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Part I. GLM and Time Series

Qverview

Extension of Nelder and Wedderburn (1972),
McCullagh and Nelder(1989) GLM to time se-
ries is possible due to:

e Increasing sequence of histories relative to
an observer.

e Partial likelihood.
e [ he partial score is a martingale.

e \Well behaved covariates.



Partial Likelihood

Suppose we observe a pair of jointly distributed
time series, (X4, Y:), t=1,...,N, where {Y;} is
a response series and {X;} is a time dependent
random covariate. Employing the rules of con-
ditional probability, the joint density of all the
X,Y observations can be expressed as,

f@('xl?yla"'?xN?yN) —
N N
fo(x1) {H fo(zt | dt)] {H fo(yt | Ct)] (1)
=2 =1

dt — (ylaxla SR 7yt—17wt—1>
Ct — (ylamla < 7yt—17xt—17xt)'

The second product on the right hand side of
(1) constitutes a partial likelihood according to
Cox(1975).



An increasing sequence of o-fields
FoCFL CFo....

Y1,Yo,... a sequence of random variables on
some common probability space such that Y}
is F+ measurable.

Yi | Feo1 ~ fi(y; 9).
0 € RP is a fixed parameter.

The partial likelihood (PL) function relative to
0, F:, and the data Yi7,Y>,..., Yy, is given by
the product

N
t=1



The General Regression Problem

{Y:} is a response time series with the corre-
sponding p—dimensional covariate process,

Define,

Fror=0{Yi-1,Ye 0, . 24 1,245, .}.

Note: Z;_1 may already include past Y;'s.

The conditional expectation of the response
given the past:

Mt — E[}/t | ft—l]a

(e) The problem is to relate u; to the covari-
ates.



Time Series Following GLM

1. Random Component. The conditional
distribution of the response given the past be-
longs to the exponential family of distributions
in natural or canonical form,

yt0r — b(6;)
at(p)

+ c(yt; fb)} :
(3)

a(p) = ¢/wy, dispersion ¢, prior weight wy.
2. Systematic Component. Thereisa mono-
tone function ¢(-) such that,

flyt: 04,0 | Fr—1) = exp{

p
g(u) =m =Y BiZu_1); = Zi—18.  (4)
j=1

g(-): the link function
n¢. the linear predictor of the model.



Typical choices for n; = Z), 3, could be

Bo + B1Yi—1 + B2Yi_o + $3X; cos(wot)

or

Bo+ B1Yi—1 + BoYio+ B3Y; 1. Xt + BaXi1

or

Bo + B1Yi_1 + B2V, 5 + B3Y;_1 109(X;_12)



GLM Equations:

[ 10561 Findy =1

This implies the relationships:

pe = E[Y; | Fooq1] =0 (6y). (5)

Var[Y; | Fi—1] = au(@)b"(6r) = (@) V (it). (6)

Since Var[Y; | F1_1] > 0, it follows that ¥’ is
monotone. Therefore, equation (5) implies
that

0y = (b))~ (e)- (7)

We see that 0; itself is a monotone function
of u+ and hence it can be used to define a link
function. The link function

g(uue) = 0(pe) = e = Zy_ 13 (8)

is called the canonical link function.
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Example: Poisson Time Series.
fQyt, 0,0 | Fr—1) = exp {(y¢log put — ) — 10g y¢!'} .

E[Yi|Fi—1] = pe, b(0:) = pr = exp(6;), V() =
ue, @ =1, and wy = 1. The canonical link is

g(u) = 0:(ue) = log ur = nr = Zy_ 1.

As an example , if Z;_1 = (1, X4, Y;_1)’, then

log e = Bo + B1 Xt + BaYi—1

with {X;} standing for some covariate process,
or a possible trend, or a possible seasonal com-
ponent.
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Example: Binary Time Series

{Y:} takes the values 0,1. Let
m=P(Y;=1|F_1).
Then
fyti 0,0 | Fro1) =
exp {ytlog (1 i ) + log(1 — m)}

The canonical link gives the logistic regression
model

Tt

=n = 2Z;_16. (9)

g(m) = 6¢(my) = log ;

Note:

m = Fy(ne) (10)
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Partial Likelihood Inference

Given a time series {Y;}, t = 1,..., N, con-
ditionally distributed as (3).

