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Learning Interaction Laws In Interacting Particle
Systems

Problem: Given observations of trajectories of a dynamical system of interact-
ing agents, learn the interaction rules.

Motivation: particle-/agent-based systems ubiquitous in Physics, Biology, so-
cial sciences, Economics, ... Beyond model-based interaction rules.

Further goals: hypothesis testing for agent-based systems; transfer learning;
agents on networks; collaborative and competitive games.
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Felix Munoz, https://www.youtube.com/watch?v=OxYn3e_imhA BBC Blue Planet (clip from YouTube)



https://www.youtube.com/watch?v=15B8qN9dre4

Learning Interaction Laws in Interacting Particle
Systems

Problem: Given observations of trajectories of a dynamical system of interact-
ing agents, learn the interaction rules.

Motivation: particle-/agent-based systems ubiquitous in Physics, Biology, so-
cial sciences, Economics, ... Beyond model-based interaction rules.

Further goals: hypothesis testing for agent-based systems; transter learning;
agents on networks; collaborative and competitive games.
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Estimation/Learning for ODE systems

Suppose we have a system driven by of ODEs in the form g X0
m=1 X/ ..... mm
x(t) = f(x(t)) ,xecRP f:R” - RV

and we are given observations of positions and velocities

. e ./VX @) ()
(X(m) (tl)ax(m) (tl))l:L...,L;m:l,...,M 3 x<2>\‘

where:
0=t <--- <t =1T;
m indexes trajectories corresponding to different initial conditions at t1 = 0

Problem: construct an estimator f,, that is close to f. > Y

Statistical learning version: (X(m) (1), %x(m) (t1))i=1.... L:m=1..... M, With x (1) (t1) ~iid.
1o; construct an estimator f,, the unknown f.

We are interested in the nonparametric setting, i.e. no assumptions on f except
some regularity.



Nonparametric regression

Statistical learning version:

(X(m)(tl)aX(m)(tl))lzl,...,L;mzl,...,M7 with x("™)(t1) ~ii4. o, We want to con-
struct an estimator f,, the unknown f in x(t) = f(x(?)).

Possible approach: regression. In regression one is given pairs

{(zs,f(z;) + )}, with z; € RP 2, ~i14. p,

with 1 independent noise, and outputs an estimator f,.

Well-understood problem: estimators that, for f s-Holder regular, satisfy

E[|[f, - f]|72(,)] S

Moreover, this learning rate is optimal
(in the so-called min-max sense:

for any estimator one can find f

for which the estimator does not converge
to f any faster than this).

2s

.
.
R
o
-
D
-
[
»
\J
.
.
Cy o
* *
. *
*
O,
-------------

L]
...
.
‘e
‘4

*
. o
o*
.
o




Nonparametric estimation

Suppose we have a system driven by of ODEs in the form

x(t) = f(x(t)) ,xeR” f:R” - R”
: : . "y (1,
and we are given observations of positions and velocities (2
X(l)(tl)I
: x((t1) x3)(tr)
(X(m) (t1), x (™) (t1))i=1,...Lom=1,...M j‘
m =2 X(2)(tL)
where: @) .{:(2)
O=t1 < --- <t =15 T N .;,X (t2)
m indexes trajectories corresponding to different initial conditions at t; = 0 x@y) X () RD

A

Problem: construct an estimator f,, that is close to f.

(Pﬁm) (tl)ai‘:’(m) (t1)i=1.... Lom=1....a1, With xU")(t1) ~; 1.4, o, construct f,.
Z; f(ZZ)

The observations are independent in m, but not in .
Even if we pretended to have independence, without further assumptions on f,

S

besides s-Holder regularity, the best attainable rate is E[||f, — f||z2] < n~z+D,
where n = LM (L obs. in each of M traj.) and D = Nd (N agents in R?).

For a system of N agents in RY, D = Nd is typically very large, and the rate
n~ 2s+D unsatisfactory. Further assumptions are needed for better rates.




