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Abstract We study large deviations in the Langevin dynamics, with damping of order ε−1

and noise of order 1, as ε ↓ 0. The damping coefficient is assumed to be state dependent. We
proceed first with a change of time and then we use a weak convergence approach to large
deviations and its equivalent formulation in terms of the Laplace principle, to determine the
good action functional. Some applications of these results to the exit problem from a domain
and to the wave front propagation for a suitable class of reaction diffusion equations are
considered.

Keywords Large deviations · Laplace principle · Over damped stochastic differential
equations

1 Introduction

For every ε > 0, let us consider the Langevin equation

⎧
⎨

⎩

q̈ ε(t) = b(qε(t)) − α(qε(t))

ε
q̇ ε(t) + σ(qε(t))Ḃ(t),

qε(0) = q ∈ R
d , q̇ε(0) = p ∈ R

d .
(1.1)

Here B(t) is a r -dimensional standard Wiener process, defined on some complete stochastic
basis (�,F, {Ft },P). In what follows, we shall assume that b is Lipschitz continuous and
α and σ are bounded and continuously differentiable, with bounded derivative. Moreover, σ
is invertible and there exist two constants 0 < α0 < α1 such that a0 ≤ α(q) ≤ α1, for all
q ∈ R

d . Equation (1.1) can be rewritten as the following system in R
2d

B Sandra Cerrai
cerrai@math.umd.edu

1 Department of Mathematics, University of Maryland, College Park, MD 20742, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-015-1346-2&domain=pdf


860 S. Cerrai, M. Freidlin

⎧
⎨

⎩

q̇ε(t) = pε(t), qε(0) = q ∈ R
d ,

ṗε(t) = b(qε(t)) − α(qε(t))

ε
pε(t) + σ(qε(t))Ḃ(t), pε(0) = p ∈ R

d ,

and, due to our assumptions on the coefficients, for any ε > 0, T > 0 and k ≥ 1, the system
above admits a unique solution zε = (qε, pε) ∈ Lk(�,C([0, T ];R2d)), which is a Markov
process.

Now, if we do a change of time and define qε(t) := qε(t/ε), t ≥ 0, we have

{
ε2q̈ε(t) = b(qε(t)) − α(qε(t))q̇ε(t) + √

ε σ (qε(t))ẇ(t),

qε(0) = q ∈ R
d , q̇ε(0) = p

ε
∈ R

d ,
(1.2)

where w(t) = √
εB(t/ε), t ≥ 0, is another Rr -valued Wiener process, defined on the same

stochastic basis (�,F, {Ft },P).
In the present paper, we are interested in studying the large deviation principle for Eq.

(1.2), as ε ↓ 0. Namely, we want to prove that the family {qε}ε>0 satisfies a large deviation
principle inC([0, T ];Rd), with the same action functional I and the same normalizing factor
ε that describe the large deviation principle for the first order equation

ġε(t) = b(gε(t))

α(gε(t))
+ √

ε
σ (gε(t))

α(gε(t))
ẇ(t), gε(0) = q ∈ R

d . (1.3)

In particular, as shown in Sect. 4, this implies that the asymptotic behavior of the exit time
from a basin of attraction for the over damped Langevin dynamics (1.1) can be described by
the quasi potential V associated with I , as well as the asymptotic behavior of the solutions
of the degenerate parabolic and elliptic problems associated with the Langevin dynamics.

Moreover, in Sect. 4, we will show how these results allow to prove that in reaction–
diffusion equations with non-linearities of KPP type, where the transport is described by the
Langevin dynamics itself, the interface separating the areas where uε is close to 1 and to 0, as
ε ↓ 0, is given in terms of the action functional I , as in the classical case, when the vanishing
mass approximation is considered.

In [3,8], the system

{
μ ¨qμ,ε(t) = b(qμ,ε(t)) − α(qμ,ε(t))q̇μ,ε(t) + √

ε σ (qμ,ε(t))ẇ(t),

qμ,ε(0) = q ∈ R
d , ˙qμ,ε(0) = p

ε
∈ R

d ,
(1.4)

for 0 < μ, ε << 1, has been studied, under the crucial assumption that the friction coefficient
α is independent of q .

It has been proven that, in this case, the so-called Kramers–Smoluchowski approxi-
mation holds, that is for any fixed ε > 0 the solution qμ,ε of system (1.4) converges in
L2(�;C([0, T ];Rd)), as μ ↓ 0, to gε , the solution of the first order equation (1.3). More-
over, it has been proven that, if Vμ(q, p) is the quasi-potential associated with the family
{qμ,ε}ε>0, for μ > 0 fixed, then

lim
μ→0

inf
p∈Rd

Vμ(q, p) = V (q),

where V is the quasi-potential associated with the action-functional I .
In [9] and Eq. 1.4 with non constant friction α has been considered and it has been shown

that in this case the situation is considerably more delicate. Actually, in [9] the limit of qμ,ε
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Large Deviations for the Langevin Equation... 861

to gε has only been proven via a previous regularization of the noise, which has led to the
convergence of qμ,ε to the solution g̃ε of the first order equation with Stratonovich integral.
Moreover, in [12] it is shown that qμ,ε converges, as μ goes to zero, to the solution of a first
order equation of the same type as Eq. (1.3), where an extra drift term is added.

Finally, we would like to mention that in the recent paper [13], by Lyv and Roberts, an
analogous problem has been studied for the stochastic damped wave equation in a bounded
regular domain D ⊂ R

d , with d = 1, 2, 3,
⎧
⎪⎨

⎪⎩

ε
∂2u(t, x)

∂t2
= �u(t, x) + f (u(t, x)) − ∂u(t, x)

∂t
+ εα ∂w(t, x)

∂t

u(t, x) = 0, x ∈ ∂D, u(0, x) = u0(x),
∂u(0, x)

∂t
= v0, (x),

where ε > 0 is a small parameter, the friction coefficient is constant (α = 1), w(t, x)
is a smooth cylindrical Wiener process and f is a cubic non-linearity. By using the weak
convergence approach, the authors show that the family {uε}ε>0 satisfies a large deviation
principle in C([0, T ]; L2(D)), with normalizing factor ε2α and the same action functional
that describes the large deviation principle for the stochastic parabolic equation.

