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Abstract

In this note we establish some properties of exponentiable motivic measures. As a first
application, we show that the rationality of Kapranov’s zeta function is stable under products.
As a second application, we give an elementary proof of a special case of a result of Totaro.
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1 Motivic measures

Let k be an arbitrary base field and Var(k) the category of varieties, i.e. reduced sepa-
rated k-schemes of finite type. The Grothendieck ring of varieties KgVar(k) is defined
as the quotient of the free abelian group on the set of isomorphism classes of varieties
[X] by the relations [X]| = [Y] 4 [X\Y], where Y is a closed subvariety of X . The
multiplication is induced by the product of varieties. When k& is of positive characteristic,
one needs also to impose the relation [X] = [Y] for every surjective radicial morphism
X — Y ; see Mustata [19, Page 78]. Let L := [Al].

The structure of the Grothendieck ring of varieties is quite mysterious; see Poonen [21]

for instance. In order to capture some of its flavor several motivic measures, i.e. ring
homomorphisms p : KgVar(k) — R, have been built. Here are some classical examples:

(i) When k is finite, the assignment X +— #X (k) gives rise to the counting measure
py : Var(k) — Z; see [19, Ex. 7.7].

(ii) When k = C, the assignment X — x.(X) := Y ;(—1)'dimgH. (X, Q) gives rise

to the Euler characteristic measure x.: Var(k) — Z; see [19, Ex. 7.8].

(iii) When k£ is of characteristic zero, the assignment X +— Hx(u,v) :=
hP (X )uPv?, with X smooth projective, gives rise to the Hodge charac-
p,q=20 J & &
teristic measure py : Var(k) — Zu,v] ; see [14, §4.1].
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(iv) When %k is of characteristic zero, the assignment X — Px(u) :=
>, dimgHp(X)u™, with X smooth projective, gives rise to the Poincaré char-
acteristic measure pup : Var(k) — Zu] ; see [14, §4.1].

Other motivic measures include the Larsen-Lunts “exotic” measure pry (see [13]); the
Albanese measure pay, with values in the semigroup ring of isogeny classes of abelian vari-
eties (see [19, Thm. 7.21]); the Gillet-Soulé measure pgg with values in the Grothendieck
ring Ko(Chow(k)g) of Chow motives (see [0]); and the measure punc with values in the
Grothendieck ring of noncommutative motives (see [23]). There exist several relations
between the above motivic measures. For example, x., pm, pp, unc factor through pgs .

2 Kapranov’s zeta function

As explained in [19, Prop. 7.27], in the construction of the Grothendieck ring of varieties we
can restrict ourselves to quasi-projective varieties. Given a motivic measure p, Kapranov
introduced in [11] the associated zeta function
o0
Gu(X51) =Y u([S"(X)))t" € (1+¢R[t]), (1)
n=0

where S"(X) stands for the n!* symmetric product of the quasi-projective variety X .
In the particular case of the counting measure, (1) agrees with the classical Weil zeta
function. Here are some other computations (with X smooth projective)

G (X5t) = (1 =) ) (p(X5t) = Hrzo(%urt)(_l)br Can(X;t) = [Allb(—)?]t,

where b, := dimcH)j,(X) and Alb(X) is the Albanese variety of X ; see [22, §3].

3 Big Witt ring

Given a commutative ring R, recall from Bloch [2, Page 192] the construction of the
big Witt ring W(R). As an additive group, W (R) is equal to (1 + tR[t], x). Let us
write +p for the addition in W(R) and 1 = 14 0t + --- for the zero element. The
multiplication * in W(R) is uniquely determined by the following requirements:

(i) The equality (1 —at)™'* (1 —bt)"' = (1 —abt)~! holds for every a,b € R;
(ii) The assignment R — W(R) is an endofunctor of commutative rings.

The unit element is (1 —¢)~!. We have also a (multiplicative) Teichmiiller map
R— W(R) ara:=(1—at)™?
such that g¢(t) * [a] = g(at) for every a € R and ¢(t) € W(R); see [2, Page 193].
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Definition 3.1. Elements of the form p(t) —w q(t) € W(R), with p(t),q(t) € R[t] and
p(0) =¢q(0) =1 € R, are called rational functions.

Let Wiat(R) be the subset of rational elements. As proved by Naumann in [20, Prop. 6],
Wiat(R) is a subring of W(R). Moreover, R +— Wi, (R) is an endofunctor of commu-
tative rings. Recall also the construction of the commutative ring A(R). As an additive
group, A(R) is equal to W(R). The multiplication is uniquely determined by the re-
quirement that the involution group isomorphism ¢ : A(R) — W(R), g(t) = g(—t)~1, is
a ring isomorphism. The unit element is 1+¢.