Agent-based systems

Particle- and agent-based systems are driven by ODEs with special structure.
A simple prototypical model:

(m) _ 1 m m m m
" = 2o ol =X e = x™)

Given observations {(x;,%;)}.; at different times {#;}/~, and/or for different
initial conditions {x(™ (0)}*_. we want to learn the interaction kernel ¢.
Different limits: N — +oo (mean-field limit, joint work with M. Fornasier and

M. Bongini), M — +o0o (joint work with F. Lu, S. Tang and M. Zhong).

- Strong model assumption on the form of the ODE system. Now the un-
known is the function ¢ of 1 variable, r.

- We may be able avoid the curse of dimensionality.

- No value ¢(r) is observed, so this is not regression, but an inverse problem.



Agent-based systems

Particle- and agent-based systems are driven by ODEs with special structure.
A simple prototypical model:

N
. (m 1 m m m m
%" = = > ol —x D -5
i'=1
Given observations {(x;,x;)},; at different times {t;};~, and/or for different
initial conditions {x(™ (0)}*_, we want to learn the interaction kernel ¢.

Different limits: N — +oo (mean-field limit, joint work with M. Fornasier and
M. Bongini), M — +o00o (joint work with F. Lu, S. Tang and M. Zhong).
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x10
M = 16 —¢ - _
~6 , 8_ - xi(b)
pr i — i
LM 6 |

Pr —_— —_—
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t

x; > 0 is the 7-th opinion, ¢ = 1,...,10.

r (pairwise distance)



The estimator for the interaction kernel

Observations: {(xgm),k(m))(tl) ]IV:’%;Zl __q, for M different initial conditions

1

1.i.d. ~ pg, from

k(" (¢ Z B(I1xS™ () = x™ (O (I (1) — ™ (1)) = f¢((\><gm> -

linear map (in ¢) applied
to unknown ¢

Consider the empirical error functional

L.M,N

Ear() = —— S [ 1) — £, (1).)

2
LMN H

l,m,i=1

Our estimator is defined as a minimizer of £, ps over ¥ € H, a suitable hypoth-
esis space of functions on Ry, with dim(H) = n (with n = n(M)):

5 = in & .
O M3 = arg 3161% L.m (W)

For H linear subspace, this is a least squares problem (Gauss, Legendre). We
want a large H to reduce bias, but not to large as that increases the number of

parameters to be estimated for a given amount of data.



Coercivity condition

1T "R L) (m) 2
Em(V) = oy 2o IR ) = 8™ @)
[, m,i=1

5 = in & :
QL. MM = arg quHEI% r,m (V)

We shall assume that the unknown interaction kernel ¢ is in the admissible class

Krs:={¢Y € C'(Ry) : supp.yp C [0, R],sup,.cjo g |9(r)] + [¢'(r)] < S}
Coercivity condition: V¢ : ¢¥(-)- € H, for cp ny 1, Tii = Xi—Xir, Tiir = |73 ||

TE G Qi )
CL,N,HH/QD(') ) “%2(p%)§ N—L lz_:lEHN Z_:lw(rmf (tl))rii/ (tl)H .

Lemma. Coercivity = unique minimizer of limp;_, 1o € a7 (W) over ¥ € H

b—deH = conmllb() —0() 2aip) < Epoo® — &)

The coercivity constant ¢z, n 34 also controls the condition number of the matrix
in the least squares problem yielding ¢, ar 7.



Blas/variance trade-off

| DAMN
. 2
ELm(p) = 7 D [ (0) — £ ()]
[, m,1=1
O v = argmin Ex pr (@) .
peEH
+ coercivity
bias decreases as dim ‘H increases; depends only on
approximation properties of H Kp s L?(pk)
variance increases as dim A increases, for fixed M; 7 e
measures randomness of ¢, pr 4y € H 1
bias
Pick dim ‘H an increasing function of M, \Py, b
to attain the minimum of the sum of \Ajva#ance
bias (squared) and variance. H LM € H

Unlike regression, we do not have access to values of ¢, but only observations
that are linear functions (via f4) of ¢; coercivity implies stable invertibility.