As mentioned above, in the present paper we are dealing with the case of non-constant
friction α and μ = ε2. Dealing with a non-constant friction coefficient turns out to be
important in applications, as it allows to describes new effects in reaction–diffusion equations
and exit problems (see Sect. 4). Here, we will study the large deviation principle for Eq. (1.2)
by using the approach of weak convergence (see [1,2]) and we will show the validity of the
Laplace principle, which, together with the compactness of level sets, is equivalent to the
large deviation principle.

At this point, it is worth mentioning that one major difficulty here is handling the integral
∫ t

0
exp

(

−
∫ t

s
α(qε(r)) dr

)

σ(qε(s)) dw(s),

and proving that it converges to zero, as ε ↓ 0, in L1(�;C([0, T ];Rd)). Actually, as α is
non-constant, the integral above cannot be interpreted as an Itô’s integral and in our estimates
we cannot use Itô’s isometry. Nevertheless, due to the regularity of qε(t), we can consider
the integral above as a pathwise integral, and with appropriate integrations by parts, we can
get the estimates required to prove the Laplace principle.

2 The Problem and the Method

We are dealing here with the equation
{

ε2q̈ε(t) = b(qε(t)) − α(qε(t))q̇ε(t) + √
ε σ (qε(t))ẇ(t),

qε(0) = q ∈ R
d , q̇ε(0) = p

ε
∈ R

d .
(2.1)

Here w(t), t ≥ 0, is a r -dimensional Brownian motion and the coefficients b, σ and α satisfy
the following conditions.

Hypothesis 1 1. The mapping b : Rd → R
d is Lipschitz-continuous and the mapping σ :

R
d → L(Rr ,Rd) is continuously differentiable and bounded, togetherwith its derivative.

Moreover, the matrix σ(q) is invertible, for any q ∈ R
d , and σ−1 : Rd → L(Rr ,Rd) is

bounded.
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2. The mapping α : Rd → R belongs to C1
b (R

d) and

inf
x∈Rd

α(x) =: α0 > 0. (2.2)

In view of the conditions on the coefficients α, b and σ assumed in Hypothesis 1, for every
fixed ε > 0, Eq. (2.6) admits a unique solution zε = (qε, pε) ∈ Lk(0, T ;Rd), with T > 0
and k ≥ 1.

Now, for any predictable process u taking values in L2((0, T );Rr ), we introduce the
problem

ġ u(t) = b(gu(t))

α(gu(t))
+ σ(gu(t))

α(gu(t))
u(t), gu(0) = q ∈ R

d . (2.3)

The existence and uniqueness of a pathwise solution gu to Problem (2.3) in C([0, T ];Rd)

is an immediate consequence of the conditions on the coefficients b, σ and α that we have
assumed in Hypothesis 1.

In what follows, we shall denote by G the mapping

G : L2((0, T );Rr ) → C([0, T ];Rd), u 	→ G(u) = gu .

Moreover, for any f ∈ C([0, T ];Rd) we shall define

I ( f ) = 1

2
inf

{∫ T

0
|u(t)|2 dt : f = G(u), u ∈ L2((0, T );Rr )

}

,

with the usual convention inf ∅ = +∞. This means that

I ( f ) = 1

2

∫ T

0

∣
∣
∣
∣α( f (s))σ−1( f (s))

(

ḟ (s) − b( f (s))

α( f (s))

)∣
∣
∣
∣

2

ds, (2.4)

for all f ∈ W 1,2(0, T ;Rd).
If we denote by gε the solution of the stochastic equation

ġε(t) = b(gε(t))

α(gε(t))
+ √

ε
σ (gε(t))

α(gε(t))
ẇ(t), gε(0) = q ∈ R

d , (2.5)

we have that I is the large deviation action functional for the family {gε}ε>0 in the space of
continuous trajectories C([0, T ];Rd) (for a proof see e.g. [11]). This means that the level
sets {I ( f ) ≤ c} are compact in C([0, T ];Rd), for any c > 0, and for any closed subset
F ⊂ C([0, T ];Rd) and any open set G ⊂ C([0, T ];Rd) it holds

lim sup
ε→0+

ε logP(gε ∈ F) ≤ −I (F),

lim inf
ε→0+ ε logP(gε ∈ G) ≥ −I (G),

where, for any subset A ⊂ C([0, T ];Rd), we have denoted

I (A) = inf
f ∈ A

I ( f ).

The main result of the present paper is to prove that in fact the family of solutions qε of
Eq. (1.2) satisfies a large deviation principle with the same action functional I that describes
the large deviation principle for the family of solutions gε of Eq. (2.5). And, due to the fact
that qε(t) = qε(εt), t ≥ 0, this allows to describe the behavior of the over damped Langevin
dynamics (1.1) (see Sect. 4 for all details).
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Large Deviations for the Langevin Equation... 863

Theorem 2.1 Under Hypothesis 1, the family of probability measures {L(qε)}ε>0, in the
space of continuous paths C([0, T ];Rd), satisfies a large deviation principle with action
functional I .

In order to prove Theorem 2.1, we follow the weak convergence approach, as developed in
[1], (see also [2]). To this purpose, we need to introduce some notations. We denote by PT

the set of predictable processes in L2(� × [0, T ];Rr ), and for any T > 0 and γ > 0, we
define the sets

Sγ

T =
{

f ∈ L2((0, T );Rd) :
∫ T

0
| f (s)|2 ds ≤ γ

}

Aγ

T = {
u ∈ PT : u ∈ Sγ

T , P − a.s.
}
.

