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ABSTRACT

In this paper, we introduce a continuous-time model aimed
at capturing the dynamics of congested Internet connec-
tions. The model combines a system of differential equa-
tions with a sudden change in one of the state variables.
Results from this model show good agreement with the
well-known ns network simulator, better than the results
of a previous, similar model. This is due in large part to the
use of the sudden change to reflect the impact of lost data
packets. We also discuss the potential use of this model in
network traffic state estimation.
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1 Introduction

An Internet connection consists of the exchange of data
packets between a source and destination through interme-
diate computers, known as routers. The transmission of
data in the majority of Internet connections is controlled
by the Transport Control Protocol (TCP) [1, 2]. TCP isre-
sponsible for initializing and completing connectionsy€o
trolling the rate of flow of data packets during a connection,
ensuring that lost packets are retransmitted, etc.

Congestion can occur when the rate of flow of the
connection is limited by some link on the path from source
to destination. This link is known as thmttleneck link.
Routers have buffers in which to store packets in case one
of their outgoing links reaches full capacity. If new pack-
ets arrive at a router whose buffer is full, that router must
drop packets. There exist various strategies, known as
active queue management (AQM) policies, for determin-
ing how and when to drop packets prior to the buffer fill-
ing. One commonly used AQM is Random Early Detection
(RED) [3].

In this paper we model the interaction between TCP
and RED for a simple network connection experiencing
congestion. This scenario, or ones similar to it, have
been modeled previously for the purposes of evaluating
RED [4, 5, 6, 7], obtaining throughput expressions [8, 9],
and obviating the need for time-consuming simulation [4,
10, 11, 12], among others. There are stochastic [9] and
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deterministic models [4, 5, 6], continuous-time [4] and
discrete-time models [5, 6].

Our model is closest to that of Misra et al. [4]. That
model successfully captures theerage network state in
a variety of situations. This allows the authors to analyze
RED from a control theoretic basis. Our aim is to develop
a model of greater accuracy that will be useful in estima-
tion not only of the average network state, but of additional
guantities. For example, a model capable of capturing the
mean queue length allows one to estimate the mean round-
trip time. But a model that can capture the range, and better
still, the variance of the queue length, will allow one to es-
timate the range and variance of the round-trip time. While
this level of model accuracy can be useful, it is necessary
in a model that is to be used for our ultimate goal of net-
work traffic state estimation. Given some knowledge of the
state of the network, an accurate model may be combined
with a filter-based state-estimation scheme (which we dis-
cuss briefly in Sec. 4), in order to estimate the full network
state at the current time. Network state estimation can be
useful from the perspectives of both security and perfor-
mance.

In this paper, we focus on network connections in
which the senders always have data to transmit for the du-
ration of the connection. (This is known adalk trans-
fer.) We also assume that the path is fixed, the transfer is
one-way (the data packets travel in only one direction), any
cross-traffic is negligible, and the path contains one bot-
tleneck link whose capacity is less than that of all other
links in the path. Most of these assumptions reflect typi-
cal network scenarios with the possible exceptions of the
cross-traffic and bottleneck assumptions.

In an actual network, data traveling from the sender
to the receiver is likely to pass through several intervgnin
routers. However, based on our assumption that there is one
bottleneck link, we need only consider the router whose
outgoing link is this bottleneck link. All other routers sim
ply forward the data along the path, and have unoccupied
buffers. Thus the network we model can be represented as
in Fig. 1.

2 TheMode

We assume the reader is familiar with the workings of
TCP and RED; a more thorough discussion of both along
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Figure 1. Network configuration

with a more detailed exposition of our model and a sim-
ilar discrete-time model may be found in [13]. Previous
attempts to deterministically model the TCP/RED interac-
tion in the bottleneck/bulk situation we consider have made
use of either discrete-time maps [5, 6] or differential equa
tions [4]. Continuous-time models employing delay dif-
ferential equations may do well in capturing the aspects
of network behavior that evolve gradually on small-time
scales, such as flow rate increases. However, they are likely
to smooth out the effects of sudden large changes in state
(such as flow rate reductions). Furthermore, systems of
delay differential equations can be cumbersome to express
and solve due to the delay.

We propose here a continuous-time model that com-
bines a system of differential equations to capture the evo-
lution of the small-time scale changes with a discrete im-
pulse (sudden change in one of the state variables) to repre-
sent sudden large changes. In addition, it utilizes a packet
based frame of reference for the state, which simplifies han-
dling of the delay in the system, making the model easier
to express and execute.

To describe the system, we consider the state vari-
ables, all of which have units of “packets” but are allowed
to take non-integer values:

e W —the congestion window size of the sender;
e ¢ —the length of the queue at the router;

e 1 — the exponentially-weighted average of the queue
length at the router (used by RED).