4 Exponentiation

Let p be a motivic measure. As explained by Mustata in [19, Prop. 7.28], the assignment
X = (u(X;t) gives rise to a group homomorphism

Cu(—;t) : KoVar(k) — W(R). (2)

Definition 4.1. (/22, §3]) A motivic measure u is (uniquely) exponentiable! if the above
group homomorphism (2) is a ring homomorphism.

Corollary 4.2. Given an exponentiable measure, the following holds:

(i) The ring homomorphism (2) is a new motivic measure;

(i) Any motivic measure which factors through p is also exponentiable.

This class of motivic measures is well-behaved with respect with rationality:

Proposition 4.3. Let i be an exponentiable motivic measure. If (,(X;t) and (,(Y;t)
are rational functions, then (,(X xY;t) is also a rational function.

Proof. Tt follows automatically from the fact that Wy, (R) is a subring of W(R). O

As proved by Naumann in [20, Prop. 8] (see also [22, Thm. 2.1]), the counting measure
p# is exponentiable. On the other hand, Larsen-Lunts “exotic” measure pupp, is not
exponentiable! This would imply, in particular, that

Curr, (C1 x Cy;t) = Curr (Crst) * Cur (Cas1) (3)

for any two smooth projective curves C7 and Cs. As proved by Kapranov in [11] (see
also [19, Thm. 7.33]), (,(C;t) is a rational function for every smooth projective curve C

!Note that Kapranov’s zeta function is similar to the exponential function e® = > %7 . The product
X™ corresponds to z" and the symmetric product S™(X) corresponds to T—',L since n! is the size of the

n
symmetric group on n letters.
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and motivic measure p. Using Proposition 4.3, this hence implies that the right-hand
side of (3) is also a rational function. On the other hand, as proved by Larsen-Lunts in
[13, Thm. 7.6], the left-hand side of (3) is not a rational function whenever C; and Co
have positive genus. We hence obtain a contradiction.

At this point, it is natural to ask which motivic measures are exponentiable? We now
provide a general answer to this question using the notion of A-ring. Recall that a A -ring
R consists of a commutative ring equipped with a sequence of maps \": R — R,n >0,
such that A\°(a) =1, A(a) =a, and \*(a+b) =3 X(a)M (b) for every a,b € R.
In other words, the map

i+j=n
AiR—AR)  ar Nfa):=) A'(a)t”

is a group homomorphism. Equivalently, the composed map
o RS AR) S W(R)  a— oia) = D oM(a)t" = A y(a)”! (4)
n
is a group homomorphism. This homomorphism is called the opposite A-structure.

Proposition 4.4. Let u be a motivic measure and R a A -ring such that:

(i) The above group homomorphism (4) is a ring homomorphism;

(ii) We have p([S™(X)]) = o™(u([X])) for every quasi-projective variety X .
Under these conditions, the motivic measure p is exponentiable.

Proof. Consider the following composed ring homomorphism
KoVar(k) 25 R 2% W(R). (5)

The equalities p([S™(X)]) = o™(u([X])) allow us to conclude that (5) agrees with the
group homomorphism ¢, (—;t). This achieves the proof. O

Remark 4.5. Let C be a Q -linear additive idempotent complete symmetric monoidal
category. As proved by Heinloth in [0, Lem. 4.1], the exterior powers give rise to a spe-
cial X -structure on the Grothendieck ring Ko(C) , with opposite A -structure given by the
symmetric powers Sym" . In this case, (4) is a ring homomorphism.

Remark 4.6. Let T' be a Q -linear thick triangulated monoidal subcategory of compact
objects in the homotopy category T = Ho(C) of a simplicial symmetric monoidal model
category C. As proved by Guletskii in [S, Thm. 1], the exterior powers give rise to a
special X -structure on Ko(T'), with opposite X -structure given by the symmetric powers
Sym™ . In this case, (4) is a ring homomorphism.
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Remark 4.7. Assume that k is of characteristic zero. Thanks to Heinloth’s presentation
of the Grothendieck ring of varieties (see [10, Thm. 3.1]), it suffices to verify the equality
w([S™(X)]) = a™(1([X])) for every smooth projective variety X .

As an application of the above Proposition 4.4, we obtain the following result:

Proposition 4.8. The Gillet-Soulé motivic measure pgs is exponentiable.

