
Math 410. HW 1 Solutions

1. We show the two statements using different approaches.

(i) Assume, on the contrary, that ∃r ∈ Q and x ∈ R \ Q such that r − x ∈ Q. Then
x = r − (r − x) ∈ Q, since Q satisfies the Field Axioms. This implies x ∈ Q. Contradiction.
Therefore, the sum of a rational and an irrational real numbers is an irrational number.

(ii) Assume, on the contrary, that ∃r ∈ Q and x ∈ R \Q such that r/x ∈ Q. Let a, b, c, d ∈ Z
be such that r = a/b and r/x = c/d. Then, since (r/x)·x = r, x = r

(r/x) . Hence, x = a/b
c/d = ad

bc

and therefore r/x ∈ Q. Contradiction.
Therefore, the quotient of a rational and an irrational real numbers is an irrational number.

2. Assume, on the contrary, that there exists r ∈ Q such that r2 = 12. Let a, b ∈ Z, b 6= 0 such
that r = a/b and either a or b (or both) are odd. Then, 12 = r2 = a2

b2 . Hence, a2 = 12b2.
Therefore, a2 is even, and so a is even and b is odd. Let c, d ∈ Z be such that a = 2c and
b = 2d + 1. Then, (2c)2 = 12(2d + 1)2. After expanding we obtain 4c2 = 12(4d2 + 4d + 1),
which is equivalent to c2 = 12d2 + 12d+ 3. Since c2 is odd, c must be odd as well. Let m ∈ Z
be such that c = 2m + 1. Then, we obtain (2m + 1)2 = 12d2 + 12d + 3. Expanding again,
we obtain 4m2 + 4m+ 1 = 12d2 + 12d+ 3. Therefore, 4m2 + 4m− 12d2 − 12d = 3− 1. This
implies that 2m2 + 2m − 6d2 − 6d = 1, which is impossible since the left hand side is even,
whereas the right hand side is odd. Therefore, there exist no rational number r such that
r2 = 12.

3. Let a < b ∈ Q. Let us construct an infinite sequence of distinct irrational numbers {xn}
in the interval [a, b]. Since irrational numbers are dense in R, there exists some irrational
number x such that a < x < b. By the Archimedean property, ∃N ∈ N such that b− x < 1

N .
Then b − x < 1

n+N for all n ∈ N. Let xn = x + 1
n+N . By problem 1(i), xn ∈ R \ Q for all

n ∈ N. Moreover, {xn} is a decreasing sequence satisfying a < x < x + 1
n < x + 1

N < b for
all n ∈ N. Therefore, there are infinitely many irrational numbers between any two different
rational numbers.

4. First, let us note that

√
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√
n2 + n− n)· (

√
n2 + n+ n)

(
√
n2 + n+ n)

=
n2 + n− n2

√
n2 + n+ n

=
1√

1 + 1
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. (*)

Next, we will show that limn→∞

√
1 + 1

n = 1. Let ε > 0. We must show that there is some

N ∈ N such that for all n ≥ N , |
√

1 + 1
n − 1| < ε. Let N ∈ N be such that 1

N < ε. Then, for

n ≥ N , 1
n < ε and therefore 1 + 1

n < 1 + ε < 1 + 2ε+ ε2 = (1 + ε)2. So
√

1 + 1
n < 1 + ε and√

1 + 1
n−1 < ε. On the other hand, since 1

n > 0 for all n ∈ N, we have that 1+ 1
n > 1. Hence√

1 + 1
n > 1 and thus

√
1 + 1

n − 1 > 0. Combining, the two steps we get |
√

1 + 1
n − 1| < ε

and therefore limn→∞

√
1 + 1

n = 1.

To conclude, let us make use of the sum and quotient properties of convergent sequences.
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.

5. No. Here is a counterexample. Let an =

{
0 n odd
1 n even

and bn =

{
1 n odd
0 n even

.

Then, anbn = 0 for all n ∈ N, and therefore limn→∞ anbn = 0. However, neither limn→∞ an

nor limn→∞ bn exist.


