MATH 411, HW 3

1. Suppose that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has a tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. What can you say about the limit

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)-f\left(x_{0}, y_{0}\right)}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} ?
$$

2. Does there exist a linear mapping $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $F(1,2,3)=(2,3,4)$ and $F(-1,-2,-3)=(3,2,1)$?
3. Consider the following mappings $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
f(x, y)=\left(e^{x}+y, \sin (2 x)\right) ; g(x . y)=\left(2 x+\cos (y), e^{x+y}\right) ; h(x, y)=g(f(x, y)) .
$$

Use the Chain Rule to compute the derivative matrix of h at the origin.
4. Is the difference of two stable mappings also a stable mapping?
5. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be continuously differentiable and stable. Prove that for any $x \in \mathbb{R}^{3}$ and for any $h \in \mathbb{R}^{3},\|D F(x) h\| \geq\|h\|$.

