## Haar transform

### 0.1. Haar wavelets on $\mathbb{R}$.

Definition 0.1. Let $j, k \in \mathbb{Z}$. Define the interval $I_{j, k}$ to be

$$
I_{j, k}=\left[2^{-j} k, 2^{-j}(k+1)\right) .
$$

We say that $(j, k) \neq\left(j^{\prime}, k^{\prime}\right)$ if either $j \neq j^{\prime}$ or $k \neq k^{\prime}$.
Lemma 0.2. Let $j, j^{\prime}, k, k^{\prime} \in \mathbb{Z}$ be such that $(j, k) \neq\left(j^{\prime}, k^{\prime}\right)$. Then, one of the following is true:
(i) $I_{j, k} \cap I_{j^{\prime}, k^{\prime}}=\emptyset$, or
(ii) $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}$, or
(iii) $I_{j^{\prime}, k^{\prime}} \subset I_{j, k}$.

Given the integers $j, k \in \mathbb{Z}$ and the interval $I_{j, k}$, we define $I_{j, k}^{l}$ (resp., $I_{j, k}^{r}$ ) to be the left half of $I_{j, k}$ (resp., the right half of $I_{j, k}$ ). Thus,

$$
\begin{aligned}
& I_{j, k}^{l}=\left[2^{-j} k, 2^{-j} k+2^{-j-1}\right), \\
& I_{j, k}^{r}=\left[2^{-j} k+2^{-j-1}, 2^{-j}(k+1)\right) .
\end{aligned}
$$

It is not difficult to see that:

$$
I_{j, k}^{l}=I_{j+1,2 k} \quad \text { and } \quad I_{j, k}^{r}=I_{j+1,2 k+1} .
$$

With this observation in mind, we have the following lemma.
Lemma 0.3. Let $j, j^{\prime}, k, k^{\prime} \in \mathbb{Z}$ be such that $(j, k) \neq\left(j^{\prime}, k^{\prime}\right)$. If $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}$ then
(i) either $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}^{l}$
(ii) or $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}^{r}$.

Definition 0.4. The system of Haar scaling functions is defined as follows:
Let $\chi_{[0,1)}$ be the characteristic function of interval $[0,1)$, i.e.,

$$
\chi_{[0,1)}(x)= \begin{cases}1 & x \in[0,1) \\ 0 & \text { otherwise }\end{cases}
$$

Let $p(x)=\chi_{[0,1)}(x)$, let $j, k \in \mathbb{Z}$, and let

$$
p_{j, k}(x)=2^{j / 2} p\left(2^{j} x-k\right)=D_{2^{j}} T_{k}(p)(x),
$$

where $D_{a}$ is the $L^{2}$-dilation by $a: D_{a}(f)=\sqrt{a} f(a x)$ (this means that for all finite energy functions $f,\|f\|_{2}=\left\|D_{a}(f)\right\|_{2}$ ), and $T_{b}$ is a translation by $b$ ( $T_{b}$ also has this property: $\left.\|f\|_{2}=\left\|T_{b}(f)\right\|_{2}\right)$.

Lemma 0.5. For all $j, k \in \mathbb{Z}$,

$$
p_{j, k}=\chi_{I_{j, k}} .
$$

It is not difficult to observe that for all $j, k \in \mathbb{Z}$ :

$$
\int_{\mathbb{R}} p_{j, k}(x) d x=2^{-j / 2}
$$

and

$$
\int_{\mathbb{R}}\left|p_{j, k}(x)\right|^{2} d x=1
$$

Definition 0.6. The Haar wavelet system on $\mathbb{R}$ is defined as follows:
Let $h(x)=\chi_{[0,1 / 2)}(x)-\chi_{[1 / 2,1)}(x)$, let $j, k \in \mathbb{Z}$, and let

$$
h_{j, k}(x)=2^{j / 2} h\left(2^{j} x-k\right)=D_{2^{j}} T_{k}(h)(x) .
$$

For each fixed $J \in \mathbb{Z}$, we refer to $\left\{p_{J, k}, h_{j, k}: k \in \mathbb{Z}, j \geq J\right\}$ as the Haar wavelet system of scale $J$.

