
Haar transform

0.1. Haar wavelets on R.

Definition 0.1. Let j, k ∈ Z. Define the interval Ij,k to be

Ij,k = [2−jk, 2−j(k + 1)).

We say that (j, k) 6= (j′, k′) if either j 6= j′ or k 6= k′.

Lemma 0.2. Let j, j′, k, k′ ∈ Z be such that (j, k) 6= (j′, k′). Then, one of the

following is true:

(i) Ij,k ∩ Ij′,k′ = ∅, or

(ii) Ij,k ⊂ Ij′,k′ , or

(iii) Ij′,k′ ⊂ Ij,k.

Given the integers j, k ∈ Z and the interval Ij,k, we define I l
j,k (resp., Ir

j,k) to be the

left half of Ij,k (resp., the right half of Ij,k). Thus,

I l
j,k = [2−jk, 2−jk + 2−j−1),

Ir
j,k = [2−jk + 2−j−1, 2−j(k + 1)).

It is not difficult to see that:

I l
j,k = Ij+1,2k and Ir

j,k = Ij+1,2k+1.

With this observation in mind, we have the following lemma.

Lemma 0.3. Let j, j′, k, k′ ∈ Z be such that (j, k) 6= (j′, k′). If Ij,k ⊂ Ij′,k′ then

(i) either Ij,k ⊂ I l
j′,k′

(ii) or Ij,k ⊂ Ir
j′,k′ .

Definition 0.4. The system of Haar scaling functions is defined as follows:

Let χ[0,1) be the characteristic function of interval [0, 1), i.e.,

χ[0,1)(x) =







1 x ∈ [0, 1),

0 otherwise.
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Let p(x) = χ[0,1)(x), let j, k ∈ Z, and let

pj,k(x) = 2j/2p(2jx − k) = D2jTk(p)(x),

where Da is the L2-dilation by a: Da(f) =
√

af(ax) (this means that for all finite

energy functions f , ‖f‖2 = ‖Da(f)‖2), and Tb is a translation by b (Tb also has this

property: ‖f‖2 = ‖Tb(f)‖2).

Lemma 0.5. For all j, k ∈ Z,

pj,k = χIj,k
.

It is not difficult to observe that for all j, k ∈ Z:
∫

R

pj,k(x) dx = 2−j/2

and
∫

R

|pj,k(x)|2 dx = 1.

Definition 0.6. The Haar wavelet system on R is defined as follows:

Let h(x) = χ[0,1/2)(x) − χ[1/2,1)(x), let j, k ∈ Z, and let

hj,k(x) = 2j/2h(2jx − k) = D2jTk(h)(x).

For each fixed J ∈ Z, we refer to {pJ,k, hj,k : k ∈ Z, j ≥ J} as the Haar wavelet

system of scale J .

Clearly, we have

hj,k = 2j/2
(

χIl
j,k

− χr
j,k

)

.

Moreover, for each j, k ∈ Z, we have
∫

R

hj,k(x) dx = 0

and
∫

R

|hj,k(x)|2 dx = 1.

2



Also, because of our observations about I l
j,k and Ir

j,k, the Haar wavelets and scaling

functions satisfy the following relations:

pl,k =
1√
2
(pl+1,2k + pl+1,2k+1)

and

hl,k =
1√
2
(pl+1,2k − pl+1,2k+1).

Theorem 0.7. The Haar wavelet system {hj,k : j, k ∈ Z} on R is an orthonormal

basis for L2(R).

We shall only look at the proof of orthonormality of the Haar system on R, leaving

the completeness part for Advanced Calculus classes.

First, fix j ∈ Z and suppose that k 6= k′. We have that hj,k(x)hj,k′(x) = 0 for all

x ∈ R, since the function hj,k assumes non-zero values only in the interval Ij,k, and

for k 6= k′,

Ij,k ∩ Ij,k′ = ∅.

If k = k′, then

< hj,k, hj,k >=

∫

R

|hj,k(x)|2 dx = 1.

Assume now that j 6= j′. Without loss of generality it is sufficient to consider the

case j > j′. Then, it follows from the first two Lemmas that there are 3 distinct

possibilities: Ij,k ∩ Ij′,k′ = ∅, or Ij,k ⊂ I l
j′,k′ , or Ij,k ⊂ Ir

j′,k′ .

Case Ij,k ∩ Ij′,k′ = ∅ is elementary, as in this case hj,k(x)hj′,k′(x) = 0 and so

< hj,k, hj′,k′ >= 0.

