1) Find the value of the following limit, if it exists:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{x}
$$

If the limit does not exist, explain why.
2) Let $f(x)=1 /\left(1-x^{2}\right)^{1 / 4}$, and let R be the region between the graph of f and the x axis on $[0,1 / 2]$. Find the volume V of the solid obtained by revolving R about the x axis.
3) Find the length of a curve given parametrically by

$$
x=f(t)=e^{t} \sin (t)
$$

and

$$
y=g(t)=e^{t} \cos (t)
$$

for $0 \leq t \leq \pi / 2$.
4) Evaluate the integral:

$$
\int e^{x}\left(1-e^{2 x}\right)^{-0.5} d x
$$

5) A swimming pool has the shape of a right circular culinder with radius 10 feet and depth 8 feet. If the pool contains 5 feet of water, what is the work required to pump all the water to the top of the pool?
