MATH 411, HW 1

1. Let $\{u_k\} \subset \mathbb{R}^n$ be a sequence of points that converges to $u \in \mathbb{R}^n$. Show that the sequence of real numbers $\{||u_k||\}$ converges to ||u||.

- 2. Prove that the union of a collection of open subsets of \mathbb{R}^n is an open set in \mathbb{R}^n .
- 3. Show that sets which are simultaneously closed and open have empty boundary.
- 4. Prove that any closed ball in \mathbb{R}^n is a closed subset of \mathbb{R}^n .
- 5. Let $U = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \neq (0, 0, 0)\}$. Let $f : U \to \mathbb{R}$ be defined by $f(x, y, z) = \frac{y}{x^2 + y^2 + z^2}.$

Prove that f is continuous on U.