The partial likelihood of the observed series
IS

N
PL(B) = [] F(yt; 01,0 | Fio1). (11)

t=1
Then from (3), the log—partial likelihood, 1(3),
IS given by

N N
I(B) = D 109 f(y,; 00| Fr1) =D L

N (g0 — b(6y) }
{ () + c(yt, @)

{th(Zg_lﬁ) — b(u(z,_103))
at(P)

(]

t=1

N

+ c(yt, <Z5)}
(12)

t=1
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o 0 o\
V = ).
<3ﬁ1 002 35}9)

The partial score is a p—dimensional vector,

18/%(3/;5 — 1 (B))
ony o7 (B)

with o2(8) = Var[Y; | Fi_1].

N
Sn(B) =VIB) = > Z (13)
t=1

The partial score vector process {S;(3)}, t =

1,..., N, is defined from the partial sums
t
Opts (YS — MS(IB))
S — Y/ . 14

14



The solution of the score equation,

Sn(B) =VIogPL(B) =0 (15)

IS denoted by B and is referred to as the max-
imum partial likelihood estimator (MPLE) of
(3. The system of equations (15) is non—linear
and is customarily solved by the Fisher scoring
method, an iterative algorithm resembling the
Newton—Raphson procedure. Before turning
to the Fisher scoring algorithm in our context
of conditional inference, it is necessary to in-
troduce several important matrices.

15



An important role in partial likelihood inference
is played by the cumulative conditional infor-
mation matrix, Gpy(83), defined by a sum of
conditional covariance matrices,

N Ot (Ye — e(B))
C
t; oY o o2 (8)

N o \° 1
— Zzt—1< Mt) O_tQ<I8>Zt—1
— 7Z'W(B)Z.

Gn(8)

Zi_q

| Fi—1

We also need:

Hy(B) = -VV 'I(B).
Define Ry (8) from the difference

Hy(B) = Gn(B) — Ry (8).

Fact: For canonical links Ry(8) = 0.
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Fisher Scoring: In Newton-Raphson replace
Hy(B) by its conditional expectation:

Ut =W + et @")sy™).

Fisher scoring becomes Newton-Raphson for
canonical links.

Fisher scoring simplifies to Iterative Reweighted
east Squares:

_ . -1 _

17



Asymptotic Theory

Assumption A

Al. The true parameter 3 belongs to an open
set B C RP.

A2. The covariate vector Z;_1 almost surely
lies in @ nonrandom compact subset ' of RP,
such that P[> ,Z; 1Z, ; > 0] = 1. In ad-
dition, Z;_lﬁ lies almost surely in the domain
H of the inverse link function h = ¢g—1 for all
Z; 1€l and B € B.

A3. The inverse link function h—defined in
(A2)—is twice continuously differentiable and

[0h(v) /0] # 0.

18



A4. There is a probability measure v on RP
such that [ppzz'v(dz) is positive definite, and
such that under (3) and (4) for Borel sets
A C RP,

1 N
N 2 iz, yea—r(A)
=1

in probability as N — oo, at the true value of 3.

A4 calls for asymptotically “well behaved” co-
variates:

Z]V:]_ f(Zy_1) .
=10 | £@w(dz)

in probability as N — oco. Thus, there exists a
p X p limiting information matrix per observa-
tion, G(3), such that

entB) . apy (16)

in probability, as N — oo.
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Slud and K (1994), Fokianos and K (1998):

1. {S:(B)} relative to {F}, t = 1,...,N, is
a martingale.

R
2. BB g,

3. SJ\V}N@ . N, (0,G(B)).

4. VN(B - B)—Np(0,G~1(B)).

20



100(1 — a)% prediction interval (h =g~ 1)

. . h'(Z!
(B) = Bz a2 7 G (B2

Hypothesis Testing

Let B be the MPLE of B obtained under Hg
with r < p restrictions,

Hoiﬁlz---:ﬁr:O.

