
Math 410. HW 5 Solutions
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4. Let β ∈ R be fixed and f(x) = (1 + x)β . The Taylor polynomial of degree n around 0 is
pn(x) =
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)
xk. The Lagrange formula for the n−th remainder is Rn(x) =
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)
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ξ)β−n−1xn+1, for some ξ ∈ [0, x]. Then, to prove the Binomial Expansion for x ∈ [0, 1), we
will show that limn→∞Rn(x) = 0. First, we find an upper bound,
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If β ∈ N ∪ {0}, the Binomial Expansion Formula is finite, and Rn(x) = 0 for n ≥ β. (This
is the usual Binomial Formula.) If β ∈ R \ (N ∪ {0}),

(
β
k

)
is never 0, and we may use the

quotient test. Keeping in mind that x ∈ [0, 1), we have
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Thus, limn→∞Bn(x) = 0, which implies that limn→∞Rn(x) = 0, and the Binomial Expan-
sion Formula holds for x ∈ [0, 1).♦

5. We assume β /∈ (N ∪ {0}), so the series of Problem 4 not finite. Let us apply the quotient
test to find its radius of convergence.

lim
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Hence, the radius of convergence of the Binomial Expansion is 1. In particular, it does not
converge for |x| > 1.♦


