MATH 411, HW 4

1. Let $f(x, y, z)=x+y+2 z$ be defined on the set $E=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0, y>\right.$ $0, z>0, x y z=5\}$. Prove that f must assume a minimum value on E and find all points in which this minimum value is assumed.
2. Let $f(x, y, z)=2 x+y^{2}+z^{3}$ be defined on the set $E=\left\{(x, y, z) \in \mathbb{R}^{3}: x>\right.$ $0, y>0, z>0, x y z=2\}$. Find the point at which f assumes its minium value on E and prove that this indeed is the minimum of f on E.
3. Let a, b, c, k be positive constants. Maximize the expression $x^{a} y^{b} z^{c}$ subject to the restriction $x^{k}+y^{k}+z^{k}=1$.
4. Let E be the set of points in \mathbb{R}^{3} which are solutions of the set of 2 equations: $x+y^{2}+3 x=0$ and $x^{3}+z^{3}+y=0$. Provide a detailed description of the tangent space to E at the origin.