Let B be the unrestricted MPLE. The log—
partial likelihood ratio statistic

Ay =2{U(B) — (B} (17)

converges to x?2.
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More generally:

Assume C is a known matrix with full rank

r, T <p.

Under the general linear hypothesis,

Ho: CB = Bg against Hy : CB # By, (18)

{CB - BoY{CG BT} HCB - By} — X2

22



Diagnostics

[(y;y): maximum log partial likelihood corre-
sponding to the saturated model.

I(;y): maximum log partial likelihood from
the reduced model.

e Scaled Deviance:
D =2{l(y;y) — (i y)} ~ X3,

e AIC(p) = —2log PL(83) + 2p,

e BIC(p) = —2logPL(B) +plog N

23



Analysis of Mortality Count Data in LA

Weekly data from Los Angeles County during
a period of 10 years from January 1, 1970, to
December 31, 1979: Weekly sampled filtered
time series. N = 508.

Response

Y Total Mortality (filtered)
Weather

T Temperature

RH Relative humidity
Pollution

cO Carbon monoxide
SO»> Sulfur dioxide
NO»o Nitrogen dioxide
HC Hydrocarbons
OZ Ozone

KM Particulates

24



Mortality, Temperature, log(CO)

. Series : Mort
Mortality .
:
: i
s \ \ ‘HHM‘“‘HHHH
0 5 10
Lag
Series : Temp
Temperature .
" T T
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Series : log(CO)
log(CO)
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o
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<

Weekly data of filtered total mortality and tem-
perature, and log-filtered CO, and the corre-
sponding estimated autocorrelation functions.
N = 508.
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Covariates and n; used in Poisson regression.
S =S5S0,, N =NO,. To recover n, insert the

B's. For Model 2, ;4 = Bo + B1Yi—1 + B2Yi—_o,
etc.

Model O Ty + RHy + CO¢ + St + Ny
+HCy + OZy + K M;

Model 1 Y;_1q

Model 2 Y;_ 1+ Y;_»o

Model 3 Y; 1 +Y: o+ T; 1

Model 4 Y, 1 +Y; o+ T;_1 +109(COy)

Model 5 Y;_ 1+ Y o+ Ti_1+ T2 + 10g(COy)

Model 6 Y; 1+ Yo+ Tt +Ti—1 +109(COy)

26



Comparison of 7 Poisson regression models.

N = 508.
Model p D df AIC BIC
0 9 315.69 499 333.69 371.76
1 2 276.07 506 280.07 288.53
2 3 22223 505 228.23 240.92
3 4 203.52 504 211.52 228.44
4 5 174.55 503 184.55 205.71
5 6 174.53 502 186.53 211.91
6 6 171.41 502 183.41 208.79

Choose Model 4:

log(fiy) = By + B1Yi_1+ BoY; o
+ B3T;_1 + B4109(COy)

27



al
veenennn Fit

Observed and predicted weekly filtered total
mortality from Model 4.



Comparison of Residuals

Model 0 Residuals Model 4 Residuals
™
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Series : ResidO Series : Resid4
o ©
o o
L L
O« O«
QS \‘H\w HHHH‘ o | [ |
o o T T
0 5 10 15 20 25 0 5 10 15 20 25
Lag Lag

Working residuals from Models O and 4, and
their respective estimated autocorrelation.
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Part II: Binary Time Series

Example of bts: Two categories obtained by
Clipping.

_ . 1, if X € C
Yi=lixec) = { 0, if X;eC (19)

. 1, if Xy >
Yt:I[XtZ?“]_{o, if Xp<vr (20)

Other examples: at time t=1,2, ..... :

(Rain, No Rain), (S&P Up, S&P Down), etc.

30



{Y:} taking the values O or 1, t=1,2,3,---.
{Z;_1} p-dim covariate stochastic data.

Against the backdrop of the general framework
presented above we wish to relate

pt(B) = m(B) = Pg(Ye = 1|F—1)  (21)

to the covariates. For this we need good links!

31



Standard logistic distribution,
e” 1

Fi(z) = 1+ e* — 14+ e 2’

—o0o < x < o0

Then,
Fz) = log(z/(1 — 2))

iIs the natural link under some conditions.

