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Abstract
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1 Motivic measures

Let k be an arbitrary base field and Var(k) the category of varieties, i.e. reduced sepa-
rated k -schemes of finite type. The Grothendieck ring of varieties K0Var(k) is defined
as the quotient of the free abelian group on the set of isomorphism classes of varieties
[X] by the relations [X] = [Y ] + [X\Y ] , where Y is a closed subvariety of X . The
multiplication is induced by the product of varieties. When k is of positive characteristic,
one needs also to impose the relation [X] = [Y ] for every surjective radicial morphism
X → Y ; see Mustaţǎ [19, Page 78]. Let L := [A1] .

The structure of the Grothendieck ring of varieties is quite mysterious; see Poonen [21]
for instance. In order to capture some of its flavor several motivic measures, i.e. ring
homomorphisms µ : K0Var(k)→ R , have been built. Here are some classical examples:

(i) When k is finite, the assignment X 7→ #X(k) gives rise to the counting measure
µ# : Var(k)→ Z ; see [19, Ex. 7.7].

(ii) When k = C , the assignment X 7→ χc(X) :=
∑

i(−1)idimQH
i
c(X

an,Q) gives rise
to the Euler characteristic measure χc : Var(k)→ Z ; see [19, Ex. 7.8].

(iii) When k is of characteristic zero, the assignment X 7→ HX(u, v) :=∑
p,q≥0 h

p,q(X)upvq , with X smooth projective, gives rise to the Hodge charac-
teristic measure µH : Var(k)→ Z[u, v] ; see [14, §4.1].
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(iv) When k is of characteristic zero, the assignment X 7→ PX(u) :=∑
i dimkH

i
dR(X)un , with X smooth projective, gives rise to the Poincaré char-

acteristic measure µP : Var(k)→ Z[u] ; see [14, §4.1].

Other motivic measures include the Larsen-Lunts “exotic” measure µLL (see [13]); the
Albanese measure µAlb with values in the semigroup ring of isogeny classes of abelian vari-
eties (see [19, Thm. 7.21]); the Gillet-Soulé measure µGS with values in the Grothendieck
ring K0(Chow(k)Q) of Chow motives (see [6]); and the measure µNC with values in the
Grothendieck ring of noncommutative motives (see [23]). There exist several relations
between the above motivic measures. For example, χc, µH, µP, µNC factor through µGS .

2 Kapranov’s zeta function

As explained in [19, Prop. 7.27], in the construction of the Grothendieck ring of varieties we
can restrict ourselves to quasi-projective varieties. Given a motivic measure µ , Kapranov
introduced in [11] the associated zeta function

ζµ(X; t) :=

∞∑
n=0

µ([Sn(X)])tn ∈ (1 + tRJtK) , (1)

where Sn(X) stands for the nth symmetric product of the quasi-projective variety X .
In the particular case of the counting measure, (1) agrees with the classical Weil zeta
function. Here are some other computations (with X smooth projective)

ζχc(X; t) = (1− t)−χc(X) ζP(X; t) =
∏
r≥0(

1
1−urt)

(−1)br ζAlb(X; t) =
[Alb(X)]t

1− t
,

where br := dimCH
r
dR(X) and Alb(X) is the Albanese variety of X ; see [22, §3].

3 Big Witt ring

Given a commutative ring R , recall from Bloch [2, Page 192] the construction of the
big Witt ring W (R) . As an additive group, W (R) is equal to (1 + tRJtK,×) . Let us
write +W for the addition in W (R) and 1 = 1 + 0t + · · · for the zero element. The
multiplication ∗ in W (R) is uniquely determined by the following requirements:

(i) The equality (1− at)−1 ∗ (1− bt)−1 = (1− abt)−1 holds for every a, b ∈ R ;

(ii) The assignment R 7→W (R) is an endofunctor of commutative rings.

The unit element is (1− t)−1 . We have also a (multiplicative) Teichmüller map

R −→W (R) a 7→ [a] := (1− at)−1

such that g(t) ∗ [a] = g(at) for every a ∈ R and g(t) ∈W (R) ; see [2, Page 193].
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Definition 3.1. Elements of the form p(t) −W q(t) ∈ W (R) , with p(t), q(t) ∈ R[t] and
p(0) = q(0) = 1 ∈ R , are called rational functions.