Next, for any predictable process u taking values in L2((0, T );Rr ), we denote by quε (t) the
solution of the problem

{
ε2q̈ u

ε (t) = b(quε (t)) − α(quε (t))q̇ u
ε (t) + √

ε σ (quε (t))ẇ(t) + σ(quε (t))u(t),

quε (0) = q ∈ R
d , q̇ u

ε (0) = p

ε
∈ R

d .
(2.6)

As well known, for any fixed ε > 0 and for any T > 0 and k ≥ 1, this equation admits a
unique solution quε in Lk(�;C([0, T ];Rd)).

By proceeding as in the proof of [2, Theorem 4.3], the following result can be proven.

Theorem 2.2 Let {uε}ε>0 be a family of processes in Sγ

T that converge in distribution, as
ε ↓ 0, to some u ∈ Sγ

T , as random variables taking values in the space L2((0, T );Rd),
endowed with the weak topology.

If the sequence {quε
ε }ε>0 converges in distribution to gu, as ε ↓ 0, in the space of contin-

uous paths C([0, T ];Rd), then the family {L(qε)}ε>0 satisfies a large deviation principle in
C([0, T ];Rd), with action functional I .

Actually, as shown in [2], the convergence of quε
ε to gu implies the validity of the

Laplace principle with rate functional I . This means that, for any continuous mapping

 : C([0, T ];Rd) → R it holds

lim
ε→0

−ε logE exp

(

−1

ε

(qε)

)

= inf
f ∈C([0,T ];Rd )

(
( f ) + I ( f ) ) .

And, as the level sets of I are compact, this is equivalent to say that {L(qε)}ε>0 satisfies a
large deviation principle in C([0, T ];Rd), with action functional I .

3 Proof of Theorem 2.1

As we have seen in the previous section, in order to prove Theorem 2.1, we have to show
that if {uε}ε>0 is a family of processes in Sγ

T that converge in distribution, as ε ↓ 0, to some
u ∈ Sγ

T , as random variables taking values in the space L2((0, T );Rd), endowed with the
weak topology, then the sequence {quε

ε }ε>0 converges in distribution to gu , as ε ↓ 0, in the
space C([0, T ];Rd).

In view of the Skorohod representation theorem, we can rephrase such a condition in
the following way. On some probability space (�̄, F̄, P̄), consider a Brownian motion w̄t ,
t ≥ 0, along with the corresponding natural filtration {F̄t }t≥0. Moreover, consider a family
of {F̄t }-predictable processes {ūε, ū}ε>0 in L2(�̄ × [0, T ];Rd), taking values in Sγ

T , P̄-a.s.,
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864 S. Cerrai, M. Freidlin

such that the joint law of (ūε, ū, w̄), under P̄, coincides with the joint law of (uε, u, w), under
P, and such that

lim
ε→0

ūε = ū, P̄ − a.s. (3.1)

as L2((0, T );Rd)-valued random variables, endowed with the weak topology. Let q̄ ūε
ε be the

solution of a problem analogous to (2.6), with u and w replaced respectively by ūε and w̄.
Then, we have to prove that

lim
ε→0

q̄ ūε
ε = gū, P̄ − a.s.

in C([0, T ];Rd). In fact, we will prove more. Actually, we will show that

lim
ε→0

Ē sup
t∈ [0,T ]

|q̄ ūε
ε (t) − gū(t)| = 0. (3.2)

In order to prove (3.2), we will need some preliminary estimates. For any ε > 0, we define
the process

Hε(t) = √
ε e−Aε (t)

∫ t

0
eAε (s)σ (quε (s)) dw(s), t ≥ 0. (3.3)

where, for any 0 ≤ s ≤ t and ε > 0 we define

Aε(t, s) := 1

ε2

∫ t

s
α(quε (r)) dr, Aε(t) := Aε(t, 0).

Lemma 3.1 Under Hypothesis 1, for any T > 0, k ≥ 1 and γ > 0, there exists ε0 > 0 such
that for any u ∈ Sγ

T and ε ∈ (0, ε0]

sup
s≤t

E |Hε(t)|k ≤ ck,γ (T )(|q|k + |p|k + 1)ε
3k
2 + ck ε

k
2 t

k
2 e

− kα0 t

ε2 . (3.4)

Moreover, we have

E sup
t∈ [0,T ]

|Hε(t)| ≤ √
ε cγ (T )(1 + |q| + |p|). (3.5)

Proof Equation (2.6) can be rewritten as the system
{
q̇ u
ε (t) = puε (t), quε (0) = q

ε2 ṗ u
ε (t) = b(quε (t)) − α(quε (t))p u

ε (t) + √
ε σ (quε (t))ẇ(t) + σ(quε (t))u(t), p u

ε (0) = p

ε
.

Thus, we have

puε (t) = 1

ε
e−Aε (t) p + 1

ε2

∫ t

0
e−Aε (t,s)b(quε (s)) ds

+ 1

ε2

∫ t

0
e−Aε (t,s)σ (quε (s)) u(s) ds + 1

ε2
Hε(t). (3.6)

Integrating with respect to t , this yields

quε (t) = q + 1

ε

∫ t

0
e−Aε (s) p ds + 1

ε2

∫ t

0

∫ s

0
e−Aε (s,r)b(quε (r)) dr ds

+ 1

ε2

∫ t

0

∫ s

0
e−Aε (s,r)σ (quε (r)) u(r) dr ds + 1

ε2

∫ t

0
Hε(s) ds. (3.7)
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Thanks to the Young inequality, this implies that for any t ∈ [0, T ]

|quε (t)| ≤ |q| + ε |p| + c
∫ t

0
(1 + |quε (s)|) ds + c

∫ t

0
|u(s)| ds + 1

ε2

∫ t

0
|Hε(s)| ds

≤ cγ (T )(|q| + ε |p| + 1) + 1

ε2

∫ t

0
|Hε(s)| ds + c

∫ t

0
|quε (s)| ds,

and from the Gronwall lemma we can conclude that

|quε (t)| ≤ cγ (T ) (1 + |q| + |p|) + c(T )
1

ε2

∫ t

0
|Hε(s)| ds.

