MATH 411, HW 1

1. Let $\left\{u_{k}\right\} \subset \mathbb{R}^{n}$ be a sequence of points that converges to $u \in \mathbb{R}^{n}$. Show that the sequence of real numbers $\left\{\left\|u_{k}\right\|\right\}$ converges to $\|u\|$.
2. Prove that the union of a collection of open subsets of \mathbb{R}^{n} is an open set in \mathbb{R}^{n}.
3. Show that sets which are simultaneously closed and open have empty boundary.
4. Prove that any closed ball in \mathbb{R}^{n} is a closed subset of \mathbb{R}^{n}.
5. Let $U=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z) \neq(0,0,0)\right\}$. Let $f: U \rightarrow \mathbb{R}$ be defined by

$$
f(x, y, z)=\frac{y}{x^{2}+y^{2}+z^{2}}
$$

Prove that f is continuous on U.