In our packet-based frame of referené€{t) represents
the congestion window in effect for a pacleetiving at the
gueue at timet. This was the sender’s congestion window
at an earlier time, when the packet left the sender.

In developing the model we will often refer to the
round-trip time,R. The round-trip time is the time between
the departure of a packet from the sender and the return to
the sender of the acknowledgment for that packet. It con-
sists of a fixed propagation delay, and a queuing delay.
For a packet encountering a single congested router with
gueue lengthy, and outgoing link capacity (measured in
packets per unit time), the queuing delayj&. Thus,
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As indicated by its name, RED has a stochastic com-
ponent. Initially we will show how a deterministic model
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that does not reflect the random component of the dynam-
ics can capture the system behavior under some network
settings. As the network complexity grows, the impact of
the random component increases. To address this, we add
a stochastic component to our model in Sec. 3.

The system of differential equations in our model is
similar to the one found in [4]. It is used to model the
additive-increase of the window size, and both instanta-
neous and averaged queue lengths. The impulse in our
model, in which the window size state variables are instan-
taneously reset, is used to model the multiplicative desrea
in the window size caused by a dropped packet. In the in-
terest of model simplicity, we do not model slow start or
time-outs, and we neglect some details of packet retrans-
missions.

2.1 Moddingthe Additive Increase

Although network data is transmitted in discrete packets,
during the period of additive-increase and in the absence of
dropped packets, quantities appear to vary smoothly when
viewed over the time-scales we are interested in (on the or-
der of1 to 100 seconds) for our network settings. Hence we
model the dynamics continuously as summarized by equa-
tions (2), (3), and (4):

aw(e) 1
dt ~ Rig) @)
aw _ we
dt ~ Rat) )
SO _ elqlt) - o(t)). (4)

dt

Equation (2) reflects the approximation that a sender’s
TCP window increases at the rate of one packet per round-
trip time. The rate of change of the queue length at a given
time is equal to the difference between the flows into and
out of the router. Because of our bulk-transfer and bottle-
neck assumptions (see Sec. 1), the network is usually con-
gested to the point of saturation. We assume this is always
the case, and consequently in equation (3) the flow rate out
of the router always equals the capacitgf the outgoing
link. The exponentially-weighted average queue is deter-
mined by RED upon each packet arrival as follows:

(®)

wherew is the exponential-weighting parameterg w <

1, and the subscripts denote successive measuremants of
andx (which occur at packet arrivals) for a given router.
This equation describes a low-pass filter, and, making use
of the fact thatw is small in practice, we approximate it by
the differential equation (4). Here we have also simplified
matters by replacing the flow rate into the queue with its
time average value, which must equal the outgoing flow
ratec.

Tp+1l = Wqn+1 + (1 - w)xm



2.2 Modding the Multiplicative Decrease

In a real network situation, a router using RED will drop
packets randomly when the exponentially averaged queue
x exceeds a thresholg,;,. In the interest of keeping our
model simple, we initially tried having the model assume a
drop occurredas soon as RED turned on (i.e., whem ex-
ceededy,,;»). In reality, there tends to be a delay between
the time RED turns on and a packet drop occurs. Under
the network settings we used, this delay could be up to one
second. By estimating this lag time as described below, the
model results improved significantly compared to using a
lag time of0. Note that the model remains deterministic
under this change.

In most descriptions of RED, the nominal drop prob-
ability p per packet is given as:

0 whenz < ¢min,
L dmin_ Whenqmin S X S dmaz »

p(z) = —
whenz > ¢naz,

qmaxz —4min
(6)

wherep,,q.. andg,,., are additional RED parameters. In
practice, RED has an added layer of complexity. Namely, it
has been designed so that effectively, the drop time is cho-
sen from a uniform distribution on a time interval of length
1/p, given a constant RED drop probability As imple-
mented in the ns simulator [14], an additiomalit param-
eter is used, which causes this time interval to lie between
1/p and2/p from the time of the last drop. (This spacing
also applies to the time between RED turning on and the
first drop.) As a result, the expected time between drops is
3/(2p).

More precisely, when: exceedsy,,,;, and RED turns
on, it begins counting packets in order to determine when a
packet drop should occur. The actual drop probability used
by RED, which we denotgy,.,, is given by:

0 whenk < 1/p,
Parop(p, k) = p/(2—kp) whenl/p <k <2/p,
1 whenk > 2/p,

()
wherek is the number of packets that have arrived since
RED turned on, or since the previous packet drop. Ket
be the random variable representing the number of pack-
ets that arrive between drops, or between RED turning on
and the first drop. Ifz is constant, them is constant, in
which case it can be shown thétis uniformly distributed
betweenl /p and2/p. This means/[K] = 3/2p.