This implies that for any k ≥ 1

|quε (t)|k ≤ ck,γ (T )(|q|k + |p|k + 1) + ck,γ (T )ε−2k
∫ t

0
|Hε(s)|k ds, ε ∈ (0, 1]. (3.8)

Now, due to (3.6), we have

| puε (t)| ≤ 1

ε
e
− α0 t

ε2 |p| + c

ε2

∫ t

0
e
− α0(t−s)

ε2
(
1 + |quε (s)|) ds

+ c

ε2

∫ t

0
e
− α0(t−s)

ε2 |u(s)| ds + 1

ε2
|Hε(t)|,

so that, thanks to (3.8), for any ε ∈ (0, 1] we get

|puε (t)| ≤ 1

ε
e
− α0 t

ε2 |p| + cγ (T )(|q| + |p| + 1)

+ c

ε2

∫ t

0
e
− α0(t−s)

ε2 |u(s)| ds + c(T )
1

ε2
|Hε(t)|. (3.9)

As well known, if f ∈ C1([0, t]) and g ∈ C([0, t]), then the Stiltjies integral
∫ t

0
f (s)dg(s), t ≥ 0,

is well defined and, if g(0) = 0, the following integration by parts formula holds
∫ t

0
f (s)dg(s) =

∫ t

0
(g(t) − g(s)) f ′(s) ds + g(t) f (0), t ≥ 0. (3.10)

Now, the mapping

[0,+∞) → L(Rr ,Rd), s 	→ eAε (s)σ (quε (s)),

is differentiable, P-a.s., so that the stochastic integral in (3.3) is in fact a pathwise integral.
In particular, we can apply formula (3.10), with

f (s) = eAε (s)σ (quε (s)), g(s) = w(s),

and we get

Hε(t) = √
ε

∫ t

0
(w(t) − w(s)) e−Aε (t,s)

(
α(quε (s))

ε2
+ σ ′(quε (s))puε (s)

)

ds

+√
εw(t)e−Aε (t)σ (q). (3.11)
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Thanks to (3.9), this yields for any ε ∈ (0, 1]

|Hε(t)| ≤ c
√

ε

∫ t

0
|w(t) − w(s)|e

− α0(t−s)

ε2

ε2

(
1 + ε2|puε (s)|) ds + c

√
ε |w(t)|e− α0 t

ε2

≤ cγ (T )(|q| + |p| + 1)
√

ε

∫ t
ε2

0
|w(t) − w(t − ε2s)|e−α0s ds

+√
ε cγ (T )

∫ t
ε2

0
|w(t)−w(t−ε2s)|e−α0s |Hε(t−ε2s)| ds + c

√
ε |w(t)|e− α0 t

ε2 ,

and hence, for any k ≥ 1, we have

|Hε(t)|k ≤ ck,γ (T )(|q|k + |p|k + 1)ε
k
2

∫ t
ε2

0
|w(t) − w(t − ε2s)|ke−α0s ds

+ ε
k
2 ck,γ (T )

∫ t
ε2

0
|w(t) − w(t − ε2s)|ke−α0s |Hε(t − ε2s)|k ds

+ ck ε
k
2 |w(t)|ke− kα0 t

ε2 .

By taking the expectation, due to the independence of |w(t)−w(t −ε2s)|with |Hε(t −ε2s)|
this implies that for any ε ∈ (0, 1]

E |Hε(t)|k ≤ ck,γ (T )(|q|k + |p|k + 1)ε
3k
2

∫ t
ε2

0
s
k
2 e−α0s ds

+ ε
3k
2 ck,γ (T )

∫ t
ε2

0
s
k
2 e−α0sE|Hε(t − ε2s)|k ds + ck ε

k
2 t

k
2 e

− kα0 t

ε2

≤ ck,γ (T )(|q|k + |p|k + 1)ε
3k
2 + ck ε

k
2 t

k
2 e

− kα0 t

ε2 + ε
3k
2 ck,γ (T ) sup

s≤t
E |Hε(s)|k .

Therefore, if we pick ε0 ∈ (0, 1] such that

ε
3k
2
0 ck,γ (T ) <

1

2
,

we get (3.4).
Now, let us prove (3.5). From (3.11), we have

|Hε(t)| ≤ √
ε c sup

t∈ [0,T ]
|w(t)|

(

1 +
∫ t

0
e
− α0(t−2)

ε2 |puε (s)| ds
)

≤ √
ε c sup

t∈ [0,T ]
|w(t)|

(

1 + ε

(∫ t

0
|puε (s)|2 ds

) 1
2
)

,

and hence

E sup
t∈ [0,T ]

|Hε(t)| ≤ √
ε c(T )

⎛

⎝1 + ε

(

E

∫ T

0
|puε (s)|2 ds

) 1
2

⎞

⎠ .

Thanks to (3.9), as a consequence of the Young inequality, we get
∫ T

0
|puε (s)|2 ds ≤ cγ (T )(1 + |q|2 + |p|2) + 1

ε4
c(T )

∫ T

0
|Hε(s)|2 ds, (3.12)
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so that

E sup
t∈ [0,T ]

|Hε(t)| ≤ √
ε cγ (T )(1 + |q| + |p|) + 1√

ε
c(T )

(∫ t

0
E |Hε(s)|2 ds

) 1
2

.