Let Wrat(R) be the subset of rational elements. As proved by Naumann in [20, Prop. 6],
Wrat(R) is a subring of W (R) . Moreover, R 7→ Wrat(R) is an endofunctor of commu-
tative rings. Recall also the construction of the commutative ring Λ(R) . As an additive
group, Λ(R) is equal to W (R) . The multiplication is uniquely determined by the re-
quirement that the involution group isomorphism ι : Λ(R) → W (R), g(t) 7→ g(−t)−1 , is
a ring isomorphism. The unit element is 1 + t .

4 Exponentiation

Let µ be a motivic measure. As explained by Mustaţǎ in [19, Prop. 7.28], the assignment
X 7→ ζµ(X; t) gives rise to a group homomorphism

ζµ(−; t) : K0Var(k) −→W (R) . (2)

Definition 4.1. ([22, §3]) A motivic measure µ is (uniquely) exponentiable1 if the above
group homomorphism (2) is a ring homomorphism.

Corollary 4.2. Given an exponentiable measure, the following holds:

(i) The ring homomorphism (2) is a new motivic measure;

(ii) Any motivic measure which factors through µ is also exponentiable.

This class of motivic measures is well-behaved with respect with rationality:

Proposition 4.3. Let µ be an exponentiable motivic measure. If ζµ(X; t) and ζµ(Y ; t)
are rational functions, then ζµ(X × Y ; t) is also a rational function.

Proof. It follows automatically from the fact that Wrat(R) is a subring of W (R) .

As proved by Naumann in [20, Prop. 8] (see also [22, Thm. 2.1]), the counting measure
µ# is exponentiable. On the other hand, Larsen-Lunts “exotic” measure µLL is not
exponentiable! This would imply, in particular, that

ζµLL(C1 × C2; t) = ζµLL(C1; t) ∗ ζµLL(C2; t) (3)

for any two smooth projective curves C1 and C2 . As proved by Kapranov in [11] (see
also [19, Thm. 7.33]), ζµ(C; t) is a rational function for every smooth projective curve C

1Note that Kapranov’s zeta function is similar to the exponential function ex =
∑∞

n=0
xn

n!
. The product

Xn corresponds to xn and the symmetric product Sn(X) corresponds to xn

n!
since n! is the size of the

symmetric group on n letters.
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and motivic measure µ . Using Proposition 4.3, this hence implies that the right-hand
side of (3) is also a rational function. On the other hand, as proved by Larsen-Lunts in
[13, Thm. 7.6], the left-hand side of (3) is not a rational function whenever C1 and C2

have positive genus. We hence obtain a contradiction.

At this point, it is natural to ask which motivic measures are exponentiable? We now
provide a general answer to this question using the notion of λ -ring. Recall that a λ -ring
R consists of a commutative ring equipped with a sequence of maps λn : R→ R,n ≥ 0 ,
such that λ0(a) = 1 , λ1(a) = a , and λn(a+ b) =

∑
i+j=n λ

i(a)λj(b) for every a, b ∈ R .
In other words, the map

λt : R −→ Λ(R) a 7→ λt(a) :=
∑
n

λn(a)tn

is a group homomorphism. Equivalently, the composed map

σt : R
λt−→ Λ(R)

ι−→W (R) a 7→ σt(a) =
∑
n

σn(a)tn := λ−t(a)−1 (4)

is a group homomorphism. This homomorphism is called the opposite λ -structure.

Proposition 4.4. Let µ be a motivic measure and R a λ -ring such that:

(i) The above group homomorphism (4) is a ring homomorphism;

(ii) We have µ([Sn(X)]) = σn(µ([X])) for every quasi-projective variety X .

Under these conditions, the motivic measure µ is exponentiable.

Proof. Consider the following composed ring homomorphism

K0Var(k)
µ−→ R

σt−→W (R) . (5)

The equalities µ([Sn(X)]) = σn(µ([X])) allow us to conclude that (5) agrees with the
group homomorphism ζµ(−; t) . This achieves the proof.