32



e Fact: For any bts, there are Gj such that

0g {P(Y% =1Yeo1 = y—1,..., Y1 = y1)}
P(Y; =0|Ys—1=9yt—1,..., Y1 = Y1)
0o+ 01y4—1 + -+ Opyr—p

or

T (B) =
1
1+ exp[—(0o + O1ye—1 + - -+ + Opyi—p)]

e Fact: Consider an AR(p) time series

Xe=v+71Xi—1+ -+ pXe—p + A&

where ¢ are i.i.d. logistically distributed. De-
fine: Yy = Ijx,>,1. Then

m(B) =
1

1+ exp[—(vo—7+71Xi—1+ -+ wXi—p)/Al

33



This motivates logistic regression:

m(8) = Pg(Yt = 1|F—1) = F(B'Z,—1)
1

1+ exp[-B'Z;_ 1]
or equivalently, the link function is

logit(m:(3)) = log {1 itff()ﬁ)

This is the canonical link.

} = 03'Z4_1

34



Link functions for binary time series.

logit B'Z; 1 = |09{7Tt(3)/(1 —m(08))}
probit B'Zi_1 = Hm(B)})

log-log B'Z; 1 = —log{—log(m(3))}
C-log-log B'Z;_1 = log{—log(1 — m(8))}

Note: Here all the inverse links are cdf’'s. In
what follows we always assume the inverse link
is a differentiable cdf F(x).

35



The partial likelihood of 3 takes on the simple
product form,

PL(B)

N
[T (8% (1 — me(B)] ¥
t=1

N
= [JIIF(B'Z1)I¥[1 - F(B'Z 1) ¥
t=1

We have under Assumption A:
VN(B - 8)—Np(0,G~1(B)).

For the canonical link (logistic regression):

Gn(8)
N

6’3 'z

— G(B) = / z7'v(dz)

RP (1 + 6,3/2)2
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Illustration of asymptotic normality.

: 27t
logit(m(8)) = B1 + B2cos (1—7;> + B3Yi-1
so that Z;_1 = (1,cos(27t/12),Y;_1) .

(@)

0.8

0.4

0.0

0 50 100 150 200

(b)

0.8

0.6

0.4

0 50 100 150 200
t

LLogistic autoregression with a sinusoidal com-
ponent. a. Y;. b. m(B) where logit(m(3)) =
0.3+ 0.75cos(2nt/12) + yi_1.

37



bl b2

00 01 02 03 04
00 01 02 03 04

00 01 02 03 04

Histograms of normalized MPLE’s where 8 =
(0.3,0.75,1)", N = 200. Each histogram con-
sists of 1000 estimates.
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Goodness of Fit

C1,---,C, a partition of RP. For 5 =1,---,k,
define,

N
Mj= 2l secy Ve

t=
and

N

E;(B) = ) Iz, ec;m(B)

=1

Put:

M = (Mla"'aMk),;
E(3) = (E1(B), -, Ex(B)).

39



Slud and K (1994), K and Fokianos (2002):

With

2

7} = [, FED - F(@n)a)

k
LOEED I 3 (0~ B(B)?/o} — o

In practice need to adjust the df when replacing

B by B.

40



When 8 and (M —E(B3)) are obtained from the
same data set,

k
E(2(B) ~ k— Y. (B'G(8)B);j/0?

=1

When B and (M — E(B)) are obtained from
independent data sets,

k
E(x*(B)) = k+ Y (B'G(B)B)jj/o%

=1

41



Illustration of the distribution of yx2(8) using
Q-Q plots.

Consider the previous logistic regression model
with a periodic component. Use the partition

Ci={2:7Z1=1,-1<7,<0,Z3 =0}
Co={2:Z1=1,-1<7,<0,Z3 =1}
C3={%2:72,=1,0<25,<1,Z3=0}

Ca={2:2,=1,0<2,<1,Z3=1}

Then, k=4, Mj is the sum of those Y;'s for
which Z;_1 isin C;, 5 = 1,2,3,4, and the E;(3)
are obtained similarly. Estimate a]2 by,

~

1 N
7 =3 L Iz secqmB) A = mi(8))

42



The x2 approximation is quite good.
4

N=200, b=(0.3,0.75,1) N=400, b=(0.3,1,2)
3
S . :
®

2
o3 o
n 0 o
T @ = -
®) ®)
L L
2 -
x © o
= ==

< o

N

o o

0 5 10 15 20 25 0 5 10 15 20
CHI SQ STATISTIC CHI SQ STATISTIC
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Example: Modeling successive eruptions of the
Old Faithful geyser in Yellowstone National Park,
Wyoming.

