Math 410. HW 1 Solutions

1. We show the two statements using different approaches.
(i) Assume, on the contrary, that $\exists r \in \mathbb{Q}$ and $x \in \mathbb{R} \backslash \mathbb{Q}$ such that $r-x \in \mathbb{Q}$. Then $x=r-(r-x) \in \mathbb{Q}$, since \mathbb{Q} satisfies the Field Axioms. This implies $x \in \mathbb{Q}$. Contradiction. Therefore, the sum of a rational and an irrational real numbers is an irrational number.
(ii) Assume, on the contrary, that $\exists r \in \mathbb{Q}$ and $x \in \mathbb{R} \backslash \mathbb{Q}$ such that $r / x \in \mathbb{Q}$. Let $a, b, c, d \in \mathbb{Z}$ be such that $r=a / b$ and $r / x=c / d$. Then, since $(r / x) \cdot x=r, x=\frac{r}{(r / x)}$. Hence, $x=\frac{a / b}{c / d}=\frac{a d}{b c}$ and therefore $r / x \in \mathbb{Q}$. Contradiction.
Therefore, the quotient of a rational and an irrational real numbers is an irrational number.
2. Assume, on the contrary, that there exists $r \in \mathbb{Q}$ such that $r^{2}=12$. Let $a, b \in \mathbb{Z}, b \neq 0$ such that $r=a / b$ and either a or b (or both) are odd. Then, $12=r^{2}=\frac{a^{2}}{b^{2}}$. Hence, $a^{2}=12 b^{2}$. Therefore, a^{2} is even, and so a is even and b is odd. Let $c, d \in \mathbb{Z}$ be such that $a=2 c$ and $b=2 d+1$. Then, $(2 c)^{2}=12(2 d+1)^{2}$. After expanding we obtain $4 c^{2}=12\left(4 d^{2}+4 d+1\right)$, which is equivalent to $c^{2}=12 d^{2}+12 d+3$. Since c^{2} is odd, c must be odd as well. Let $m \in \mathbb{Z}$ be such that $c=2 m+1$. Then, we obtain $(2 m+1)^{2}=12 d^{2}+12 d+3$. Expanding again, we obtain $4 m^{2}+4 m+1=12 d^{2}+12 d+3$. Therefore, $4 m^{2}+4 m-12 d^{2}-12 d=3-1$. This implies that $2 m^{2}+2 m-6 d^{2}-6 d=1$, which is impossible since the left hand side is even, whereas the right hand side is odd. Therefore, there exist no rational number r such that $r^{2}=12$.
3. Let $a<b \in \mathbb{Q}$. Let us construct an infinite sequence of distinct irrational numbers $\left\{x_{n}\right\}$ in the interval $[a, b]$. Since irrational numbers are dense in \mathbb{R}, there exists some irrational number x such that $a<x<b$. By the Archimedean property, $\exists N \in \mathbb{N}$ such that $b-x<\frac{1}{N}$. Then $b-x<\frac{1}{n+N}$ for all $n \in \mathbb{N}$. Let $x_{n}=x+\frac{1}{n+N}$. By problem $1(\mathrm{i}), x_{n} \in \mathbb{R} \backslash \mathbb{Q}$ for all $n \in \mathbb{N}$. Moreover, $\left\{x_{n}\right\}$ is a decreasing sequence satisfying $a<x<x+\frac{1}{n}<x+\frac{1}{N}<b$ for all $n \in \mathbb{N}$. Therefore, there are infinitely many irrational numbers between any two different rational numbers.
4. First, let us note that

$$
\begin{equation*}
\sqrt{n^{2}+n}-n=\left(\sqrt{n^{2}+n}-n\right) \cdot \frac{\left(\sqrt{n^{2}+n}+n\right)}{\left(\sqrt{n^{2}+n}+n\right)}=\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n}=\frac{1}{\sqrt{1+\frac{1}{n}}+1} . \tag{}
\end{equation*}
$$

Next, we will show that $\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}}=1$. Let $\epsilon>0$. We must show that there is some $N \in \mathbb{N}$ such that for all $n \geq N,\left|\sqrt{1+\frac{1}{n}}-1\right|<\epsilon$. Let $N \in \mathbb{N}$ be such that $\frac{1}{N}<\epsilon$. Then, for $n \geq N, \frac{1}{n}<\epsilon$ and therefore $1+\frac{1}{n}<1+\epsilon<1+2 \epsilon+\epsilon^{2}=(1+\epsilon)^{2}$. So $\sqrt{1+\frac{1}{n}}<1+\epsilon$ and $\sqrt{1+\frac{1}{n}}-1<\epsilon$. On the other hand, since $\frac{1}{n}>0$ for all $n \in \mathbb{N}$, we have that $1+\frac{1}{n}>1$. Hence $\sqrt{1+\frac{1}{n}}>1$ and thus $\sqrt{1+\frac{1}{n}}-1>0$. Combining, the two steps we get $\left|\sqrt{1+\frac{1}{n}}-1\right|<\epsilon$ and therefore $\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}}=1$.
To conclude, let us make use of the sum and quotient properties of convergent sequences.

$$
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n \stackrel{(*)}{=} \lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n}}+1}=\frac{1}{1+1}=\frac{1}{2}
$$

5. No. Here is a counterexample. Let $a_{n}=\left\{\begin{array}{ll}0 & n \text { odd } \\ 1 & n \text { even }\end{array}\right.$ and $b_{n}= \begin{cases}1 & n \text { odd } \\ 0 & n \text { even }\end{cases}$

Then, $a_{n} b_{n}=0$ for all $n \in \mathbb{N}$, and therefore $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$. However, neither $\lim _{n \rightarrow \infty} a_{n}$ nor $\lim _{n \rightarrow \infty} b_{n}$ exist.