Proof. Recall from [6] that pgs is induced by the symmetric monoidal functor
b : SmProj(k) — Chow(k)g (6)

from the category of smooth projective varieties to the category of Chow motives. Since
the latter category is Q-linear, additive, idempotent complete, and symmetric monoidal,
Remark 4.5 implies that the Grothendieck ring Ko(Chow(k)g) satisfies condition (i) of
Proposition 4.4. As proved by del Bano-Aznar in [1, Cor. 2.4], we have h(S™(X)) ~
Sym"h(X) for every smooth projective variety X . Using Remark 4.7, this hence implies
that condition (ii) of Proposition 4.4 is also satisfied. O

Remark 4.9. Thanks to Corollary 4.2(ii), all the motivic measures which factor through
uas (e-8. Xes tH, ip, UNc ) are also exponentiable.

5 Application I: rationality of zeta functions

By combining Propositions 4.3 and 4.8, we obtain the following result:

Corollary 5.1. Let X,Y be two varieties. If Cuos(X;t) and (ues(Yst) are rational
functions, then (,qs(X x Y;t) is also a rational function.

Remark 5.2. Corollary 5.1 was independently obtained by Heinloth [9, Prop. 6.1] in
the particular case of smooth projective varieties and under the extra assumption that
Cuas (X5 t) and (. (Ys5t) satisfy a certain functional equation.

Example 5.3. Let X,Y be smooth projective varieties (e.g. abelian varieties) for which
h(X),h(Y) are Kimura-finite; see [12, §3]. Consider the ring homomorphism

ot © KU(ChOW(k:)Q) — W(Ko(ChOW(k)Q)) . (7)

As proved by André in [1, Prop. 4.6], o([h(X)]) and o¢([h(Y)]) are rational functions.
Since (uq(—3t) agrees with the composition of pgs with (7), these latter functions are
equal to (o (Xs5t) and Cuqs(Y;t), respectively. Using Corollary 5.1, we hence conclude
that Cuqs(X x Y;t) is also a rational function.
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When £k is of characteristic zero, Voevodsky constructed in [24, §2.2] a functor
M€ : Var(k)? — DMgn (k)g (8)

from the category of varieties and proper morphisms to the triangulated category of ge-
ometric motives. As proved in [24, Prop. 4.1.7], the functor (8) is symmetric monoidal.
Moreover, given a variety X and a closed subvariety Y C X, we have a triangle

MYY) — MYX) — MY(X\Y) — M(Y)[1]
in DM (k)q ; see [24, Prop. 4.1.5]. Consequently, we obtain the motivic measure:
KoVar(k) — Ko(DMgn(k)g)  [X] = [M9(X)]. (9)
Proposition 5.4. The above motivic measure (9) agrees with pgs -

Proof. As proved by Voevodsky in [24, Prop. 2.1.4], there exists a Q-linear additive fully-
faithful symmetric monoidal functor

Chow (k)g — DMgm(k)g (10)

such that (10) o h(X) ~ M¢(X) for every smooth projective variety. Thanks to the work
of Bondarko [3, Cor. 6.4.3 and Rk. 6.4.4], the above functor (10) induces a ring isomor-
phism Ko(Chow(k)g) ~ Ko(DMgn(k)g). Therefore, the proof follows from Heinloth’s
presentation of the Grothendieck ring of varieties in terms of smooth projective varieties;
see [10, Thm. 3.1]. O

Thanks to Proposition 5.4, Example 5.3 admits the following generalization:

Example 5.5. Let X,Y be varieties for which M¢(X), M¢(Y) are Kimura-finite. Sim-
ilarly to Example 5.3, (uqq(X x Y;t) is then a rational function.

In the above Examples 5.3 and 5.5, the rationality of (,.4(X X Y;t) can alternatively
be deduced from the stability of Kimura-finiteness under tensor products; see [12, §5].
Thanks to the work of O’Sullivan-Mazza [18, §5.1] and Guletskii [¢], the above Corollary
5.1 can also be applied to non Kimura-finite situations.

Proposition 5.6. Let Xy be a connected smooth projective surface, over an algebraically
closed field ko, with geometric genus p, > 0 and irreqularity ¢ = 0. Let k := ko(Xo)
the function field of Xy, xo a ko -point of Xy, z the zero-cycle which is the pull-back of
the cycle A(Xo) — (zo x X) along Xo x k — Xo x Xo, Z the support of z, and finally
U the complement of Z in X = Xo x k. Under these notations, the following holds:

(i) The geometric motive M¢(U) is not Kimura-finite;

(it) Kapranov’s zeta function (,qs(Ust) is rational.
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Proof. As proved by O’Sullivan-Mazza in [18, Thm. 5.18], M (U) is not Kimura-finite.
Since the surface U is smooth, we have M¢(U) ~ M(U)"(2)[4] where (—)V stands for
the dual; see [24, Thm. 4.3.7]. Using the fact that —(2)[4] is an auto-equivalence and that
M(U)V is Kimura-finite if and only if M (U) is Kimura-finite (see Deligne [5, Prop. 1.18]),
we conclude that M€¢(U) also is not Kimura-finite.