Main Theorem (first order systems)

Theorem. Let {#H,}, € H be a sequence of subspaces of L°°[0, R|, with
dim(H,) < con and inf ey, ||0(-) — @()|| Lo (jo,r) < can™?, for some constants
co,C1,S > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)Tlﬂz then for some C' = C(cg,c1, R, 5)

E[3 | C_ (loedly
LMo L2(p - CL N, H M '
hi¢ 1s just the Xunction that,
. The goggls Rate d@c%aﬁ% alcla,df%(ﬁt eyen Mg]gbt(lp}pl in the case of

regressigl), SeheRs e e E’e(ﬁﬂé&e%rére@téffes

COercivi y constant: 1t 1s a crucial

- The bad: no dependency on j%raﬁ@%@ﬁ%ﬂ%r%ﬂ%%%%ﬁ%ﬁe%ﬁ@ﬂoﬁ%
effective sample size can be LM, = #ebss B%m]%% @@%E&@d@lgﬁ%grgﬁtem.

In the examples we choose H,, to be the space of piecewise linear functions on a
uniform partition of cardinality n of [0, Ruyax] (estimated supp.p?), for n = n,.
Fourier, wavelets, etc...would be other natural choices.

In the end solving the minimization problem is a least-squares problem in n = n,
dimensions. Algorithms for constructing the LS matrix and computing the
estimator run in time O(N?Ld - M + Mn?) (online versions also possible).




Errors on trajectories

Standard arguments yield bounds on the distance between trajectories of the
true system and those of the system driven by the estimated interaction kernel.

Proposition. Assume ¢(|| - ||)- € Lip(R%), with Lipschitz constant CLip- Let

X(t) and X(t) be the solutions of systems with kernels ¢ and ¢ respectively,
started from the same initial condition. Then for each trajectory

~ 2o [ 2
sup K1) = X(0)|? = 276 [|%(0) = X0
te[0,T] 0

and on average w.r.t. the distribution ug of initial conditions:

E,[ sup [X(t) —X(®)|] < C(T, Crip)VN||o(-) - —=6() - [ 2(pp)

te[0,T]

where C(T, CLip) is a constant depending on 7" and Ctip.



Example 2na order systems

simple environment

(food, light, ...)

G =FE) Y+

energy and alignment
interactions

one kernel for each
pair of interacting

L y agent types
1 =1
AE . A . A
., VS Peg, X(t) (driven by ¢) X(t) (driven by ¢)
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Example 2nd order Prey-Predator system. Left: the interaction kernels and
p1’s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).
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Examples: prey-predator systems
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Trajectories of the true system (left col.) and learned system (right col.) with
an initial condition from training data (top) and a new one (bottom).



EMmerging behaviors

Ming Zhong,
Jason Miller

Organized collecting stable patterns at large spatial /temporal scale.

Simple, local interaction kernels can learn to complex, organized behavior.
Most of the above is ill-defined, and quotes needed a.e.

Examples include flocking of bird, milling of fish, synchronization in systems of
oscillators (neurons, frogs, ...), etc...

In general difficult to characterize and predict; however if robust, we may hope
to recover them with systems driven by estimated interaction kernels.

Not only we are often able to recover them in general, but even predict them
correctly for each initial condition, with good probability of success.
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Felix Munoz, https://www.youtube.com/watch?v=OxYn3e_imhA BBC Blue Planet



https://www.youtube.com/watch?v=15B8qN9dre4

Emerging behaviors: flocking

The governing equations of Cucker-Smale-Dong (*) dynamics,

e

*) F. Cucker, J. G. Dong,
Avoiding collisions in flocks,
IEEE Transactions on
Automatic Control, 2010.

