1.

Proof. Since γ is affine, it acts on N , the space of lines parallel to
x0(γ). Observe that N is isomorphic to the Lorentz-orthogonal plane
x0(γ)⊥, which, in turn, is isomorphic to two-dimensional Minkowski
space. The eigenvalues of the induced action of γ are each different
from 1, therefore this action has a fixed point.
Let Cγ ⊂ A2,1 be the line parallel to x0(γ) corresponding to this fixed

point in N ; clearly, Cγ is invariant under the action of γ: if p ∈ Cγ,

γ(p) = p+ αx0(γ), (1)

where α ∈ R. Any other point q on Cγ can be written as p + tx0(γ),
for some t ∈ R. Since x0(γ) is fixed by γ:

γ(q) = γ(p+ tx0(γ)) = γ(p) + tx0(γ) = q + αx0(γ).
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Thus γ acts by translation on Cγ.
Finally, γ fixes a point p if and only if the line p+Rx0(γ) is pointwise

fixed, so Cγ is the unique γ-invariant line if and only if γ acts freely. ¤

Definition 2.2. For a hyperbolic isometry γ ∈ Isom(A2,1), set α(γ)
to be the parameter α in Equation (1). Then α, a signed measure of
Lorentzian length, is called the Margulis invariant.

This function was introduced by Margulis [4, 5] to show that an
affine group whose linear part is a Schottky group could act properly
discontinuously on A2,1. Since α(γ) is the translation factor along Cγ,
the proof of Lemma 2.1 implies:

Lemma 2.3. Let γ ∈ Isom(A2,1) be a hyperbolic isometry. Then γ acts
freely on A2,1 if and only if α(γ) 6= 0.

¤

2.3. Stable and unstable planes.

Definition 2.4. Let γ ∈ Isom(A2,1) be hyperbolic and let p ∈ Cγ. The
planes

E+γ = p+
〈
x0(γ), x+(γ)

〉

E−γ = p+
〈
x0(γ), x−(γ)

〉
,

are respectively called the weak-unstable plane and the weak-stable
plane of γ.

Note that E+γ = E−γ−1 , E
+
γ ∩ E

−
γ = Cγ, and E

±
γ is γ-invariant.

Consider the orbit of a point q in A2,1, under the action of γ. We
can write

q = p+ A+x+(g) + A−x−(g),

where p ∈ Cγ and A
± ∈ R. Thus for every n,

γn(q) = p+ nα(γ)x0(g) + A+λ−nx+(g) + A−λnx−(g).

If A+ = 0, the orbit converges towards Cγ. When A
+ 6= 0, the sequence

approaches E+, but eventually leaves every compact set intersecting the
weak-unstable plane.

2.4. Geodesics. LetM = A2,1/Γ, where Γ < Isom(A2,1) acts properly
on A2,1. Then M is a complete Lorentz manifold and its fundamental
group is isomorphic to Γ. Let π : A2,1 −→ M denote the quotient
projection.
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A geodesic in M is a nonconstant affine map l : R+ −→M , that is,
the composition π ◦ l̃ where l̃ : R −→ A2,1 is a nonconstant affine map.
The reverse of a geodesic l is the geodesic −l defined by

−l(t) := l(−t).

A geodesic ray in M is a nonconstant affine map l : R+ −→ M , that
is, the composition π ◦ l̃ where l̃ : R+ −→ A2,1 is a nonconstant affine
map. The forward ray of a geodesic l is the restriction of l to R+ and
the backward ray of l is the forward ray of −l.
A geodesic ray l is parallel to a line, vector or ray, if its direction

vector v (defined by l(t) = q + tv) is parallel to the line, vector or ray.
A geodesic l is periodic if for some T > 0, and all t > 0,

l(t+ T ) = l(t).

We will often identify a periodic geodesic with its image, which is an
immersed S1 in M . The cylinder associated to l is the covering space
Ml −→M induced by the equivalence class of l in π1(M, l(0)).
The following conditions are equivalent:

• l is a proper map: for every compact K ⊂M , the inverse image
l−1(K) ⊂ R+ is compact;

• For every increasing sequence tk −→ +∞, the sequence l(tk)
has no accumulation point;

• l is not periodic and the image l(R+ ∪ {0}) is closed.
A geodesic ray l is recurrent if the mapping l : R+ −→ M is not

proper. Equivalently, its image l(R+) has compact closure in M .
For example, a closed geodesic is recurrent.
A geodesic ray r spirals around a periodic geodesic l if for every

neighborhood N of l, there exists T = T (N) > 0 such that r(t) ∈ N
for t > T . In particular, such a geodesic is recurrent.
A geodesic l is birecurrent if both its forward ray and its backward

ray recur. A geodesic l bispirals if both its forward ray and backward
ray spiral around closed geodesics.

3. Cylinders

We now classify geodesics in quotients A2,1/〈γ〉, where γ is a hy-
perbolic affine isometry of A2,1. the cyclic group it generates. In this
section M will denote the quotient A2,1/〈γ〉.
The stable surface M− = π(E−γ ) and the unstable surface M+ =

π(E+γ ) are each diffeomorphic to an annulus to which M deformation
retracts. Similarly M+,M− each deformation retract to the core geo-
desic M 0 =M+ ∩M−, which is the unique closed geodesic in M .
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Lemma 3.1. A recurrent geodesic ray R+ −→M lies in either M+ or
M−.