We now prove item (ii). As proved by Guletskii in [¢, §3], the category DMgm(k)qg
satisfies the conditions of Remark 4.6. Consequently, we have a ring homomorphism

ot : Ko(DMgm(k)g) — W (Ko(DMgm(k)qg)) - (11)

As explained by Guletskii in [8, Ex. 5], o¢([M(U)]) is a rational function. Equivalently,
a([M(U)])V (obtained from o¢([M(U)]) by applying (—)Y to each term) is a rational
function. Thanks to Lemma 5.7 below, we hence conclude that o ([M¢(U)]) is also a
rational function. The proof follows now from the fact that (,.q(—;t) agrees with the
composition of the ring homomorphisms (9) and (11). O

Lemma 5.7. Given a smooth variety X of dimension d, we have the equality
ot ([MA(X))) = 05 wyee (M (X))

Proof. The proof is given by the following identifications

o(IM(X)]) = ou([M(X)"(d)[2d]]) (12)
= or([M(X)"]ucs(LY))
= o([M(X)"]) * Gues (L% 1)
= a([M(X)])" * Gues (L% 1) (13)
= Ouasmu((M(X)])Y, (14)

where (12) follows from [24, Thm. 4.3.7], (13) from [5, Prop. 1.18], and (14) from Remark
6.2 below with u:= pgs and g(t) := oy ([M(X)])V . O

Example 5.8. Let Uy,Us be two surfaces as in Proposition 5.6. Thanks to the above
Corollary 5.1, we hence conclude that (u.(Ur x Ua;t) is a rational function. Note that
the geometric motive M¢(Uy x Usy) is not Kimura-finite! Choose a rational point x1 of
U1 and consider the associated morphism x1 X id : Uy — Uy x Uy . Using the projection
Uy x Uy — U we observe that M (Us) is a direct summand of M(Uy x Us) . As explained
in the proof of Proposition 5.6, M¢(Us) (resp. MUy x Us) ) is Kimura-finite if and
only if M(Usz) (resp. M(Uy xUs) ) is Kimura-finite. Consequently, if M¢(U; x Uz) were
Kimura-finite, M¢(Us) also would be Kimura-finite. This contradicts Proposition 5.6.
Finally, note that self-products Uy x --- x Uy are examples of arbitrarily high dimension.

Remark 5.9. Thanks to Corollary 4.2(ii), the above Examples 5.3, 5.5, and 5.8, hold
mutatis mutandis for any motivic measure which factors through pgs .
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6 Application II: Totaro’s result

The following result plays a central role in the study of the zeta functions.

Proposition 6.1 (Totaro). The equality (,(X x A™;t) = (. (X;u(L)"t) holds for every
variety X and motivic measure [ .

Its proof (see [7, Lem. 4.4][19, Prop. 7.32]) is non-trivial and based on a stratification
of the symmetric products of X x A™. In all the cases where the motivic measure p is
exponentiable, this result admits the following elementary proof:

Proof. Since [X x A"] = [X][A"] in the Grothendieck ring of varieties and the motivic
measure p is exponentiable, the proof is given by the identifications

Cu(X x A™t) = Cu(X5t) = (L")

= Cu(X51) * Cu(Ls )™

= Gu(X3t)* (1+ p(L)t + p(L)t? 4 - )" (15)

= Gu(X3t) (1= p(L)t)~H)™

= Gu(X;t) * [u(L)[™

= Qu(X;t) * [u(L)"]

= Gu(Xsu(L)"),
where (15) follows from [19, Ex. 7.23] and [u(L)] stands for the image of (L) € R under
the multiplicative Teichmiiller map R — W(R). O

Remark 6.2. The above proof shows more generally that g(t)*(,(L";t) = g(u(L)"t) for
every g(t) € W(R) and exponentiable motivic measure fi .

Remark 6.3. (Fiber bundles) Given a fiber bundle E — X of rank n, we have [E| =
[X][A"] in the Grothendieck ring of varieties; see [19, Prop. 7.4]. Therefore, the above
proof, with X replaced by E , shows that (,(F;t) = (u(X;u(L)"t) .