1 if duration is greater than 3 minutes
O if duration is less than 3 minutes

101110110101011010110101010
111110101010101010101010101
011111010101011010111011111
011101010101010101010101010
101101010101011101111111011
111011111110101010101011111
101010101110101011010111101
010101110101011011011101010
101101111111010101111011011
101101011101011111011101010
110101111111101010101010101
10

N = 299
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Candidate models n; = B8'Z,_1 for Old Faithful.

Bo+ B1Yi—1

Bo + B1Yi—1 + B2Yi—2

Bo+ B1Yi—1 + B2Yi—o + B3Y;_3

AIWNR

Bo+ B1Yi—1+ B2 o+ B3Yi_3+ BaYi_a

Comparison of models using the logistic link:

Model 2 is “best”. Probit reg. gives similar

results.

Model p  X°Z D AIC BIC
1 2 165.00 227.38 231.38 238.46
2 3 165.00 215.53 221.53 232.15
3 4 165.00 215.08 223.08 237.24
4 5 164.97 213.99 223.99 241.69

. . 1

Tt = m(3)

1+ exp{—(Bo+ B1Yi—1 + B2Yi—2)}
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Part IIl: Categorical Time Series

EEG sleep state classified or quantized in four
categories as follows.

1 : quiet sleep,

2 . indeterminate sleep,

3 . active sleep,

4 . awake.
Here the sleep state categories or levels are as-
signed integer values. This is an example of a
categorical time series {Y:}, t = 1, ..., N, taking
the values 1, ..., 4.

This is an arbitrary integer assignment. Why

not the values 7.1, 15.8, 19.24, 71.17 7 Any
other scale 7

46



Assume m categories.

The t'th observation of any categorical time
series—regardless of the measurement scale—
can be represented by the vector

/
Y= (Yi1,.--, Yig)
of length ¢ = m — 1, with elements

{ 1, if the jth category is observed at time ¢
0, otherwise
fort=1,...,Nand 3=1,...,q.

BTS is a special case with m = 2,9 = 1.

a7



Write for y = 1,...,q,

m; = E[Y;; | Fi1]l = P(Yy; = 1| Fi1),

Define:

Ty — (7Tt17 K 7th)/

q
Y;fm:]-_zy;fj
j=1

Let {Z; 1}, t=1,...,N, for a pxq matrix that
represents a covariate process.

Ytj corresponds to a vector of length p of ran-
dom time dependent covariates which forms

the jth column of Z;_1.

48



Assume the general regression model:

[ m1(8) (h1(Z;_18)

(x) m(B) = m2(8) _ hQ(Z%_llB)

\ 714(3) ) \ h(Z]_18) )

= h(Z;_18).

The inverse link function h is defined on RY
and takes values in RY.

We shall only examine nominal and ordinal time
series.
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Nominal Time Series.

Nominal categorical variables lack natural or-
dering.

A model for nominal time series: Multinomial
logit model

exp(B)zi—1)

Y .] — 17"'7q
1+ > exp(B)ze—1)

i (B) =
Note that

Tm(B) = .

14+ 57 exp(Bizi—1)

50



Multinomial logit model is a special case of (*).
Indeed, define 3 to be the p = qd-vector

B = (P18,
and Z;_1 the gd x g matrix

[ 74 1 0o --- 0
Zp=| ot 0
00 oz
Let h stand for the vector valued function whose
components hj, 7 =1,...,q, are given by
73 (B) = hj(n) = ——PUD) 5y

14+ 7 exp(ny)’ ”
with

Ny — (77751, S ﬂ?tq)/ — Z;f—]_/B°
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Ordinal Time Series.