Clearly, we have

$$
h_{j, k}=2^{j / 2}\left(\chi_{I_{j, k}^{l}}-\chi_{j, k}^{r}\right) .
$$

Moreover, for each $j, k \in \mathbb{Z}$, we have

$$
\int_{\mathbb{R}} h_{j, k}(x) d x=0
$$

and

$$
\int_{\mathbb{R}}\left|h_{j, k}(x)\right|^{2} d x=1
$$

Also, because of our observations about $I_{j, k}^{l}$ and $I_{j, k}^{r}$, the Haar wavelets and scaling functions satisfy the following relations:

$$
p_{l, k}=\frac{1}{\sqrt{2}}\left(p_{l+1,2 k}+p_{l+1,2 k+1}\right)
$$

and

$$
h_{l, k}=\frac{1}{\sqrt{2}}\left(p_{l+1,2 k}-p_{l+1,2 k+1}\right)
$$

Theorem 0.7. The Haar wavelet system $\left\{h_{j, k}: j, k \in \mathbb{Z}\right\}$ on $\mathbb{R}$ is an orthonormal basis for $L^{2}(\mathbb{R})$.

We shall only look at the proof of orthonormality of the Haar system on $\mathbb{R}$, leaving the completeness part for Advanced Calculus classes.

First, fix $j \in \mathbb{Z}$ and suppose that $k \neq k^{\prime}$. We have that $h_{j, k}(x) h_{j, k^{\prime}}(x)=0$ for all $x \in R$, since the function $h_{j, k}$ assumes non-zero values only in the interval $I_{j, k}$, and for $k \neq k^{\prime}$,

$$
I_{j, k} \cap I_{j, k^{\prime}}=\emptyset
$$

If $k=k^{\prime}$, then

$$
<h_{j, k}, h_{j, k}>=\int_{\mathbb{R}}\left|h_{j, k}(x)\right|^{2} d x=1 .
$$

Assume now that $j \neq j^{\prime}$. Without loss of generality it is sufficient to consider the case $j>j^{\prime}$. Then, it follows from the first two Lemmas that there are 3 distinct possibilities: $I_{j, k} \cap I_{j^{\prime}, k^{\prime}}=\emptyset$, or $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}^{l}$, or $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}^{r}$.

Case $I_{j, k} \cap I_{j^{\prime}, k^{\prime}}=\emptyset$ is elementary, as in this case $h_{j, k}(x) h_{j^{\prime}, k^{\prime}}(x)=0$ and so

$$
<h_{j, k}, h_{j^{\prime}, k^{\prime}}>=0
$$

Case $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}^{l}$ implies that whenever $h_{j, k}$ is non-zero, $h_{j^{\prime}, k^{\prime}}$ is constantly equal to 1. Thus,

$$
<h_{j, k}, h_{j^{\prime}, k^{\prime}}>=\int_{I_{j, k}} h_{j, k}(x) h_{j^{\prime}, k^{\prime}}(x) d x=\int_{I_{j, k}} h_{j, k}(x) d x=0
$$

Similarly, the case $I_{j, k} \subset I_{j^{\prime}, k^{\prime}}^{r}$ implies that whenever $h_{j, k}$ is non-zero, $h_{j^{\prime}, k^{\prime}}$ is constantly equal to -1 , and so,

$$
<h_{j, k}, h_{j^{\prime}, k^{\prime}}>=\int_{I_{j, k}} h_{j, k}(x) h_{j^{\prime}, k^{\prime}}(x) d x=-\int_{I_{j, k}} h_{j, k}(x) d x=0
$$

This completes the proof of orthonormality of the Haar wavelet system on $\mathbb{R}$.
For the Haar wavelet systems of scale $J$, we have analogous result.
Theorem 0.8. The Haar wavelet systems of scale $J,\left\{p_{J, k}, h_{j, k}: k \in \mathbb{Z}, j \geq J\right\}$, on $\mathbb{R}$ is an orthonormal basis for $l^{2}(\mathbb{R})$.
(The proof of this result is similar to the previous one.)
0.2 . Haar wavelets on $[0,1]$. Fix an integer $J \geq 0$. The Haar wavelet system of scale $J$ on $[0,1]$ is defined as

$$
\left\{p_{J, k}: 0 \leq k \leq 2^{J}-1\right\} \cup\left\{h_{j, k}: j \geq J, 0 \leq k \leq 2^{j}-1\right\}
$$

When $J=0$ we refer to this system simply as the Haar wavelet system on $[0,1]$.
Here, the choice of $k$ 's and the assumption about $J \geq 0$ are necessary so that the system we have created is a collection of functions which are non-zero only in the interval $[0,1]$.