X; = —bi(t)%X; + Z g (%) (ki — %) 4+ f(IIxi — x| *) (%0 — x3)] -

Here a;(x) = H(1+ ||x¢ — x;[|*)77; b; : [0,00) — [0,00) is a bounded and
uniformly continuous damping function, and f : (J,00) — |0,00) is a non-

increasing C! repulsion function integrable at +oo.
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Emerging behaviors: anticipation & ﬂocklng

N ) R. Shu and E. Tadmor,
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Emerging benhaviors: Fish mill patterns

The governing equations of fish milling dynamics in R? of (*) are

Zi’ VQU(XZ', Xi/) ,

with U(x;,-) is a potential for the interaction of the it"

— B|%:]]*%; —

(*) Y. Li Chuang, M. R. D’Orsogna,
D. Marthaler, A. L. Bertozzi, L. S.
Chayes, Physica D: Nonlinear Phe-
nomena 232 (2007)

agents: U(Xi7Xi/) — (_Cae_”xi—xilH/ga _|_ OTQ_HX@'—XWH/ET).
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Interacting particles on manifolds
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Generalization/to manifolds:

- distances — geodesic distances
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ICML 2021



The Stochastic case

We have also generalized these results to the stochastic case

N
1
dXit = ~ z_; O(||xir e — Xi el )(Xirt — X4 ¢)dt +0dBy ¢ .

Joint work with F. Lu and S. Tang, Learning interaction kernels in stochastic
systems of interacting particles from multiple trajectories, FOCM, 2021.

Note that in the stochastic case we do not (cannot!) observe velocities, but only

positions. We have studied carefully the dependence on the observation time
gap At = tl_|_1 — tl = T/L

. . I n [T
HQSL,T,M,"H — ¢HL2(pT) < H¢T,oo,?—[ — ¢|‘L2(pT) +C ( M =+ Z) )

approximation statistical  discretization
error error error

where ggT,OO,H is the projection of the true kernel ¢ onto H.



Stochastic opinion dynamics
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Stochastic Lennard-Jones
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Interacting Particle
Systems on Networks

We consider a heterogeneous dynamical system with [V interacting particles on
a graph: G = (V, E,a) a graph, a = (a;;) € [0, 1]V*" a;; > 0iff (i,5) € E.
At each vertex i € {1,..., N} there is a particle X! € R¢, with dynamics

Sao t  dX] =) ay®(X] - X])dt+ocdW], i=1,...,N
J71
Observations: {Xz(ﬁ?l)}le[L],me[M] + noise, where X = (X;);eqn € RV*4 .

Want to estimate both a € [0, 1]V *" and @ : R — R,



| ennard-Jones Interactions on a network
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Interacting Particle Systems on Networks

We consider a heterogeneous dynamical system with [V interacting particles on
a graph: G = (V, E,a) a graph, a = (a;;) € [0, 1]V, a;; > 0iff (i,5) € E.
At each vertex i € {1,..., N} there is a particle X! € R¢, with dynamics

Sao :  dX]i=) a;®(X] - X))dt+odW;, i=1,...,N

J 71
Observations: {X(m)}l6 | me[m] + noise, where X = (X;);cin € RN xd

Want to estimate both a € [0,1]¥*" and ® : RY — R,

Parametric setting for simplicity: ® € H, for some given finite-dimensional
hypothesis space H = span{ vy }re[p); then & = Zke[p] CLUk .

(a,¢) = argming, & m(a,c)

LM ,
Erm(a,c) = - > [|AXE —aB(X{)eAt];,
[=0,m=1

where B(X4); := (wk(X] X’L)) c RNX1xdXp for each i € [N].

7



Interacting Particle Systems on Networks

Sad dX; =) a;®(X] - X)dt + cdW;, i=1,...,N
JF
Observations: {Xg”)}ze[L],me[M] + noise, where X = (X;);e;ny € RV

Parametric setting for simplicity: ® € H, for some given finite-dimensional
hypothesis space H = span{yy }re[p; then ® = Zke[p] CLVk .

(a,¢) = argming, &L m(a,c)

1 L—1,M 5
Eru(ac) = ) [[AXE —aB(X{)eAdf,
MT [=0,m=1

Normalization: ||a; .|| = 1, defining the set M of admissible weights.

£ nonlinear, non-convex, but separately convex in each of the two arguments.