Case Ij,k ⊂ I l
j′,k′ implies that whenever hj,k is non-zero, hj′,k′ is constantly equal to

1. Thus,

< hj,k, hj′,k′ >=

∫

Ij,k

hj,k(x)hj′,k′(x) dx =

∫

Ij,k

hj,k(x) dx = 0.
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Similarly, the case Ij,k ⊂ Ir
j′,k′ implies that whenever hj,k is non-zero, hj′,k′ is con-

stantly equal to −1, and so,

< hj,k, hj′,k′ >=

∫

Ij,k

hj,k(x)hj′,k′(x) dx = −
∫

Ij,k

hj,k(x) dx = 0.

This completes the proof of orthonormality of the Haar wavelet system on R.

For the Haar wavelet systems of scale J , we have analogous result.

Theorem 0.8. The Haar wavelet systems of scale J , {pJ,k, hj,k : k ∈ Z, j ≥ J}, on R

is an orthonormal basis for l2(R).

(The proof of this result is similar to the previous one.)

0.2. Haar wavelets on [0, 1]. Fix an integer J ≥ 0. The Haar wavelet system of

scale J on [0, 1] is defined as

{pJ,k : 0 ≤ k ≤ 2J − 1} ∪ {hj,k : j ≥ J, 0 ≤ k ≤ 2j − 1}.

When J = 0 we refer to this system simply as the Haar wavelet system on [0, 1].

Here, the choice of k’s and the assumption about J ≥ 0 are necessary so that the

system we have created is a collection of functions which are non-zero only in the

interval [0, 1].

Remark. Note that each and every Haar system on [0, 1] consists of both Haar

wavelet functions and Haar scaling functions. This is to compensate the fact that we

have restricted the set of possible parameters j, k.

Theorem 0.9. The Haar wavelet system of scale J on [0, 1] is an orthonormal basis

on [0, 1].

0.3. Discrete Haar transform. Fix N > 0 and let c0(k) =< f, pN,k >, k =

0, . . . , 2N − 1. This is our starting finite sequence of length 2N . One may think

of this sequence as of a finite approximation to a given signal f of length 1. We fix

J > 0 and for each 1 ≤ j ≤ J we define the coefficients:

cj(k) =< f, pN−j,k >
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and

dj(k) =< f, hN−j,k > .

Because of the relationship that holds together Haar wavelets and Haar scaling func-

tions (stated in these notes before Theorem 0.7), the following formulas hold for the

coefficients:

cj(k) =
1√
2
(cj−1(2k) + cj−1(2k + 1))

and

dj(k) =
1√
2
(cj−1(2k) − cj−1(2k + 1)).

These equations can be rewritten equivalently in the matrix-vector form:

(

cj(k)

dj(k)

)

=
1√
2

(

1 1

1 −1

)(

cj−1(2k)

cj−1(2k + 1)

)

.

By taking the inverse of the above matrix (which has a non-zero determinant, and

so, is invertible), we can re-write the matrix-vector equation above as follows:

(

cj−1(2k)

cj−1(2k + 1)

)

=
1√
2

(

1 1

1 −1

)(

cj(k)

dj(k)

)

.

Definition 0.10. Given J < N and a finite sequence c0 = (c0(0), . . . , c0(2
N −1)), the

Discrete Haar transform DHTJ of scale J of c0 is defined to be the finite sequence of

coefficients:

{dj(k) : 1 ≤ j ≤ J ; 0 ≤ k ≤ 2N−j − 1} ∪ {cJ(k) : 0 ≤ k ≤ 2N−j − 1},

where we use the following formulas to compute cj’s and dj’s:

cj(k) =
1√
2
(cj−1(2k) + cj−1(2k + 1))

and

dj(k) =
1√
2
(cj−1(2k) − cj−1(2k + 1)).

5



Define the following auxiliary l/2 × L matrices:

H =
1√
2















1 1 0 0 . . . 0

0 0 1 1 0 . . .

. . .

0 . . . . . . 0 1 1















and

G =
1√
2















1 −1 0 0 . . . 0

0 0 1 −1 0 . . .

. . .

0 . . . . . . 0 1 −1















In the matrix-vector notation, the DHTJ produces the vector

(d1, d2, . . . dJ , cJ)

where each dj is a vector of length 2N−j, 1 ≤ j ≤ J , and cJ is a vector of length 2N−J ,

and where
(

cj

dj

)

=

(

H

G

)

cj−1.

Here, H and G are 2N−j−2 × 2N−j−1 matrices, and

In the extreme case when J = N − 1, dJ and cJ are both vectors of length 2.

The inverse of DHTJ is computed by applying the formula:

cj−1 = H∗(cj) + G∗(dj),

up to j = 1. This is related to the fact that the matrix

1√
2

(

1 1

1 −1

)

is its own inverse; hence, the inverse of
(

H

G

)

is (H∗, G∗).
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