Proof. Let p be an arbitrary point on the invariant line Cγ. For every
point q ∈ A2,1, write

q = p+ A0x0(γ) + A−x−(γ) + A+x+(γ)

where A−, A+, A0 ∈ R and {x−(γ)), x+(γ), x0(γ)} is the null frame as-
sociated to γ. Then

γ(q) = p+ (A0 + α(γ))x0(γ) + λA−x−(γ) + λ−1A+x+(γ) + .

and

B(γ(q)− p, x±(γ)) = B(γ(q − p), x±(γ)) = λ±1B(q − p, x±(γ)).

Thus the quadratic function f̃ : A2,1 −→ R given by

f̃(q) = B(q − p, x−(γ))B(q − p, x+(γ)) (2)

is independent of the choice of q ∈ Cγ, and is 〈γ〉-invariant. Define

f :M −→ R as f := π ◦ f̃ .
Suppose that l : R+ −→M is a recurrent geodesic ray. Write l = π◦ l̃

where

l̃ : R+ −→ A2,1 (3)

t 7−→ q + tv

is the corresponding geodesic ray in A2,1. Then

(f ◦ l)(t) = (f̃ ◦ l̃)(t) = a+ bt+ ct2 (4)

where p is an arbitrary point on Cγ and

a = f(l(0))

b = B(q − p, x+(γ))B(v, x−(γ)) + B(q − p, x−(γ))B(v, x+(γ))
c = B(v, x+(γ))B(v, x−(γ)).

Unless c = 0, the function f ◦ l : R+ → R in (4) is quadratic and tends
to ±∞ as t −→ +∞. If c = 0 but b 6= 0, then f ◦ l is a nonconstant
affine function, also tending to ±∞ as t −→ +∞. In either case f ◦ l
defines a proper map R+ −→ R, contradicting recurrence of l. Thus
f ◦ l is constant, that is b = c = 0.
Since c = 0, at least one of B(v, x+(γ)),B(v, x−(γ)) must vanish.

Thus l̃ is parallel to either E− or E+ respectively. If it is parallel to
both, then v is parallel to x0(γ). We postpone the discussion of this
case to the end of the proof.
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Suppose that l̃ is parallel to E+, but not E−. Thus B(v, x+(γ)) = 0
but B(v, x−(γ)) 6= 0. Then b = 0 implies that B(q − p, x+(γ)) = 0.

Therefore l̃ : R+ −→ E+.
In the same fashion, if l̃ is parallel to E−, but not E+, then l̃(R+) ⊂

E−.
Finally, suppose that l̃ is parallel to x0(γ), but lies on neither E− nor

E+. Let

U = A2,1 − (E− ∪ E+).

Consider the quotient space N of A2,1 by the one-dimensional foliation
parallel to Cγ. The restriction of the quotient map Π : A2,1 −→ N to U
is a 〈γ〉-equivariant mapping with respect to a proper action of 〈γ〉 ∼= Z
on U ′ = Π(U). Specifically, U ′ is the complement of two intersecting
lines in the planeN and 〈γ〉 acts by hyperbolic linear maps with discrete
orbits.
Thus the composition

〈γ〉 × {q} −→A2,1 Π
−→ N

(γn, q) 7−→γnq

is proper. Consequently the mapping

〈γ〉 × R+ −→ A2,1

(γn, t) 7−→ γn(q + tv)

is proper. Therefore l : R+ −→M is proper, a contradiction. ¤

Lemma 3.2. Suppose l is a geodesic ray as defined in (3). Suppose
one of the following conditions hold:

(i) l ⊂M+ and

B(α(γ)x0(γ), v) > 0,
(ii) l ⊂M− and

B(α(γ)x0(γ), v) < 0.
Then for every p ∈ Cγ, π(p) ⊂M 0 is an accumulation point of l.

Proof. Write l = π ◦ l̃ as above. We first show (i); the proof of (ii)

is completely analogous. Suppose then that l ⊂ M+, so that l̃ lies in

the weak-unstable plane E+. Let Ṽ be a neighborhood of p such that

Ṽ ∩ E+ is bounded by p± k0x0(γ)± k+x+(γ). Then:

γnṼ ∩ E+ = p+ (α(γ)± k0)x0(γ)± k+λ−nx+(γ).

Thus the γn-translates of Ṽ are dilated in the x+(γ)-direction at the

rate of λ−n, whereas the x+(γ)-coefficient of l̃ grows linearly. Thus for
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large enough n, every γn(Ṽ ) intersects l̃ and p is an accumulation point
of l. ¤

The restriction of γ to E+ is represented by the affine map

γ+ :

[
x
y

]
7−→

[
1 0
0 λ−1

] [
x
y

]
+

[
α
0

]

where 0 < λ < 1 and α 6= 0.
Apply the coordinate change

[
x
y

]
−→

[
x
η

]

where

η(x, y) = λx/αy

y(x, η) = λ−x/αη.