Therefore, (3.5) follows from (3.4). �
Lemma 3.2 Under Hypothesis 1, for any T > 0, k ≥ 1 and γ > 0 there exists ε0 > 0 such
that for any u ∈ Sγ

T and ε ∈ (0, ε0) we have

E sup
t∈ [0,T ]

|quε (t)|k ≤ ck,γ (T )(|q|k + |p|k + 1) ε− k
2 + ck,γ (T )ε2−

3k
2 . (3.13)

Proof Estimate (3.13) follows by combining together (3.4) and (3.8). �
Now, we are ready to prove (3.2), that, in view of Theorem 2.2, implies Theorem 2.1.

Theorem 3.3 Let {uε}ε>0 be a family of predictable processes in Sγ

T that converge P-a.s.,
as ε ↓ 0, to some u ∈ Sγ

T , with respect to the weak topology of L
2(0, T ;Rd). Then, we have

lim
ε→0

E sup
t∈ [0,T ]

|quε
ε (t) − gu(t)| = 0. (3.14)

Proof Integrating by parts in (3.7), we obtain

quε
ε (t) = q +

∫ t

0

b(quε
ε (s))

α(quε
ε (s))

ds +
∫ t

0

σ(quε
ε (s))

α(quε
ε (s))

uε(s) ds + Rε(t),

where

Rε(t) = p

ε

∫ t

0
e−Aε (s) ds − 1

α(quε
ε (t))

∫ t

0
e−Aε (t,s)b(quε

ε (s)) ds + √
ε

∫ t

0

σ(quε
ε (s))

α(quε
ε (s))

dw(s)

+
∫ t

0

(∫ s

0
e−Aε (s,r)b(quε

ε (r)) dr

)
1

α2(quε
ε (s))

〈∇α(quε
ε (s)), puε

ε (s)
〉
ds

− 1

α(quε
ε (t))

Hε(t) +
∫ t

0

1

α2(quε
ε (s))

Hε(s)
〈∇α(quε

ε (s)), puε
ε (s)

〉
ds =:

6∑

k=1

I kε (t).

This implies that

quε
ε (t) − gu(t) =

∫ t

0

[
b(quε

ε (s))

α(quε
ε (s))

− b(gu(s))

α(gu(s))

]

ds +
∫ t

0

[
σ(quε

ε (s))

α(quε
ε (s))

− σ(gu(s))

α(gu(s))

]

uε(s) ds

+
∫ t

0

σ(gu(s))

α(gu(s))
[uε(s) − u(s)] ds + Rε(t). (3.15)

Due to the Lipschitz-continuity and the boundedness of the functions σ and 1/α, we have
that σ/α is bounded and Lipschitz continuous. Then, as uε, u ∈ Sγ

T , we obtain

|quε
ε (t) − gu(t)|2

≤ c

∣
∣
∣
∣

∫ t

0

σ(gu(s))

α(gu(s))
[uε(s) − u(s)] ds

∣
∣
∣
∣

2

+ c |Rε(t)|2 + c(T )

∫ t

0
|quε

ε (s) − gu(s)|2 ds

+ c(T )

∫ t

0
|quε

ε (s) − gu(s)|2 ds
(∫ t

0
|uε(s)|2 ds + sup

s∈ [0,t]
|gu(s)|2

)

≤ c

∣
∣
∣
∣

∫ t

0

σ(gu(s))

α(gu(s))
[uε(s) − u(s)] ds

∣
∣
∣
∣

2

+ c |Rε(t)|2 + cγ (T )

∫ t

0
|quε

ε (s) − gu(s)|2 ds.
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868 S. Cerrai, M. Freidlin

By the Gronwall lemma, this allows to conclude that

sup
t∈ [0,T ]

|quε
ε (t) − gu(t)|

≤ cγ (T ) sup
t∈ [0,T ]

∣
∣
∣
∣

∫ t

0

σ(gu(s))

α(gu(s))
[uε(s) − u(s)] ds

∣
∣
∣
∣+ cγ (T ) sup

t∈ [0,T ]
|Rε(t)|. (3.16)

Now, for any ε > 0, we define

�ε(t) =
∫ t

0

σ(gu(s))

α(gu(s))
[uε(s) − u(s)] ds.

For any 0 < s < t we have

�ε(t) − �ε(s) =
∫ t

s

σ(gu(r))

α(gu(r))
[uε(r) − u(r)] dr,

so that, as uε and u are both in Sγ

T ,

|�ε(t) − �ε(s)| ≤ cγ

√
t − s, ε > 0.

As �ε(0) = 0, this implies that the family of continuous functions {�ε}ε>0 is equibounded
and equicontinuous, so that, by the Ascoli-Arzelà theorem, there exists εn ↓ 0 and v ∈
C([0, T ];Rd) such that

lim
n→0

sup
t∈ [0,T ]

|�εn (t) − v(t)| = 0, P − a.s.

On the other hand, as (3.1) holds, for any h ∈ R
d we have

lim
ε→0

〈�ε(t), h〉 = lim
ε→0

〈

uε − u,
σ (gu(·))
α(gu(·)) h

〉

L2(0,T ;Rd )

= 0,

so that we can conclude that v = 0 and

lim
ε→0

E sup
t∈ [0,T ]

|�ε(t)| = 0.