Remark 4.5. Let C be a Q -linear additive idempotent complete symmetric monoidal
category. As proved by Heinloth in [9, Lem. 4.1], the exterior powers give rise to a spe-
cial λ -structure on the Grothendieck ring K0(C) , with opposite λ -structure given by the
symmetric powers Symn . In this case, (4) is a ring homomorphism.

Remark 4.6. Let T ′ be a Q -linear thick triangulated monoidal subcategory of compact
objects in the homotopy category T = Ho(C) of a simplicial symmetric monoidal model
category C . As proved by Guletskii in [8, Thm. 1], the exterior powers give rise to a
special λ -structure on K0(T ′) , with opposite λ -structure given by the symmetric powers
Symn . In this case, (4) is a ring homomorphism.
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Remark 4.7. Assume that k is of characteristic zero. Thanks to Heinloth’s presentation
of the Grothendieck ring of varieties (see [10, Thm. 3.1]), it suffices to verify the equality
µ([Sn(X)]) = σn(µ([X])) for every smooth projective variety X .

As an application of the above Proposition 4.4, we obtain the following result:

Proposition 4.8. The Gillet-Soulé motivic measure µGS is exponentiable.

Proof. Recall from [6] that µGS is induced by the symmetric monoidal functor

h : SmProj(k) −→ Chow(k)Q (6)

from the category of smooth projective varieties to the category of Chow motives. Since
the latter category is Q -linear, additive, idempotent complete, and symmetric monoidal,
Remark 4.5 implies that the Grothendieck ring K0(Chow(k)Q) satisfies condition (i) of
Proposition 4.4. As proved by del Baño-Aznar in [4, Cor. 2.4], we have h(Sn(X)) '
Symnh(X) for every smooth projective variety X . Using Remark 4.7, this hence implies
that condition (ii) of Proposition 4.4 is also satisfied.

Remark 4.9. Thanks to Corollary 4.2(ii), all the motivic measures which factor through
µGS (e.g. χc, µH, µP, µNC ) are also exponentiable.

5 Application I: rationality of zeta functions

By combining Propositions 4.3 and 4.8, we obtain the following result:

Corollary 5.1. Let X,Y be two varieties. If ζµGS(X; t) and ζµGS(Y ; t) are rational
functions, then ζµGS(X × Y ; t) is also a rational function.

Remark 5.2. Corollary 5.1 was independently obtained by Heinloth [9, Prop. 6.1] in
the particular case of smooth projective varieties and under the extra assumption that
ζµGS(X; t) and ζµGS(Y ; t) satisfy a certain functional equation.

Example 5.3. Let X,Y be smooth projective varieties (e.g. abelian varieties) for which
h(X), h(Y ) are Kimura-finite; see [12, §3]. Consider the ring homomorphism

σt : K0(Chow(k)Q) −→W (K0(Chow(k)Q)) . (7)

As proved by André in [1, Prop. 4.6], σt([h(X)]) and σt([h(Y )]) are rational functions.
Since ζµGS(−; t) agrees with the composition of µGS with (7) , these latter functions are
equal to ζµGS(X; t) and ζµGS(Y ; t) , respectively. Using Corollary 5.1, we hence conclude
that ζµGS(X × Y ; t) is also a rational function.
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When k is of characteristic zero, Voevodsky constructed in [24, §2.2] a functor

M c : Var(k)p −→ DMgm(k)Q (8)

from the category of varieties and proper morphisms to the triangulated category of ge-
ometric motives. As proved in [24, Prop. 4.1.7], the functor (8) is symmetric monoidal.
Moreover, given a variety X and a closed subvariety Y ⊂ X , we have a triangle

M c(Y ) −→M c(X) −→M c(X\Y ) −→M c(Y )[1]

in DMgm(k)Q ; see [24, Prop. 4.1.5]. Consequently, we obtain the motivic measure:

K0Var(k) −→ K0(DMgm(k)Q) [X] 7→ [M c(X)] . (9)

Proposition 5.4. The above motivic measure (9) agrees with µGS .