Measured on a scale endowed with a natural
ordering.

A model for ordinal time series: Need a la-
tent or auxiliary variable.

Put
Xt =z 1+ e,

1. e ~cdf F i.i.d.
2. v d-dim vector of parameters.
3. z;_1 covariate d-dim vector.

Define a categorical time series {Y;}, from the
levels of {X;},

Y;j:j<:>§/;gj:1<:>9j_1§Xt<9j
—oco=60p <01 <... <0y = 0.
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T hen

P(Oj_1 <Xy <0, | Fi—1)
F0; +~'2_1) — F(0j_1+~'2_1),

for g, =1,...,m.

7th

There are many possibilities depending on F..

Special case: Proportional Odds Model,

1
F = F = :
() = F2) = T o s
Then we have for y=1,...,q,
P[Yt<j|]:t—1]} /
Iog{ ==a =0, +v2z-1
P[Y: > j|Fi—1 /

53



Proportional odds model has the form (*) with
p = (q+d):

IB — (917 SR 70617'7/)/
and Z;_1 the (¢ + d) x ¢ matrix

1 0 0 |
0 1 0
1y 1 = : Pt ;
0O o ... 1
| Z¢—1 L¢—1 L1 |
Now set

h=(h1,...,hq),
and let for y =2,...,q,

m11(8) = h1(ny) F(n1),
m;(B) = hj(ny) = F(ny) — F(ny-1)),

where

Ny — (77151, S 77715(])/ — Z;f—]_/B°
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Partial likelihood estimation.

Introduce the multinomial probability

fyeaBl Fim1) =11 mi (B)Y.

J=1
The partial likelihood is a product of the multi-
nomial probabilities,

N
11 fGve BIFi-1)

PL(B) =
t=1
N m -
— H H Wtjj(ﬁ)7
t=1j=1

so that the partial log-likelihood is given by

N m
I(B) =logPL(B) = > > wjlogm;i(B).

t=1j=1
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Under a modified Assumption A:

GnNGB)

L= [ ZUB(BIU(B)Zv(dZ) = G(B)

VN(B - B)—N, (0,G1(8))

VN (ﬂ't(,@) — Wt(ﬁ)) —
Ny (0,Z,_1D4(8)G~1(B)D{(B)Z;_; )
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Example: Sleep State.

Covariates: Heart Rate, Temperature.
N = 700.

quiet sleep,
indeterminate sleep,

active sleep,
awake.

Ordinal CTS: "4" <717 <"2" <"3".

A OWNHR

A ] b

400 600
time

0 200 400 600 800 1000
i

0 200 400 600 800 1000
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Fit proportional odds models.

Model Covariates AIC

1 1+Y,; 1 401.56
2 14+Y,;_1+log Rt 401.51
3 1—|—Yt_1—|—log Rt—|—Tt 403.32
4 14+Y, 1+T; 403.52
5 1+Yt_1—|—Yt_2+|Og Rt 407.28
6 14+Y;_1+1l0g R;_q 403.40
7 1+4+log Ry 1692.31
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Model 2: 1+ Y;_1+ log R;

oo [P0S4 15
g LA 1

P(Y; >"4" | F4-1)
01 + 71Y(t_1)1 + ’YQY(t_l)Q + ’Y3Y(t_1)3 + 74109 Ry,

oo [P0 ST 15

Og LR LR
P(Y;>"1" | Fi-1)

02 +71Y—1)1 T 72Y—1)2 T 713Y(1—1)3 + 74 l0g Ry,

| [Pm <"2" fH)]

Og LR LR
P(Y;>"2" | Fi-1)

03 +71Y—1)1 T 72Y—1)2 T 13Y(1—1)3 T+ 74 l0g Ry,

6y = —30.352, 0, = —23.493, 03 = —20.349,
1 = 16.718, Ao = 9.533, A3 = 4.755, A4 =
3.556.

The corresponding standard errors are 12.051,
12.012, 11.985, 0.872, 0.630, 0.501 and 2.470.
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(b)

250 300

(a) Observed versus (b) predicted sleep states
for Model 2 of Table applied to the testing
data set. N = 322.
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