Thanks to (3.16), this implies that

lim sup
ε→0

E sup
t∈ [0,T ]

|quε
ε (t) − gu(t)| ≤ c lim sup

ε →0
E sup

t∈ [0,T ]
|Rε(t)|,

so that (3.14) follows if we show that

lim
ε→0

E sup
t∈ [0,T ]

|Rε(t)| = 0. (3.17)

Thus, we have

|I 1ε (t)| = |p|
ε

∣
∣
∣
∣

∫ t

0
e−Aε (s) ds

∣
∣
∣
∣ ≤ c |p| ε−1

∫ t

0
e
− α0s

ε2 ds ≤ c |p| ε. (3.18)

Moreover

|I 2ε (t)| = 1

|α(quε
ε (t))|

∣
∣
∣
∣

∫ t

0
e−Aε (t,s)b(quε

ε (s)) ds

∣
∣
∣
∣

≤ c
∫ t

0
e
− α0(t−s)

ε2 (1 + |quε
ε (s)|) ds ≤ c ε2

(

1 + sup
t∈ [0,T ]

|quε
ε (t)|

)

.
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Thanks to (3.13), this implies

E sup
t∈ [0,T ]

|I 2ε (t)| ≤ cγ (T )(|p| + |q| + 1)ε
3
2 , ε ∈ (0, 1]. (3.19)

Next

E sup
t∈ [0,T ]

|I 3ε (t)| = √
ε E sup

t∈ [0,T ]

∣
∣
∣
∣

∫ t

0

σ(quε
ε (s))

α(quε
ε (s))

dw(s)

∣
∣
∣
∣ ≤ c(T )

√
ε. (3.20)

Concerning I 4(t), we have

|I 4ε (t)| =
∣
∣
∣
∣

∫ t

0

(∫ s

0
e−Aε (s,r)b(quε

ε (r)) dr

)
1

α2(quε
ε (s))

〈∇α(quε
ε (s)), puε

ε (s)
〉
ds

∣
∣
∣
∣

≤ ε2 c

(

1 + sup
t∈ [0,T ]

|quε
ε (t)|

)∫ t

0
|puε

ε (s)| ds,

so that, due to (3.13) we obtain

E sup
t∈ [0,T ]

|I 4ε (t)| ≤ ε2 cγ (T )(|q| + |p| + 1) ε− 1
2

(

E

∫ t

0
|puε

ε (s)|2 ds
) 1

2

.

As a consequence of (3.4) and (3.12), this yields

E sup
t∈ [0,T ]

|I 4ε (t)| ≤ ε cγ (T )(|q|2 + |p|2 + 1), ε ∈ (0, ε0]. (3.21)

Concerning I 5ε (t), according to (3.5) we have

E sup
t∈ [0,T ]

|I 5ε (t)| ≤ cE sup
t∈ [0,T ]

|Hε(t)| ≤ √
ε cγ (T )(1 + |q| + |p|). (3.22)

Finally, it remains to estimate I 6ε (t). We have

|I 6ε (t)| =
∣
∣
∣
∣

∫ t

0

1

α2(quε
ε (s))

Hε(s)
〈∇α(quε

ε (s)), puε
ε (s)

〉
ds

∣
∣
∣
∣ ≤ c

∫ t

0
|Hε(s)||puε

ε (s)| ds,

so that

E sup
t∈ [0,T ]

|I 6ε (t)| ≤ c

(∫ T

0
E|Hε(s)|2 ds

∫ T

0
E|puε

ε (s)|2 ds
) 1

2

.

By using (3.12), this gives

E sup
t∈ [0,T ]

|I 6ε (t)| ≤ cγ (T )(1 + |q| + |p|)
(∫ T

0
E|Hε(s)|2 ds

) 1
2

+ c(T )

ε2

∫ T

0
E|Hε(s)|2 ds,

so that, from (3.4) we get

E sup
t∈ [0,T ]

|I 6ε (t)| ≤ ε cγ (T )(1 + |q| + |p|), ε ∈ (0, ε0].

This, together with (3.18), (3.19), (3.20), (3.21) and (3.22), implies (3.17) and (3.14) follows.
�
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870 S. Cerrai, M. Freidlin

4 Some Applications and Remarks

Let G be a bounded domain in R
d , with a smooth boundary ∂G. We consider here the exit

problem for the process qε(t) defined as the solution of Eq. (1.1). For every ε > 0, we define

τ ε := min{t ≥ 0 : qε(t) /∈ G}, τε := min{t ≥ 0 : qε(t) /∈ G},
where qε(t) = qε(t/ε) is the solution of Eq. (2.6). It is clear that

τ ε = 1

ε
τε, qε(τ ε) = qε(τε).

In what follows, we shall assume that the dynamical system

q̇(t) = b(q(t)), t ≥ 0, (4.1)

satisfies the following conditions.

Hypothesis 2 The point O ∈ G is asymptotically stable for the dynamical system (4.1) and
for any initial condition q ∈ R

d

lim
t→∞ q(t) = O.

Moreover, we have

〈b(q), ν(q)〉 > 0, q ∈ ∂G,

where ν(q) is the inward normal vector at q ∈ ∂G.

Now, we introduce the quasi-potential associated with the action functional I defined in
(2.4)

V (q) = inf
{
I ( f ), f ∈ C([0, T ];Rd), f (0) = O, f (T ) = q, T > 0

}

= 1

2
inf

{∫ T

0

∣
∣
∣
∣α( f (s))σ−1( f (s))

(

ḟ (s) − b( f (s))

α( f (s))

)∣
∣
∣
∣

2

ds,

f (0) = O, f (T ) = q, T > 0

}

.

It is easy to check that, under our assumptions on α(q), the quasi-potential V coincides with

1

2
inf

{∫ T

0

∣
∣σ−1( f (s))

(
ḟ (s) − α( f (s))b( f (s))

)∣
∣2 ds, f (0) = O, f (T ) = q, T > 0

}

.

(4.2)

Theorem 4.1 UnderHypotheses 1 and 2, for each q ∈ {q ∈ G : V (q) ≤ V0} and p ∈ R
d ,

we have

lim
ε→0

ε logE(q,p)τ
ε = lim

ε→0
ε logE(q,p)τε = V0, (4.3)

and

lim
ε→0

ε log τ ε = lim
ε→0

ε log τε = V0, in probability, (4.4)

123



Large Deviations for the Langevin Equation... 871

where

V0 := min
q∈ ∂G

V (q).

