MATH 411, HW 2

1. Let $\mathbf{x} \in \mathbb{R}^n$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be such that $\lim_{\mathbf{x}\to \mathbf{0}} f(\mathbf{x})/||\mathbf{x}|| = 0$. What can you say about the limit $\lim_{\mathbf{x}\to\mathbf{0}} f(\mathbf{x})$?

2. Analyze the following limits $(x, y \in \mathbb{R})$:

$$\lim_{(x,y)\to(0,0)}\frac{x^3y}{x^2+y^2}, \quad \lim_{(x,y)\to(0,0)}\frac{e^{x^2+y^2}-1}{x^2+y^2}$$

3. Let $f(x, y, x) = xyz + x\sin(yz) + x^y$ $(x, y, z \in \mathbb{R})$. Compute all partial derivatives of 1st and 2nd order of f.

4. Let $f : \mathcal{O} \to \mathbb{R}$, where \mathcal{O} is an open subset of \mathbb{R}^n . Assume f is continuously differentiable. Does this imply that f is continuous on \mathcal{O} ? Prove or disprove.

5. Solve Problem 13.3.10 in text.