Of coursex is generally not constant, and in our
model we make the rough approximation tig#] is the
solution to the equatiohy,., = 3/[2p(zk,,.,)], wherexy
is the value ofr when the packet counter reaclhedVe fur-
ther approximate as a linear function of between packet
drops. Rewriting (5) as

Ty = Tp—1 +w(qp — Th—1), (8)
we replacey, — xr—1 by g0 — xo:

x = xo + kw(qo — zo) 9

Assuming thatr;, remains betweed,.;, andq,qz,

p(k) = a1k + as (10)

wherea; andas are constants determined by equations (6)
and (9).

Since we want to findkg,op such thatkg.., =
3/[2p(zk,,.,)], we substitute (10) into this equation. Solv-
ing the resulting quadratic produces the following solatio

—as + /a2 + 6a;

2(11

Kdrop = (11)

If a3 + 6a; < 0, then sinces; < 0, p(k) is a decreasing
function of k, and we assume that it becomes zero before
another drop occurs.

When RED turns on, we computg;.,,, the expected
time until the next packet drop. A timer variable counts
down this amount and when it expires, we consider the drop
to have occurred. We then continue to evolve the continu-
ous system for one round-trip time to reflect the delay in
notification of the sender that a packet has been dropped.
After this delay, we letM/ = W/2, and holdW = 0 for
M /c seconds, continuing to evolyeandx according to (3)
and (4). Thisreflects the fact that after the window has been
cut in half, the sender will not transmit data uniil ac-
knowledgments have been received; due to saturation, ac-
knowledgments return evefly' c seconds. Oncé//c sec-
onds have elapsed, we 9ét = M and hold the window
state variable constant for one round-trip time (as measure
from the time of the drop notification). This is done in order
to represent the Fast Recovery/Fast Retransmit(FRFR) al-
gorithm in the NewRenbversion of TCP. Once this round-
trip time has elapsed, the model resumes continuous evolu-
tion as described in Section 2.1.

2.3 Modding Multiple Senders

The model can be easily generalized to handle more than
one sender. As in the case of one sender, we assume that
each sender is upstream from the same bottleneck link and
is engaged in bulk transfer, sending data as fast as allowed
by TCP. Following [4], denote the window size of tif&
sender byV;. We keep track of each sender’s window sep-
arately. The queue equation (3) is replaced by:

da(t) _~ Wilt)
i~ 2R

whereN is the number of senders. The connections need
not all share the same fixed propagation delay, asithe
terms indicate. We use a separate copy of (2) for each win-
dow W;, and separate timer variables for each connection.
When a drop occurs, we assign it to the sender with the
largest window. Finally, to reflect the no-send period fol-
lowing a drop we wait fo@fvzl W;/(2¢) seconds before

(12)

1Recent indications are that NewReno is the most widely uagdmnt
of TCP [1].
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Figure 2. Comparison of models with ns simulator for the
one-sender scenario described in Sec. 2.4.

retransmitting to reflect the fact that the packet burstfro
each sender are interspersed.

2.4 Results

In this section we compare results obtained from apply-
ing our model to the network set-up mentioned above with
those obtained using the ns simulator on an equivalent net-
work. We used the following settings (refer to Sec. 2 for
variable definitions)a = .01 s,¢ = 1.5 Mbps, gmin = 50,

Gmaz = 100, pmae = .1, w = .003, and packet size

= 1000 bytes.

We implemented the modelin MATLAB. Since we do
not model the slow-start behavior of TCP, we begin all of
our comparisons between the simulator and model after an
initial transient has ended. Fig. 2 shows comparisons of the
gueue length in the continuous-time model and the Misra et
al. model [4] with the ns network simulator [14]. Despite
the lack of a stochastic component as well as several of the
details of the TCP implementation, our model is able to
very closely reproduce the behavior of the simulator. We
believe that the model has captured the essential behavior
of this network under these flow conditions. The use of
an impulse helps the model account for the sharp declines
in the queue length caused by drop events. Lacking this
feature, the fluid model of Misra et al. does not perform as
well in this case of one sender.

However, the accuracy of this approach diminishes as
the number of senders increases. For larger numbers of
senders the model of Misra et ahows better agreement
with the simulator than our model does. Thus our model in

this form is advantageous mainly in cases when the bottle-
neck link congestion is due to a small number of senders.
To improve our model’'s performance, we introduce a more
accurate mechanism for determining dropped packets in the
following section. In particular, we fully implement RED
as it is executed in the ns simulator.

3 Extension - Full Red Implementation

Model simplicity is important if we are interested in be-
ing able to concisely describe a system, and for amenabil-
ity to mathematical analysis. On the other hand, for the
purpose of traffic state estimation, the key attributes we de
sire in a model are accuracy and computational efficiency.
With this in mind, we propose an extension to the model
to improve its accuracy while still keeping the model sim-
pler than a full-fledged packet-level simulator. The priynar
modification we consider is to implement a more realis-
tic packet dropping mechanism within the model, one that
more closely resembles RED.