Alternating Least Squares

(a,¢) = argmin, €L v (a,c)
, L-LM
m m 2
gL,M(aa C) e — Z HAth — aB(th )CAtHF

MT
[=0,m=1

1. Given c, estimate a by directly solving the minimizer of the quadratic loss
/ function with ¢ fixed, which solves

8 AN = B0 (BXE)ilme) = [(AXE); 1 /Al

with [B(X7)]im € RVXALMIx2 - AMGS = [B(X[)i]ime € RYXLM) ang
[AX7];m € RY XALMN ghtained by multiplying appropriate tensor slices by c.

2. Given a, estimate ¢ by minimizing the loss function with fixed a by solving
AL = [aB(X))imC = [AX]1m/ At

where AALS = [aB(X[")];,m € RM¥MNXP is again obtained by stacking in a
block-row fashion and AEAL’I;\?,Z- = [aB(X{):li,m




Operation Regression + ALS

(a,¢) = argmin, €L v (a,c)

, LM ,
Erm(ae)i=—= >  [[AX] —aB(X}))cAt||,,
MT [=0,m=1

Operator Regression. Consider {Z; = a,;’r,cT c RIW-DXxP1N treated as vectors
z; € RIW=1px1. they golve

Ai vz = [Ailimzi = [(@aB(XY")cAl)s]im = [((AXE)ilim, @ € [V],

where A; pr = [As]m € RIM Lx(N=1p gince the loss function can be written as

L,M,N - 2
ﬁ l,m,i=1 H(AX )’i]l,m — [Ai]l,mzi

Deterministic ALS stage. The rows of a and the vector ¢ are estimated via a
joint factorization of the matrices of the estimated vectors {Zz; s}, denoted by

Z; rr, with a shared vector c:

(5M,/C\M) — argminaeM,ceRpg(37 c) = Z “Zi’M B aiT"CTH




Theoretical results

The system satisfies a rank-2 joint coercivity condition on H if dcy > 0
s.t. V@1, Py € H with (@1, Ps)p2(,,) =0, Vall), a® € M and Vi € [N]

2
1 2 1 2
Z [Z ) 1 (ri; (1)) +aj; @a(ry ()] ]z(m [al 21112, + a2 @22,

=0 J#1
uniqueness of the minimizer for M = oo, matrices in the least squares
solution of &1, o (a, ®) = 0. steps of ALS are well-conditioned.

The system satisfies an interaction kernel coercivity condition in H if

3con € (0,1) s.t. V@ € H and i € [N] z— S0 3 Eltr Cov(®(ry;(ty)) |
F)] = cou||®||5, where F} is the o-algebra generated by (Xy,_,, X},).

rank-2 joint ORALS yields consistent and matrices in ORALS
coercivity asymptotically normal estimator are well-conditioned



Convergence for large M

ALS B ORALS ALS
J_ +
10714 § 1071}
S 102} S 1072 ° :
= : = 5 5
Q. Q. <
S 1073 | $ & 100 | T 5 =
O % O] X X
: |

T= |
3 > B N 3 > D
D D D N D D D D
M M
ALS ALS ORALS
o 0 — T T
10 2 1 10 ¢ H
i s
+
o ES o o o +
Padd = = 0| = 0|
© 1072} S 1021 5 10 i 10 i
%c% f% 2 * 2
© © o + @ |
O] O] NV NV i
+
1
N R ) > N R ) 3 N R ) D N R ) N
D A D N D D D N D D D N D N D N
M M M M

Convergence with sample size M increasing in 100 independent experiment runs.
The top row shows almost perfect rates of M ~1/2 for both algorithms for the case
of noiseless data and a well-specified basis. For the case of noisy observations,
the bottom row shows robust convergence with the errors decaying until they
reach 10~#, the variance of observation noise.



Estimation Error

Convergence & sampling
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Top: Estimation errors as a function of M (all other parameters fixed), for ALS and ORALS, for
a random Fourier interaction kernel with p = 16, N = 32, L = 2 (left) and L = 8 (right). In the
small and medium sample regime, between the two vertical bars, ALS significantly and consistently
outperforms ORALS; for large sample sizes, the two estimators have similar performance. Bottom:
The performance of the ALS estimator improves not only as M increases but also as L increases.



