Math 410. HW 3 Solutions

1. Let $\epsilon>0$. Let $\delta>0$ be such that the only point of D in the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ is x_{0}. If $x \in D$ and $\left|x-x_{0}\right|<\delta$, then $x=x_{0}$ and thus $\left|f(x)-f\left(x_{0}\right)\right|=0<\epsilon$. Then f is continuous at x_{0}.
2. From the definition of derivative, $f^{\prime}(0)=\lim _{y \rightarrow 0} \frac{f(y)-f(0)}{y}$. Let $0<\delta<1$ be such that whenever $|y|<\delta,\left|\frac{f(y)-f(0)}{y}-f^{\prime}(0)\right|<\epsilon / 2$.
Let $x \in(-\sqrt{\delta}, \sqrt{\delta})$. Then $\left|x^{2}\right|<\delta$ and so $\left|\frac{f\left(x^{2}\right)-f(0)}{x^{2}}-f^{\prime}(0)\right|<\epsilon / 2$. Multiplying by $|x|$ and using that $|x|<\delta<1$ we have that $\left|\frac{f\left(x^{2}\right)-f(0)}{x}-f^{\prime}(0) x\right|<\epsilon / 2$. Therefore, by the triangle inequality, $\left|\frac{f\left(x^{2}\right)-f(0)}{x}\right|<\left|f^{\prime}(0) x\right|+\epsilon / 2$.
If $f^{\prime}(0) \neq 0$, let $\tilde{\delta}=\min \left\{\delta, \frac{\epsilon}{2\left|f^{\prime}(0)\right|}\right\}$. Then, $\left|\frac{f\left(x^{2}\right)-f(0)}{x}\right|<\left|f^{\prime}(0) x\right|+\epsilon / 2 \leq \epsilon / 2+\epsilon / 2=\epsilon$. If $f^{\prime}(0)=0$ we obtain directly that $\left|\frac{f\left(x^{2}\right)-f(0)}{x}\right|<\epsilon / 2$. In both cases this implies that $\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(0)}{x}=0$.
3. First note that $f(0)=0$. Then, $\frac{f(h)-f(0)}{h}= \begin{cases}h^{2} & \text { if } h \in \mathbb{Q} \\ -h^{2} & \text { if } h \notin \mathbb{Q}\end{cases}$

Therefore $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=0$ so f is differentiable at 0 , and $f^{\prime}(0)=0$.
4. We will show that $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$. Assume this is not the case and let $x_{0} \in \mathbb{R}$ be such that $f^{\prime}\left(x_{0}\right) \neq 0$.
First suppose $f^{\prime}\left(x_{0}\right)>0$. Since $f^{\prime \prime}(x) \geq 0$ for all x, we know that f^{\prime} is non-decreasing. In particular, for every $x \geq x_{0}$ we have $f^{\prime}(x) \geq f^{\prime}\left(x_{0}\right)>0$. Let $x_{1}=x_{0}+\frac{1-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$. We claim that $f\left(x_{1}\right) \geq 1$. Indeed, since $f\left(x_{0}\right) \leq 0$ and $f^{\prime}\left(x_{0}\right)>0, x_{1}>x_{0}$. By the Mean Value Theorem, the exists some $z \in\left[x_{0}, x_{1}\right]$ such that $f^{\prime}(z)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$. Therefore,
$f\left(x_{1}\right)=f\left(x_{0}\right)+f^{\prime}(z)\left(x_{1}-x_{0}\right)=f\left(x_{0}\right)+f^{\prime}(z)\left(\frac{1-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\frac{1-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right)=1$.
This contradicts the assumption that $f(x) \leq 0$ for all $x \in \mathbb{R}$.
We can apply the same reasoning to show that there is no x_{0} such that $f^{\prime}\left(x_{0}\right)<0$. Suppose $f^{\prime}\left(x_{0}\right)<0$. Using that f^{\prime} is non-decreasing, we know that for every $x \leq x_{0}$ we have $f^{\prime}(x) \leq f^{\prime}\left(x_{0}\right)<0$. Let $x_{1}=x_{0}+\frac{1-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$. We claim that $f\left(x_{1}\right) \geq 1$. Indeed, since $f\left(x_{0}\right) \leq 0$ and $f^{\prime}\left(x_{0}\right)<0, x_{1}<x_{0}$. By the Mean Value Theorem, the exists some $z \in\left[x_{1}, x_{0}\right]$ such that $f^{\prime}(z)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$. Therefore,
$f\left(x_{1}\right)=f\left(x_{0}\right)+f^{\prime}(z)\left(x_{1}-x_{0}\right)=f\left(x_{0}\right)+f^{\prime}(z)\left(\frac{1-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\frac{1-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}\right)=1$.
This contradicts the assumption that $f(x) \leq 0$ for all $x \in \mathbb{R}$. Hence, there is no x_{0} such that $f^{\prime}\left(x_{0}\right)<0$.
Combining the two parts, we conclude that $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$. This implies that f is constant.
5. Let $m, M \in\{1, \ldots, k\}$ be such that

$$
f\left(x_{m}\right)=\min \left\{f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\} \text { and } f\left(x_{M}\right)=\max \left\{f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\} .
$$

Then, $f\left(x_{m}\right) \leq \frac{f\left(x_{1}\right)+\cdots+f\left(x_{k}\right)}{k} \leq f\left(x_{M}\right)$. By the Intermediate Value Theorem, there exists a point $z \in\left[\min \left\{x_{m}, x_{M}\right\}, \max \left\{x_{m}, x_{M}\right\}\right] \subset[a, b]$ such that $f(z)=\frac{f\left(x_{1}\right)+\cdots+f\left(x_{k}\right)}{k}$.