In order to fully model RED, we begin by following
the procedure laid out in the previous section up to equa-
tion (7). At that point, a uniform random number between
0 and1 is generated and if this number is less thgn,,,

a drop occurs. In the case of multiple senders, we let the
probability of a given sender experiencing the drop be pro-
portional to that sender’s sha(%?)/(Z;VZI %) of the
overall flow. This introduces a gréater degreé of complex-
ity and a stochastic component to the model.

We applied this model to the network described ear-
lier, but now with four senders at varying fixed propagation
delays of5, 20, 50 and 110 ms from the receiver. Fig. 3
shows that there is good qualitative agreement between the
model and the simulator. The additional jitter in the simula
tor's queue is due to packet level activity. The model shows
good statistical agreement with the simulator as well. #ig.
shows a comparison of queue histograms. Note that the
model correctly captures the range in queue values, which
can be used to calculate the range of round-trip times using
equation (1).

In order to evaluate the model’s responsiveness to net-
work changes, we tested it on a network with two classes
of flows, one of which turns off for part of the run. The
classes both consist of five bulk transfer senders, but the
fixed propagation delay is different for each clag8:ms
for classl senders35 ms for clas® senders. The clags
senders turn off froni5 to 125 seconds after the start of the
run. In practice, this effect could be caused by the sender-
side application not having data to send for that stretch of
time. Another possibility could be that the classenders
are temporarily rerouted.

The results, shown in Fig. 5, indicate that the model
does a good job of capturing the changes in the network
state caused by the senders turning off. This includes the
sudden drop in the queue just after the senders turn off.
The model also reproduces the overall decreased level of
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Figure 3. Comparison for four senders between the ns sim-
ulator and a realization of the continuous-time model us-
ing the full RED implementation. In both plots, the upper
two curves represent the instantaneous and exponentially
averaged queues. (The exponentially averaged queue is the
curve showing less variation.) The lower four curves in
both plots represent the window sizes of the four senders.
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Figure 5. Comparison for two classes with five senders per
class. Class 2 senders are off from 75 to 125 seconds.

the queue and increased level of the class 1 senders’ win-
dows during the class 2 off period. Since both simulator
and model have stochastic components, each plot repre-
sents a realization rather than the expected performance.
Nevertheless, based on our observations of many realiza-
tions for both model and simulator, we expect the average
performance to show good correspondence as well. For the
time being, we provide typical statistics from sample re-
alizations in Table 1, indicating the close statistical chat
between model and simulator. Note that the model is able
to estimate the variance of the queue to with@¥. This
implies that by using the model in conjunction with the
round-trip time equation (1), a reasonable estimate of the
variance of the round-trip time can be obtained.

Table 1. Statistical Comparison for Two-Class Scenario

Variable | Quantity | Simulator | Model
All Flows On
q mean 65.5 66.7
q st.dev. 4.8 4.4
Half of the Flows Off
q mean 56.0 56.0
q st.dev. 7.0 6.5




4 Towards Network State Estimation

Ultimately, we plan to use the model in a network traffic
state estimation scheme. The estimation problem can be
posed as follows: Consider a network &f senders and
one bottleneck router, whose state can be characterized by
the sender window sizes and the router queue and expo-
nentially averaged queue lengths. Given only a series of
observations of some subset of the full network state, such
as the window sizes and round-trip times of a small num-
ber of senders, what is our best estimate of the state of the
system at the current time? That is, we must estimate all
of the sender window sizes, using only the past history of
some observed portion of the state of the network.

The estimation scheme we have in mind can be de-
scribed as a particle filter or, more generally, a sequential
Monte Carlo method [15, 16]. The basic idea is related
to that of a Kalman filter. But unlike the Kalman filter,
the particle filter makes no assumptions about the linearity
of the model, or about the probability distributions being
Gaussian. Thus it is a better fit for our model and system.

The particle filter starts off with a random ensemble of
states. It uses the observation to filter and re-weight the en
semble members based on how consistent they are with the
observation. Then the ensemble members are advanced in
time using the model, and the filter and re-weighting pro-
cess repeats. We are currently testing this procedure in a
variety of network scenarios.

5 Conclusion

We have developed a deterministic, continuous-time model
with a discrete impulse that successfully captures the net-
work behavior of TCP/RED in simple cases. Extending the
model by adding a stochastic dropping mechanism consis-
tent with RED, the model shows good correspondence in
more complicated network situations, including those with
larger numbers of senders and flows turning on and off.

Aside from network traffic state estimation described
in Sec. 4, other works in progress include modeling net-
works with multiple bottlenecks and cross-traffic, consid-
eration of the physical layer, and comparisons of the model
to real networks.
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