Remark. Note that each and every Haar system on $[0,1]$ consists of both Haar wavelet functions and Haar scaling functions. This is to compensate the fact that we have restricted the set of possible parameters $j, k$.

Theorem 0.9. The Haar wavelet system of scale $J$ on $[0,1]$ is an orthonormal basis on $[0,1]$.
0.3. Discrete Haar transform. Fix $N>0$ and let $c_{0}(k)=<f, p_{N, k}>, k=$ $0, \ldots, 2^{N}-1$. This is our starting finite sequence of length $2^{N}$. One may think of this sequence as of a finite approximation to a given signal $f$ of length 1 . We fix $J>0$ and for each $1 \leq j \leq J$ we define the coefficients:

$$
c_{j}(k)=<\underset{4}{f}, p_{N-j, k}>
$$

and

$$
d_{j}(k)=<f, h_{N-j, k}>.
$$

Because of the relationship that holds together Haar wavelets and Haar scaling functions (stated in these notes before Theorem 0.7), the following formulas hold for the coefficients:

$$
c_{j}(k)=\frac{1}{\sqrt{2}}\left(c_{j-1}(2 k)+c_{j-1}(2 k+1)\right)
$$

and

$$
d_{j}(k)=\frac{1}{\sqrt{2}}\left(c_{j-1}(2 k)-c_{j-1}(2 k+1)\right) .
$$

These equations can be rewritten equivalently in the matrix-vector form:

$$
\binom{c_{j}(k)}{d_{j}(k)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{c_{j-1}(2 k)}{c_{j-1}(2 k+1)} .
$$

By taking the inverse of the above matrix (which has a non-zero determinant, and so, is invertible), we can re-write the matrix-vector equation above as follows:

$$
\binom{c_{j-1}(2 k)}{c_{j-1}(2 k+1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{c_{j}(k)}{d_{j}(k)} .
$$

Definition 0.10. Given $J<N$ and a finite sequence $c_{0}=\left(c_{0}(0), \ldots, c_{0}\left(2^{N}-1\right)\right)$, the Discrete Haar transform $D H T_{J}$ of scale $J$ of $c_{0}$ is defined to be the finite sequence of coefficients:

$$
\left\{d_{j}(k): 1 \leq j \leq J ; 0 \leq k \leq 2^{N-j}-1\right\} \cup\left\{c_{J}(k): 0 \leq k \leq 2^{N-j}-1\right\}
$$

where we use the following formulas to compute $c_{j}$ 's and $d_{j}$ 's:

$$
c_{j}(k)=\frac{1}{\sqrt{2}}\left(c_{j-1}(2 k)+c_{j-1}(2 k+1)\right)
$$

and

$$
d_{j}(k)=\frac{1}{\sqrt{2}}\left(c_{j-1}(2 k)-c_{j-1}(2 k+1)\right)
$$

Define the following auxiliary $l / 2 \times L$ matrices:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 1 & 0 & \ldots \\
\ldots & & & & & \\
0 & \ldots & \ldots & 0 & 1 & 1
\end{array}\right)
$$

and

$$
G=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & -1 & 0 & \ldots \\
\ldots & & & & & \\
0 & \ldots & \ldots & 0 & 1 & -1
\end{array}\right)
$$

In the matrix-vector notation, the $D H T_{J}$ produces the vector

$$
\left(d_{1}, d_{2}, \ldots d_{J}, c_{J}\right)
$$

where each $d_{j}$ is a vector of length $2^{N-j}, 1 \leq j \leq J$, and $c_{J}$ is a vector of length $2^{N-J}$, and where

$$
\binom{c_{j}}{d_{j}}=\binom{H}{G} c_{j-1} .
$$

Here, $H$ and $G$ are $2^{N-j-2} \times 2^{N-j-1}$ matrices, and
In the extreme case when $J=N-1, d_{J}$ and $c_{J}$ are both vectors of length 2 .
The inverse of $D H T_{J}$ is computed by applying the formula:

$$
c_{j-1}=H^{*}\left(c_{j}\right)+G^{*}\left(d_{j}\right)
$$

up to $j=1$. This is related to the fact that the matrix

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

is its own inverse; hence, the inverse of

$$
\binom{H}{G}
$$

is $\left(H^{*}, G^{*}\right)$.