Remark 6.4. (P"-bundles) Given a P" -bundle E — X , we have [E] = [X][P"] in
the Grothendieck ring of varieties; see [19, Ex. 7.5]. Therefore, by combining the equality
[P"] =14 L+ ---+L" with the above proof, we conclude that

CM(E§ t) = CM(X§ t) +w CM(XQ N(L)t) +w o +w CM(X§ N(L)nt) .
7 (G -varieties

Let G be a finite group and VarG(k) the category of G -varieties, i.e. varieties X
equipped with a G-action A : G x X — X such that every orbit is contained in an
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affine open set. The Grothendieck ring of G -varieties KoVar® (k) is defined as the quo-
tient of the free abelian group on the set of isomorphism classes of G -varieties [X,A] by
the relations [X,\] = [V, 7]+ [X\Y, A], where (Y,7) is a closed G -invariant subvariety of
(X, A). The multiplication is induced by the product of varieties. A motivic measure is a
ring homomorphism u% : KoVar®(k) — R. As mentioned in [15, §5], the above measures
Xe, p, pp admit G -extensions X?,ug,ug .

Notation 7.1. Let ChowG(k:)@ be the category of functors from the group G (considered
as a category with a single object) to the category Chow(k)g .

Note that Chow%(k)g is still a Q-linear additive idempotent complete symmetric
monoidal category and that (6) extends to a symmetric monoidal functor

H¢ : SmProj% (k) — Chow®(k)q . (16)

Note also that the n'® symmetric product of a G -variety is still a G -variety. Therefore,
the notion of exponentiation makes sense in this generality. Gillet-Soulé’s motivic measure
nas admits the following G -extension:

Proposition 7.2. The above functor (16) gives rise to an exponentiable motivic measure:
pég : KoVar®(k) — Ko(Chow® (k)q) -

Proof. Given a smooth projective variety X and a closed subvariety Y , let us denote by
Bly(X) the blow-up of X along Y and by E the associated exceptional divisor. As
proved by Manin in [16, §9], we have a natural isomorphism h(Bly (X)) & h(Y) ~ h(X) &
h(E) in Chow(k)g. Since this isomorphism is natural, it also holds in Chow® (k) when
X 1is replaced by a smooth projective G -variety (X,\) and Y by a closed G -invariant
subvariety (Y, 7). Therefore, thanks to Heinloth’s presentation of the Grothendieck ring of

G -varieties in terms of smooth projective G -varieties (see [10, Lem. 7.1]), the assignment
X + h%(X) gives rise to a (unique) motivic measure pufq. The proof of Proposition 4.8,
with (6) replaced by (16), shows that this motivic measure ulg is exponentiable. O

Remark 7.3. Similarly to Remark 4.9, all the motivic measures which factor through ugs
(e.g. XS, 1§, uS ) are also exponentiable.

Proposition 4.3 admits the following G -extension:

Proposition 7.4. Let pu& be an exponentiable motivic measure and (X, \),(Y,7) two
G -varieties. If C,c((X,A);t) and (,c((Y,7);t) are rational functions, then (,c((X x
Y, A x 7);t) is also a rational function.

Example 7.5. Assume that the group G (of order r ) is abelian and that the base field
k is algebraically closed of characteristic zero or of positive characteristic p with p{r.
Under these assumptions, Mazur proved in [17, Thm. 1.1] that (,c((C,\);t) is a rational

function for every smooth projective G -curve (C,)\) and motivic measure p . Thanks
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to Proposition 7./, we hence conclude that (,c((C1 x C2,A\1 X A2);t) is still a rational

unction for every exponentiable motivic measure G and for any two smooth projective
I

G -curves (C1,\1) and (C2,A\2) .

Finally, Totaro’s result admits the following G -extension:

Proposition 7.6. Let pu® be an exponentiable motivic measure and (X.\), (A", 7) two
G -varieties. When G (of order r ) is abelian and k is algebraically closed, Kapranov’s
zeta function C,c((X x A", A x 7);t) agrees with

Gue (X, A); € (ST (A", 7))t) +w Gua (X, A);t) + <

where [A", 7] = [Al 7] [AL 7).

Proof. Since [X x A" X x 7] = [X,A][A", 7] in the Grothendieck ring of G -varieties and
the motivic measure u© is exponentiable, we have the equality

Cue (X x A", A x 7)5t) = (o ((X, A);t) * (e (A", 7);t) .

Moreover, as explained in [17, Page 1338], we have the following computation
r—1 n
e e e P I L R
=0 =1

Therefore, since (1—p%(S™(A", 7))t)~! is the Teichmiiller class [u“(S"(A"™, 7))], the proof
follows from the combination of the above equalities. O

Acknowledgments: The authors are grateful to the anonymous referee for his/her com-
ments which improved the exposition of this note.
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