1. By definition,

$$
\binom{n}{0}=\frac{n!}{0!n!}=1, \quad\binom{n}{n}=\frac{n!}{n!0!}=1 . \diamond
$$

2. By definition,

$$
\binom{n}{n-k}=\frac{n!}{(n-k)!(n-(n-k))!}=\frac{n!}{(n-k)!k!}=\binom{n}{k} \cdot \diamond
$$

3.

$$
\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}=\frac{n!((n-k+1)+k)}{k!(n-k+1)!}=\frac{(n+1)!}{k!(n-k+1)!}=\binom{n+1}{k} \cdot \diamond
$$

4. Let $\beta \in \mathbb{R}$ be fixed and $f(x)=(1+x)^{\beta}$. The Taylor polynomial of degree n around 0 is $p_{n}(x)=\sum_{k=0}^{n}\binom{\beta}{k} x^{k}$. The Lagrange formula for the n-th remainder is $R_{n}(x)=\binom{\beta}{n+1}(1+$ $\xi)^{\beta-n-1} x^{n+1}$, for some $\xi \in[0, x]$. Then, to prove the Binomial Expansion for $x \in[0,1)$, we will show that $\lim _{n \rightarrow \infty} R_{n}(x)=0$. First, we find an upper bound,

$$
\left|R_{n}(x)\right| \leq\left|\binom{\beta}{n+1}(1+\xi)^{\beta}\left(\frac{x}{1+x}\right)^{n+1}\right| \leq 2^{\beta}\left|\binom{\beta}{n+1}\left(\frac{x}{1+x}\right)^{n+1}\right|=: B_{n}(x)
$$

If $\beta \in \mathbb{N} \cup\{0\}$, the Binomial Expansion Formula is finite, and $R_{n}(x)=0$ for $n \geq \beta$. (This is the usual Binomial Formula.) If $\beta \in \mathbb{R} \backslash(\mathbb{N} \cup\{0\}),\binom{\beta}{k}$ is never 0 , and we may use the quotient test. Keeping in mind that $x \in[0,1)$, we have

$$
\frac{B_{n+1}(x)}{B_{n}(x)}=\left|\frac{\beta-n-1}{n+1}\right| \frac{x}{1+x} \underset{n \rightarrow \infty}{\rightarrow} \frac{x}{1+x}<1
$$

Thus, $\lim _{n \rightarrow \infty} B_{n}(x)=0$, which implies that $\lim _{n \rightarrow \infty} R_{n}(x)=0$, and the Binomial Expansion Formula holds for $x \in[0,1) \cdot \diamond$
5. We assume $\beta \notin(\mathbb{N} \cup\{0\})$, so the series of Problem 4 not finite. Let us apply the quotient test to find its radius of convergence.

$$
\lim _{k \rightarrow \infty} \frac{\left|\binom{\beta}{k+1}\right|}{\left|\binom{\beta}{k}\right|}=\lim _{k \rightarrow \infty} \frac{|\beta-k|}{k+1}=1
$$

Hence, the radius of convergence of the Binomial Expansion is 1. In particular, it does not converge for $|x|>1 . \diamond$

