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Totally anti-symmetric functions

For a permutation ¢ € Gy (symmetric group on n symbols):
W (Xg(1) Xa(2) - Xon)) = (1) 7P (xq, X2, ..., X)
¥ e A" 12(R?) (totally) anti-symmetric, in short:

Y(ox) = (-1D)7¥(x)



Totally anti-symmetric functions

For a permutation ¢ € Gy (symmetric group on n symbols):
lP(’Cau)'xa(z); -'-'xa(N)) = (D)W (xq, X2, e, XN)
¥ e A" 12(R?) (totally) anti-symmetric, in short:

Y(ox) = (—1)¥(x)

Why? ldentical particles in quantum mechanics
* Bosonic particles: symmetric (also has applications besides quantum);

* Fermionic particles: antisymmetric (Pauli's exclusion principle)



Variational principle for ground state

Given Hamiltonian operator H

(PIH|P)

E, = in
0 wepAV 12ra) (P|W)

For practical calculations, require to choose an ansatz for antisymmetric
functions.



Slater determinants (aka Quantum Chemistry 101)

Let {¢;, i =1,2,..,N} € L?(R%) be a set of orthonormal functions

01(x1)  @2(x1) - on(xy)
Weol{p)] (x) = det| V1072 #2(2) o owla)

‘Pl(xN) ‘Pz(xN) <PN(.XN)

This leads to the Hartree-Fock method, a cornerstone of quantum
chemistry.



Going beyond Hartree-Fock

However, for most systems, the ansatz of Slater determinant is too
restrictive and leads to huge error (correlation energy).

Many generalizations have been proposed over the years
¢ Configuration interaction;
* (unitary) Coupled cluster;
* Multi-configurational self-consistent field;

¢ Slater-Jastrow wavefunctions;

Remark. An entirely different approach to address anti-symmetry is via
second quantization.



Backflow transformation ansatz

Proposed originally by [Feynman-Cohen, Phys Rev 1956] for liquid Helium.
Building blocks: ¢ € LZ(R% x RAN-1) s t.

p(x;y) =@(x;0y), VoEGy 4

Backflow determinants:

O1(x;X_1)  @a(x;X_1) - on(xg5X_4)
Wer[{0)] (%) = det <p1(x2, —2) ‘Pz(xz'J_V 2) ‘l’N(xz:J_‘C 2)
<P1(xNi3_C—N) <P2(XN27_C—N) fPN(xN.ﬁ_C—N)

with the shorthand x_; := (x4, ..., X{j_1, Xj41) --» XN)
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No-go result for backflow ansatz?

Theorem (Huang-Landsberg-L.)

For each fixed N, for all total degree D sufficiently large, the algebraic
ansatz map Wgr is not surjective.

dim(target) ~ N4V=% dim(source),

i.e., in general, one needs a linear combination of roughly N4N=d hackflow
determinants to represent a general antisymmetric polynomial function.



Symmetric functions

Deep Sets [Zaheer et al, NeurlPS 2017], an ansatz for (totally) symmetric

function
Y(ox) = Y(x), Vo €EGy

Choose a set of symmetric polynomials 74, ..., n;, and write

f) = g1, n2(%), e, M (X))

for a general function g.

Deep Sets
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Theorem (Chen-Chen-L.)

Givend =1, N > 1, and a compact subset O € R%. Let 1y, ..., N
generate ?g};ﬁ(R) as R-algebra.

For any f : QN — R totally symmetric and continuous, there exists a
unique continuous function g : n(QN) - R such that

f(x) =g@m)

where 1 = (M1,M2, -+, Mm)-

The generation condition can be relaxed [Wang et al, ICLR 2024].

Orbit distinguishing property: Given x, x', if 1, (x) = n,(x") for all
k=1,..,m, then 30 € Sy, s.t.,, ox = x'.
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Figure: Commutative diagram for the proof of Theorem.



Symmetry to antisymmetry

Perhaps we can “borrow"” results from symmetric case?

An old attempt:
ql(x) = llJO('XI)CI)sym (x)

for a specific anti-symmetric function ¥.



Symmetry to antisymmetry

Perhaps we can “borrow"” results from symmetric case?

An old attempt:
lIJ(x) = llJO('XI)CI)sym (x)

for a specific anti-symmetric function W,,.

Works well for d = 1 [Cauchy, J. Ecole Polytech. 1815] by choosing

1 x; x2 - N1
1 x, x2 - x¥1
Yo =der|, TR =Y 0w
P £
1 xy x3 - a1 /

Vandemonde determinant (aka Slater det. w/ @y (x) = x*71)

However does not work in higher dimension (known in the physics /
chemistry literature as the nodal surface difficulty)



From symmetry to antisymmetry

A new attempt to change the ansatz, inspired by Deep Sets:

() = g (%), n2(%), .., N (X))

where (4, ..., Ny) sastify
® 1 is anti-symmetric and continuous;
* n(x) =0 if and only if x; = x; for some i # j;
* orbit distinguishing for Sy .

Take-home summary of ansatz:
Linear combination of dets — general odd function g of dets



Theorem (Chen-L.)

Givend =1, N = 1, and a compact subset Q) C R% Jet

M1y ) + Q¥ > R™ satisfy the assumption.

For any f : QN = R totally antisymmetric and continuous, there exits a
unique continuous and odd function g : n(Q") > R such that

f(x) =g@m)

where 1 = (M1,M2, -+, Mm)-

Question: How large m needs to be?



Explicit construction for § (and an upper bound for m):

Key idea: Projecting points to 1D.
*Setm="C2.@d-1)+1,
* Choose random vectors {w;},i =1,---,m C §a-1.

* Take nj to be a Vandermonde determinant

1 owgxy (wgxg)® - (wga)V ™!
1 wix, Wixp)? - (wixy)V7?
M) = der; WXz (MR (ERITEN r
_ i<j
T owexy (wixy)® - (wgay)V ™t

(M1, -, Mm) satisfy the assumption with high probability (suffices to make
sure that the 1D projections can distinguish points).



Conclusion

Y(x) = gm(x), ., (X))

* Ansatz for symmetric and antisymmetric functions;
* Exact representation for continuous functions;

* Efficiency: m depends mildly on d and N;

Some interesting directions:
* Regularity / singularity for wave-functions (in terms of g and n);
* Training schemes for variational Monte Carlo;

* Applications to quantum systems.
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