Proof. As proved by Voevodsky in [24, Prop. 2.1.4], there exists a Q -linear additive fully-
faithful symmetric monoidal functor

Chow(k)Q −→ DMgm(k)Q (10)

such that (10) ◦ h(X) 'M c(X) for every smooth projective variety. Thanks to the work
of Bondarko [3, Cor. 6.4.3 and Rk. 6.4.4], the above functor (10) induces a ring isomor-
phism K0(Chow(k)Q) ' K0(DMgm(k)Q) . Therefore, the proof follows from Heinloth’s
presentation of the Grothendieck ring of varieties in terms of smooth projective varieties;
see [10, Thm. 3.1].

Thanks to Proposition 5.4, Example 5.3 admits the following generalization:

Example 5.5. Let X,Y be varieties for which M c(X),M c(Y ) are Kimura-finite. Sim-
ilarly to Example 5.3, ζµGS(X × Y ; t) is then a rational function.

In the above Examples 5.3 and 5.5, the rationality of ζµGS(X × Y ; t) can alternatively
be deduced from the stability of Kimura-finiteness under tensor products; see [12, §5].
Thanks to the work of O’Sullivan-Mazza [18, §5.1] and Guletskii [8], the above Corollary
5.1 can also be applied to non Kimura-finite situations.

Proposition 5.6. Let X0 be a connected smooth projective surface, over an algebraically
closed field k0 , with geometric genus pg > 0 and irregularity q = 0 . Let k := k0(X0)
the function field of X0 , x0 a k0 -point of X0 , z the zero-cycle which is the pull-back of
the cycle ∆(X0)− (x0 ×X) along X0 × k → X0 ×X0 , Z the support of z , and finally
U the complement of Z in X = X0 × k . Under these notations, the following holds:

(i) The geometric motive M c(U) is not Kimura-finite;

(ii) Kapranov’s zeta function ζµGS(U ; t) is rational.
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Proof. As proved by O’Sullivan-Mazza in [18, Thm. 5.18], M(U) is not Kimura-finite.
Since the surface U is smooth, we have M c(U) ' M(U)∨(2)[4] where (−)∨ stands for
the dual; see [24, Thm. 4.3.7]. Using the fact that −(2)[4] is an auto-equivalence and that
M(U)∨ is Kimura-finite if and only if M(U) is Kimura-finite (see Deligne [5, Prop. 1.18]),
we conclude that M c(U) also is not Kimura-finite.

We now prove item (ii). As proved by Guletskii in [8, §3], the category DMgm(k)Q
satisfies the conditions of Remark 4.6. Consequently, we have a ring homomorphism

σt : K0(DMgm(k)Q) −→W (K0(DMgm(k)Q)) . (11)

As explained by Guletskii in [8, Ex. 5], σt([M(U)]) is a rational function. Equivalently,
σt([M(U)])∨ (obtained from σt([M(U)]) by applying (−)∨ to each term) is a rational
function. Thanks to Lemma 5.7 below, we hence conclude that σt([M

c(U)]) is also a
rational function. The proof follows now from the fact that ζµGS(−; t) agrees with the
composition of the ring homomorphisms (9) and (11).

Lemma 5.7. Given a smooth variety X of dimension d , we have the equality

σt([M
c(X)]) = σµGS(L)dt

([M(X)])∨ .

Proof. The proof is given by the following identifications

σt([M
c(X)]) = σt([M(X)∨(d)[2d]]) (12)

= σt([M(X)∨]µGS(Ld))

= σt([M(X)∨]) ∗ ζµGS(Ld; t)

= σt([M(X)])∨ ∗ ζµGS(Ld; t) (13)

= σµGS(L)dt
([M(X)])∨ , (14)

where (12) follows from [24, Thm. 4.3.7], (13) from [5, Prop. 1.18], and (14) from Remark
6.2 below with µ := µGS and g(t) := σt([M(X)])∨ .

