MATH 464, HW 7

1) One way to define an anlogue of a DFT that can be applied to a matrix (or an image) is through the following formula:

$$
A[m, n]=\frac{1}{N^{2}} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} a[j, k] e^{-2 \pi i(j, k) \cdot(m, n) / N},
$$

where $\{a[j, k]\}_{j, k=0}^{N-1}$ is the input $N \times N$ matrix, $(j, k) \cdot(m, n)$ is the inner product (i.e., $j m+k n$), and $\{A[j, k]\}_{j, k=0}^{N-1}$ is the output $N \times N$ matrix.

Compare theoretically this two-dimensional DFT transform to the ones described in class (sequentially applying 1-d DFTs to rows, and then columns; and vice versa, applying 1-d DFTs to columns, and then rows).
2) Implement in Matlab any two-dimensional DFT algorithm. Apply it to the following matrices: $a[m, n]=\sin (2 \pi m / N), m, n=0, \ldots, N-1, N=128, a[m, n]=$ $\sin (4 \pi m / N), m, n=0, \ldots, N-1, N=128, a[m, n]=\sin (8 \pi m / N), m, n=0, \ldots, N-$ $1, N=128, a[m, n]=\sin (2 \pi m / N) \sin (2 \pi n / N), m, n=0, \ldots, N-1, N=128$. For comparison, apply this two-dimensional DFT to your favourite image.

