MATH 411, HW 2

1. Let $\mathbf{x} \in \mathbb{R}^{n}$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be such that $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x}) /\|\mathbf{x}\|=0$. What can you say about the $\operatorname{limit} \lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x})$?
2. Analyze the following limits $(x, y \in \mathbb{R})$:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{2}+y^{2}}, \quad \lim _{(x, y) \rightarrow(0,0)} \frac{e^{x^{2}+y^{2}}-1}{x^{2}+y^{2}} .
$$

3. Let $f(x, y, x)=x y z+x \sin (y z)+x^{y}(x, y, z \in \mathbb{R})$. Compute all partial derivatives of 1 st and 2 nd order of f.
4. Let $f: \mathcal{O} \rightarrow \mathbb{R}$, where \mathcal{O} is an open subset of \mathbb{R}^{n}. Assume f is continuously differentiable. Does this imply that f is continuous on \mathcal{O} ? Prove or disprove.
5. Solve Problem 13.3.10 in text.
