MATH 410, HW 3

1. Let x_{0} be an isolated point of the set D. Prove that every function $f: D \rightarrow \mathbb{R}$ is continuous at x_{0}.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $x=0$. Prove that

$$
\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(0)}{x}=0 .
$$

3. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as: $f(x)=x^{3}$ if $x \in \mathbb{Q}$, and $f(x)=-x^{3}$ if $x \notin \mathbb{Q}$. Does $f^{\prime}(0)$ exist? Justify your answer.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable. Assume that for all $x \in \mathbb{R}, f(x) \leq 0$ and $f^{\prime \prime}(x) \geq 0$. Prove that f is constant.
5. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. For fixed k, let x_{1}, \ldots, x_{k} be points in $[a, b]$. Show that there is a point $z \in[a, b]$ at which

$$
f(z)=\frac{1}{k}\left(f\left(x_{1}\right)+\ldots+f\left(x_{k}\right)\right)
$$