Computational cost
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Assembling mats/vecs
Solving

O(M LdN?p)
O(MLAN (p? + N?))

O(M LdN3p?)
O(MLAN? + N4p3)

Total (if MLd > N)

O(MLAN (p* +

Np + N?))

O(MLAN® + N*p3)
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| ennard-Jones Interactions on a network
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Kuramoto interactions on a network
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JEN;
H = span{cos(x), sin(2x), cos(2z), . . ., cos(7x),sin(7x)}, which does not contain

¢, and Hy := span{H, D}.
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Kuramoto interactions on a network
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Kuramoto interactions on a network

dX; =k » a;sin(X] — X])dt + cd W/
JEN;

H = span{cos(x), sin(2x), cos(2z), . ..
¢, and Hy := span{H, D}.
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| eader-follower opinion dynam|cs
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with ®(z) = =91 () — 0.1)2(x), where ¥ (x) = Liz<1y, ¥2(7) = 1i1cp<i.5)-

“Leaders”: consider the feature L; = a|la;.||s, + Bl|la.l|¢,, with a+ 8 = 1. With a > 3, clustering
yields the set of “leaders”. N
“Followers”: we group them by assigning them to leaders based on a score Lé? = Q) con || +

Q
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dX} =3 a;; ®(X] — X))dt + cdW;}
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B> icar |aji| from groups G* of “followers” to “leaders”.
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Estimated networks of leaders and followers, with training sample sizes M € {15,30,100}. When
M = 100, the estimated network is accurate. When M = 30, the leaders-follower network is
correctly identified, though the weight matrix is less accurate. When M = 15, the sample size is
too small for a meaningtul inference; but the clustering is still reliable.



Particles of different types

Sa ()2, dX; =) a;®up(X] — X})dt + odW/},  i=1,...,N
j#i

Qi) (2) = D=1 Cri¥r(T) c € RPN C.i = C.k(i)

Xt — aB(Xt)c -+ O'W — (aZB(Xt)ZCZ)zE[N] -+ O'W

aZB(Xt)ZcZ = Z]#z a; j ZZ:l wk(Xg — X;)C]m - Rd,i =1,....N

Writing ¢ = uv’, with u € RP*? the coefficient matrix, and v € RY*X? the type
matrix, both orthogonal, we relax the problem to

! LM

. m m T 2

Argmin , 4 y)e MxRPXQ xRN X @ VT E HAth — aB(th Juv AtHF
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We use 3-way ALS to solve this problem; to enforce that c is not just low rank, but
has only @) different columns, i.e. c.; = c.,(;), perform K-means on the cols(c) at
every 1teration.



Particles of different types: example

log 10 Error

dX| = Zj;éz azjq)ﬁ;(z) (XJ
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k: |N| — [Q], with @Q = 2, with ®; short-range, and ®5 long-range.

Error decay with iterations
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Estimation of two types of kernels: short range and long range. The first panel shows the error
decay with respect to iteration numbers. The algorithm using K-means decays faster and reaches

lower errors than the algorithm without K-means.

The right two columns show the estimation

result of the two kernels. The classification is correct for both of the algorithms, and the one with

K-means yields more accurate estimators, particularly for the kernel Type 1.




Particles of different types: model selection
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Q|, with @ € {1, 2} interaction kernels. Estimators are constructed, in either case, with
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= 1 and ) = 2. Their performance is evaluated with prediction error on long trajectories.
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Estimated kernels in a misspecified case: estimating two types of kernel when data is generated

using a single kernel. Output consists of two types of kernels, but both are close to the true kernel.



Conclusions

- Learning interaction kernels in particle systems may be performed efficiently,
nonparametrically, without curse of dimensionality of the state space...

- ...also on networks, with particles of different types, with interaction kernels,
networks and types all unknown.

- Generalizations: 1st- and 2nd-order, multi-type, stochastic; learning variables;
more general interaction kernels.
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Links to code, papers:
https://mauromaggioni.duckdns.org