Moreover, if the minimum of V on ∂G is achieved at a unique point q� ∈ ∂G, then

lim
ε→0

qε(τ ε) = lim
ε→0

qε(τε) = q�. (4.5)

Proof First, note that qε(t) is the first component of the 2d-dimensional Markov process
zε(t) = (qε(t), pε(t)). Because of the structure of the p-component of the drift of this
process and our assumptions on the vector field b, starting from (q, p) ∈ R

2d , the trajectory
of zε(t) spends most of the time in a small neighborhood of the point q = O and p = 0,
with probability close to 1, as 0 < ε << 1. From time to time, the process zε(t) deviates
from this point and, as proven in Theorem 2.1, the deviations of qε(t) are governed by the
large deviation principle with action functional I , defined in (2.4). This allows to prove the
validity of (4.3), (4.4) and (4.5) in the same way as Theorems 4.41, 4.42 and 4.2.1 from [11]
are proven. We omit the details. �

As an immediate consequence of (4.2) and [11, Theorem 4.3.1], we have the following
result.

Theorem 4.2 Assume a(q) := σ(q)σ �(q) = I and α(q)b(q) = −∇U (q) + l(q), for any
q ∈ R

d , for some smooth function U : Rd → R having a unique critical point (a minimum)
at O ∈ R

d and such that

〈∇U (q), l(q)〉 = 0, q ∈ R
d .

Then

V (q) = 2U (q), q ∈ R
d .

FromTheorems 4.1 and 4.2, it is possible to get a number of results concerning the asymptotic
behavior, as ε ↓ 0, of the solutions of the degenerate parabolic and the elliptic problems
associated with the differential operator Lε defined by

Lεu(q, p) = 1

2

d∑

i, j=1

ai, j (q)
∂2u

∂pi∂p j
(q, p) +

(

b(q) − 1

ε
α(q)p

)

· ∇pu(q, p)

+ p · ∇qu(q, p).

Assume now that the dynamical system (4.1) has several asymptotically stable attractors.
Assume, for the sake of brevity, that all attractors are just stable equilibriums O1, O2,…,Ol .
Denote by E the set of separatrices separating the basins of these attractors, and assume the
set E to have dimension strictly less than d . Moreover, let each trajectory q(t), starting at
q0 ∈ R

d \ E , be attracted to one of the stable equilibriums Oi , i = 1, . . . , l, as t → ∞.
Finally, assume that the projection of b(q) on the radius connecting the origin in R

d and
the point q ∈ R

d is directed to the origin and its length is bounded from below by some
uniform constant θ > 0 (this condition provides the positive recurrence of the process
zε(t) = (qε(t), pε(t)), t ≥ 0).

In what follows, we shall denote

V (q1, q2) = 1

2
inf
∫ T

0

∣
∣
∣
∣α( f (s))σ−1( f (s))

(

ḟ (s) − b( f (s))

α( f (s))

)∣
∣
∣
∣

2

ds,

f (0) = q1, f (T ) = q2, T > 0
}
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872 S. Cerrai, M. Freidlin

and

Vi j = V (Oi , Oj ), i, j ∈ {1, . . . , l}.
In a generic case, the behavior of the process (qε(t), pε(t)), on time intervals of order
exp(λε−1), λ > 0 and 0 < ε << 1, can be described by a hierarchy of cycles as in [6,11].
The cycles are defined by the numbers Vi j . For (almost) each initial point q and a time scale
λ, these numbers define also the metastable state Oi� , i� = i�(q, λ), where qε(t) spends most
of the time during the time interval [0, exp(λε−1)]. Slow changes of the field b(q) and/or of
the damping coefficient α(q) can lead to stochastic resonance (compare with [7]).

Consider next the reaction diffusion equation in R
d

⎧
⎨

⎩

∂u

∂t
(t, q) = Lu(t, q) + c(q, u(t, q))u(t, q),

u(0, q) = g(q), q ∈ R
d , t > 0.

(4.6)

Here L is a linear second order uniformly elliptic operator, with regular enough coefficients.
Let q(t) be the diffusion process in R

d associated with the operator L. The Feynman–Kac
formula says that u can be seen as the solution of the problem

u(t, q) = Eq g(q(t)) exp
∫ t

0
c(q(s), u(t − s, q(s)) ds. (4.7)

Reaction–diffusion equations describe the interaction between particle transport defined
by q(t) and reaction which consists of multiplication (if c(q, u) > 0) and annihilation (if
c(q, u) < 0) of particles. In classical reaction–diffusion equations, the Langevin dynamics
which describes a diffusion with inertia is replaced by its vanishing mass approximation. If
the transport is described by the Langevin dynamics itself, Eq. (4.6) should be replaced by
an equation in R

2d . Assuming that the drift is equal to zero (b(q) = 0), and the damping is
of order ε−1, as ε ↓ 0, this equation has the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂uε

∂t
(t, q, p) = 1

2

d∑

i, j=1

ai, j (q)
∂2uε

∂pi∂p j
(q, p) − 1

ε
α(q)p · ∇pu

ε(q, p) + p · ∇qu
ε(q, p)

+ c(q, uε(t, q, p))uε(t, q, p), t > 0, (q, p) ∈ R
2d ,

uε(0, q, p) = g(q) ≥ 0, (q, p) ∈ R
2d .

(4.8)

Now, we define

R(t, q) = sup

{∫ t

0
c( f (s), 0) ds − It ( f ) : f (0) = q, f (t) ∈ G0

}

,

where

It ( f ) = 1

2

∫ t

0
α2( f (s))a−1( f (s)) ḟ (s) · ḟ (s) ds,

and G0 = supp{g(q), q ∈ R
d}.

Definition 4.3 1. We say that Condition (N) is satisfied if R(t, x) can be characterized, for
any t > 0 and x ∈ �t = {q ∈ R

d , R(t, q) = 0}, as

sup

{∫ t

0
c( f (s), 0) ds− It ( f ), f (0) = q, f (t) ∈ G0, R(t−s, f (s)) ≤ 0, 0 ≤ s ≤ t

}

.
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2. We say that the non-linear term f (q, u) = c(q, u)u in Eq. (4.8) is of Kolmogorov–
Petrovskii–Piskunov (KPP) type if c(q, u) is Lipschitz-continuous, c(q, 0) ≥ c(q, u) >

0, for any 0 < u < 1, c(q, 1) = 0 and c(q, u) < 0, for any u > 1.