Example 5.8. Let U1, U2 be two surfaces as in Proposition 5.6. Thanks to the above
Corollary 5.1, we hence conclude that ζµGS(U1 × U2; t) is a rational function. Note that
the geometric motive M c(U1 × U2) is not Kimura-finite! Choose a rational point x1 of
U1 and consider the associated morphism x1 × id : U2 → U1 × U2 . Using the projection
U1×U2 → U2 we observe that M(U2) is a direct summand of M(U1×U2) . As explained
in the proof of Proposition 5.6, M c(U2) (resp. M c(U1 × U2) ) is Kimura-finite if and
only if M(U2) (resp. M(U1×U2) ) is Kimura-finite. Consequently, if M c(U1×U2) were
Kimura-finite, M c(U2) also would be Kimura-finite. This contradicts Proposition 5.6.
Finally, note that self-products U1 × · · · × U1 are examples of arbitrarily high dimension.

Remark 5.9. Thanks to Corollary 4.2(ii), the above Examples 5.3, 5.5, and 5.8, hold
mutatis mutandis for any motivic measure which factors through µGS .
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6 Application II: Totaro’s result

The following result plays a central role in the study of the zeta functions.

Proposition 6.1 (Totaro). The equality ζµ(X × An; t) = ζµ(X;µ(L)nt) holds for every
variety X and motivic measure µ .

Its proof (see [7, Lem. 4.4][19, Prop. 7.32]) is non-trivial and based on a stratification
of the symmetric products of X × An . In all the cases where the motivic measure µ is
exponentiable, this result admits the following elementary proof:

Proof. Since [X × An] = [X][An] in the Grothendieck ring of varieties and the motivic
measure µ is exponentiable, the proof is given by the identifications

ζµ(X × An; t) = ζµ(X; t) ∗ ζµ(Ln; t)

= ζµ(X; t) ∗ ζµ(L; t)∗n

= ζµ(X; t) ∗ (1 + µ(L)t+ µ(L)t2 + · · · )∗n (15)

= ζµ(X; t) ∗ ((1− µ(L)t)−1)∗n

= ζµ(X; t) ∗ [µ(L)]∗n

= ζµ(X; t) ∗ [µ(L)n]

= ζµ(X;µ(L)nt) ,

where (15) follows from [19, Ex. 7.23] and [µ(L)] stands for the image of µ(L) ∈ R under
the multiplicative Teichmüller map R→W (R) .

Remark 6.2. The above proof shows more generally that g(t) ∗ ζµ(Ln; t) = g(µ(L)nt) for
every g(t) ∈W (R) and exponentiable motivic measure µ .

Remark 6.3. (Fiber bundles) Given a fiber bundle E → X of rank n , we have [E] =
[X][An] in the Grothendieck ring of varieties; see [19, Prop. 7.4]. Therefore, the above
proof, with X replaced by E , shows that ζµ(E; t) = ζµ(X;µ(L)nt) .

Remark 6.4. (Pn -bundles) Given a Pn -bundle E → X , we have [E] = [X][Pn] in
the Grothendieck ring of varieties; see [19, Ex. 7.5]. Therefore, by combining the equality
[Pn] = 1 + L + · · ·+ Ln with the above proof, we conclude that

ζµ(E; t) = ζµ(X; t) +W ζµ(X;µ(L)t) +W · · ·+W ζµ(X;µ(L)nt) .

7 G -varieties

Let G be a finite group and VarG(k) the category of G -varieties, i.e. varieties X
equipped with a G -action λ : G × X → X such that every orbit is contained in an
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affine open set. The Grothendieck ring of G -varieties K0VarG(k) is defined as the quo-
tient of the free abelian group on the set of isomorphism classes of G -varieties [X,λ] by
the relations [X,λ] = [Y, τ ]+ [X\Y, λ] , where (Y, τ) is a closed G -invariant subvariety of
(X,λ) . The multiplication is induced by the product of varieties. A motivic measure is a
ring homomorphism µG : K0VarG(k)→ R . As mentioned in [15, §5], the above measures
χc, µH, µP admit G -extensions χGc , µ

G
H, µ

G
P .

Notation 7.1. Let ChowG(k)Q be the category of functors from the group G (considered
as a category with a single object) to the category Chow(k)Q .