The action of 〈γ〉 in (x, η)-coordinates is given by horizontal translation
by nα:

(γ+)n :

[
x
η

]
7−→

[
x+ nα

η

]
.

This defines a γ-invariant diffeomorphism of the stable surface

ξ :M+ −→ R/αZ× R
[
x
y

]
7−→

[
x mod αZ

η(x, y)

]
.

A geodesic in the unstable plane falls into one of two categories, de-
pending on whether it is parallel to the eigenvector x+(γ) or not. If the
geodesic is parallel to x+(γ), then we call it a vertical geodesic.

Theorem 3.3. A geodesic ray l (as defined by (3)) in M is recurrent
if and only if one of the following holds:

(i) l ⊂M+ and B(α(γ)x0(γ), v) > 0
(ii) l ⊂M− and B(α(γ)x0(γ), v) < 0 .

Proof. We shall show (i). Since in (x, η)-coordinates, γ acts by trans-
lation along the x-axis, a geodesic ray is proper if and only if its η-
coordinate is unbounded. Let β : R+ −→ M+ be a geodesic in the
unstable surface and choose a lift β̃ : R+ −→ E−.
If β̃ is vertical, it admits the following representation:

β̃(t) =

[
x0
y0

]
+ t

[
0
c

]
.
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In the (x, η)-coordinate system:

ξ ◦ β̃(t) =

[
x0 mod αZ

η0 + c′t

]

where

η0 = λx0/αy0

c′ = λx0/αc.

As t −→ +∞, the η-coordinate grows without bound and thus the
geodesic ray ξ ◦ β̃(t) does not recur.
If β is not vertical, then

β̃(t) =

[
x0
y0

]
+ t

[
1
m

]

where m ∈ R is the slope of β̃. Then

η ◦ β̃(t) = eµt
(
y′0 + tm′

)

where

y′0 = λx0/αy0

m′ = λx0/αm

µ = log(λ)/α

The η-coordinate is bounded exactly when µ < 0, that is, when α < 0
(since 0 < λ < 1).
Otherwise eµt > 1 and β does not recur. ¤

(This theorem follows from a similar result in [1], using the fact that
the weak-stable plane of a hyperbolic isometry is the weak-unstable
plane of its inverse.)
Figure 1 illustrates the proof of the theorem, by showing the orbit of

a recurrent geodesic in (x, η)-coordinates. The geodesic β ⊂ K+ may
cross the closed geodesic M 0. In that case β crosses M 0 transversely,
and then spirals back towards M 0, intersecting itself infinitely many
times.
If m = 0, then β never intersects itself, but approaches M 0 asymp-

totically from one side. (See Figure 2.)

Corollary 3.4. The only birecurrent geodesic in M is the closed geo-
desic M 0.
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Figure 1. The orbit of a recurrent geodesic on the un-
stable surface in (x, η)-coordinates: the horizontal line
is M0, which all recurrent geodesics in M+ approach
asymptotically.

Figure 2. The behavior of a ray spiralling towards a
closed geodesic.

4. Recurrent geodesics in flat Lorentz 3-manifolds

Let M be a Margulis spacetime; recall that its fundamental group
is purely hyperbolic. Let l1, l2 be (oriented) closed geodesics in M .
Then there exists a birecurrent geodesic l whose forward ray spirals
towards l1 and whose backward ray spirals towards l2. Such geodesics
correspond to equivalence classes of arcs a whose endpoints lie on l1



RECURRENT GEODESICS 11

and l2, under the equivalence relation defined by homotopies keeping
the endpoints on l1 and l2 respectively (a homotopy relative to l1 and
l2).
Choose a basepoint x ∈M and the corresponding universal covering

space M̃ −→M and developing map dev : M̃ −→ A2,1. Join l1, l2 to x
by arcs a1, a2 respectively such that the composition a1a

−1
2 is homotopic

to a by a homotopy relative to l1 and l2. Let γi be the holonomy of
the based loops corresponding to li, i = 1, 2. Thus li lifts to Cγi in the
universal cover.
For γ ∈ Γ, denote its associated stable and unstable surfaces in M

by M±
γ . Every geodesic in M is the projection of a geodesic in the

cylinder MCγ , since it is a covering space. In particular, Theorem 3.3
implies:

Proposition 4.1. Let l be a geodesic which lies in M+
γi
. Then the

forward ray of l spirals around li.

Theorem 4.2. If a geodesic l ⊂ M lies in either M+
γ or M

−
γ , where

γ ∈ Γ, then l is recurrent.

¤

We obtain birecurrent geodesics in the following manner. Consider:

l =M+
γ1
∩M+

γ2
.

Write its inverse image l̃ in A2,1 as l̃(t) = p+ tv. Then:

B(v, α(γ1)x0(γ1))B(v, α(γ2)x0(γ2)) < 0.

Each condition of Theorem 3.3 applies, one in each direction of l̃, im-
plying that l is birecurrent.
We obtain a similar result for the intersection of stable surfaces, since

E−γ = E+γ−1 .
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