Theorem 4.4 Let the non-linear term in (4.8) be of KPP type. Assume that Condition (N)
is satisfied and assume that the closure of G0 = supp{g(q), q ∈ R

d} coincides with the
closure of the interior of G0. Then,

lim
ε→0

uε(t/ε, q, p) = 0, if R(t, q) < 0, (4.9)

and

lim
ε→0

uε(t/ε, q, p) = 1, if R(t, q) > 0, (4.10)

so that equation R(t, q) = 0 in R
2d defines the interface separating the area where uε , the

solution of (4.8), is close to 1 and to 0, as ε ↓ 0.

Proof If we define uε(t, q, p) = uε(t/ε, q, p), the analog of (4.7) yields

uε(t, q, p) = E(q,p)g(qε(t)) exp

(
1

ε

∫ t

0
c(qε(s), uε(t − s, qε(s), pε(s)) ds

)

, (4.11)

where zε(t) = (qε(s), pε(s)) is the solution to Eq. (2.6). By taking into account our assump-
tions on c(q, u), we derive from (4.11)

uε(t, q, p) ≤ E(q,p) g(qε(t)) exp

(
1

ε

∫ t

0
c(qε(s), 0) ds

)

.

Theorem 2.1 and the Laplace formula imply that the right hand side of the above inequality
is logarithmically equivalent , as ε ↓ 0, to exp

( 1
ε
R(t, q)

)
and this implies (4.9).

In order to prove (4.10), first of all one should check that if R(t, q) = 0, then for each
δ > 0

uε(t, q, p) ≥ exp

(

−1

ε
δ

)

, (4.12)

when ε > 0 is small enough. This follows from (4.11) and Condition (N), if one takes into
account the continuity of c(q, u). The strong Markov property of the process (qε(t), pε(t))
and bound (4.12) imply (4.10) (compare with [5]). �

Consider, as an example, the case c(q, 0) = c = const. Then

R(t, q) = ct − inf {It ( f ), f (0) = q, f (t) ∈ G0} .

The infimum in the equality above coincides with

1

2t
ρ2(q,G0),

(see, for instance, [5] for a proof), where ρ(q1, q2), q1, q2 ∈ R
d , is the distance in the

Riemaniann metric

ds = α(q)

√
√
√
√

d∑

i, j=1

ai, j (q)dqi dq j .
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This implies that the interface moves according to the Huygens principle with the constant
speed

√
2c, if calculated in the Riemannian metric ds.

If α(q) = 0 in a domain G1 ⊂ R
d , the points of G1 should be identified. The Riemaniann

metric inRd induces now, in a natural way, a newmetric ρ̃ in this space with identified points.
The motion of the interface, in this case, can be described by the Huygens principle with
constant velocity

√
2c in the metric ρ̃.

If c(q, 0) is not constant, the motion of the interface, in general, cannot be described by a
Huygens principle. Actually, the motion can have jumps and other specific features (compare
with [5]).

Finally, if the Condition (N) is not satisfied, the function R(t, q) should be replaced by
another one. Define

R̃(t, q) = sup

{

min
0≤a≤t

(∫ a

0
c( f (s), 0) ds − Ia( f )

)

: f (0) = q, f (t) ∈ G0

}

.

The function R̃(t, q) is Lipschitz continuous andnon-positive and ifCondition (N) is satisfied,
then

R̃(t, q) = min {R(t, q), 0} .

By proceeding as in [6], it is possible to prove that

lim
ε→0

uε(t/ε, q, p) = 0, if R(t, q) < 0,

and

lim
ε→0

uε(t/ε, q, p) = 1,

if (t, q) is in the interior of the set {(t, q) : t > 0, q ∈ R
d , R̃(t, q) = 0}.

Finally, we would like to mention a few generalizations.

1. The arguments that we we have used in the proof of Theorem 2.1, can be used to prove
the same result for the equation

⎧
⎨

⎩

q̈ ε(t) = b(qε(t)) − α(qε(t))

ε
q̇ ε(t) + 1

εβ
σ (qε(t))Ḃ(t),

qε(0) = q ∈ R
d , q̇ε(0) = p ∈ R

d ,

for any β < 1/2. As a matter of fact, with the very same method we can show that also
in this case the family {qε}ε>0 satisfies a large deviation principle in C([0, T ];Rd) with
action functional I and with normalizing factor ε1−2β .

2. The damping can be assumed to be anisotropic. This means that the coefficient α(q) can
be replaced by a matrix α(q), with all eigenvalues having negative real part.

3. Systems with strong non-linear damping can be considered. Namely, let (qε, pε) be the
time-inhomogeneous Markov process corresponding to the following initial-boundary
value problem for a degenerate quasi-linear equation on a bounded regular domain
G ⊂ R

d

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂uε(t, p, q)

∂t
= 1

2

d∑

i, j=1

ai, j (q)
∂2uε(t, q, p)

∂pi∂p j
+ b(q) · ∇pu

ε(t, q, p)

− α(q, uε(t, q, p))

ε
p · ∇ puε(t, q, p) + p · ∇qu

ε(t, q, p).

uε(0, q, p) = g(q), uε(t, q, p)|q∈ ∂G = ψ(q),
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Existence and uniqueness of such degenerate problem, under some mild conditions,
follows from [4, Chap. 5]. The non-linearity of the damping leads to some pecularities
in the exit problem and in metastability. In particular, in the generic case, metastable
distributions can be distributions among several asymptotic attractors and the limiting
exit distributions may have a density (see [10]).
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