Note that ChowG(k)Q is still a Q -linear additive idempotent complete symmetric
monoidal category and that (6) extends to a symmetric monoidal functor

hG : SmProjG(k) −→ ChowG(k)Q . (16)

Note also that the nth symmetric product of a G -variety is still a G -variety. Therefore,
the notion of exponentiation makes sense in this generality. Gillet-Soulé’s motivic measure
µGS admits the following G -extension:

Proposition 7.2. The above functor (16) gives rise to an exponentiable motivic measure:

µGGS : K0VarG(k) −→ K0(ChowG(k)Q) .

Proof. Given a smooth projective variety X and a closed subvariety Y , let us denote by
BlY (X) the blow-up of X along Y and by E the associated exceptional divisor. As
proved by Manin in [16, §9], we have a natural isomorphism h(BlY (X))⊕ h(Y ) ' h(X)⊕
h(E) in Chow(k)Q . Since this isomorphism is natural, it also holds in ChowG(k)Q when
X is replaced by a smooth projective G -variety (X,λ) and Y by a closed G -invariant
subvariety (Y, τ) . Therefore, thanks to Heinloth’s presentation of the Grothendieck ring of
G -varieties in terms of smooth projective G -varieties (see [10, Lem. 7.1]), the assignment
X 7→ hG(X) gives rise to a (unique) motivic measure µGGS . The proof of Proposition 4.8,
with (6) replaced by (16), shows that this motivic measure µGGS is exponentiable.

Remark 7.3. Similarly to Remark 4.9, all the motivic measures which factor through µGGS

(e.g. χGc , µ
G
H, µ

G
P ) are also exponentiable.

Proposition 4.3 admits the following G -extension:

Proposition 7.4. Let µG be an exponentiable motivic measure and (X,λ), (Y, τ) two
G -varieties. If ζµG((X,λ); t) and ζµG((Y, τ); t) are rational functions, then ζµG((X ×
Y, λ× τ); t) is also a rational function.

Example 7.5. Assume that the group G (of order r ) is abelian and that the base field
k is algebraically closed of characteristic zero or of positive characteristic p with p - r .
Under these assumptions, Mazur proved in [17, Thm. 1.1] that ζµG((C, λ); t) is a rational

function for every smooth projective G -curve (C, λ) and motivic measure µG . Thanks
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to Proposition 7.4, we hence conclude that ζµG((C1 × C2, λ1 × λ2); t) is still a rational

function for every exponentiable motivic measure µG and for any two smooth projective
G -curves (C1, λ1) and (C2, λ2) .

Finally, Totaro’s result admits the following G -extension:

Proposition 7.6. Let µG be an exponentiable motivic measure and (X.λ), (An, τ) two
G -varieties. When G (of order r ) is abelian and k is algebraically closed, Kapranov’s
zeta function ζµG((X × An, λ× τ); t) agrees with

ζµG
(
(X,λ);µG(Sr(An, τ))t

)
+W ζµG((X,λ); t) ∗

(
r−1∑
l=0

n∏
i=1

µG([A1, τi] · · · [A1, τ li ])t
l

)
,

where [An, τ ] = [A1, τ1] · · · [A1, τn] .

Proof. Since [X × An, λ× τ ] = [X,λ][An, τ ] in the Grothendieck ring of G -varieties and
the motivic measure µG is exponentiable, we have the equality

ζµG((X × An, λ× τ); t) = ζµG((X,λ); t) ∗ ζµG((An, τ); t) .

Moreover, as explained in [17, Page 1338], we have the following computation

ζµG((An, τ); t) =
1

1− µG(Sr(An, τ))t

(
r−1∑
l=0

n∏
i=1

µG([A1, τi] · · · [A1, τ li ])t
l

)
.

Therefore, since (1−µG(Sr(An, τ))t)−1 is the Teichmüller class [µG(Sr(An, τ))] , the proof
follows from the combination of the above equalities.

Acknowledgments: The authors are grateful to the anonymous referee for his/her com-
ments which improved the exposition of this note.
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