MATH 141, FALL 2015, Example of 1st Order Linear Differential Equation

Solve the following 1st order linear differential equation:

$$
\begin{equation*}
\frac{d y}{d x}+(2 x+3) y=2 x+3 . \tag{1}
\end{equation*}
$$

We start by computing:

$$
\begin{equation*}
S(x)=\int(2 x+3) d x=x^{2}+3 x+C \tag{2}
\end{equation*}
$$

Then, the formula from our textbook tells us that a solution of the differential equation (1) will have the form:

$$
y=e^{-S(x)} \int e^{S(x)} Q(x) d x
$$

Remark 0.1. Note that in the above equation we cannot cancel out $e^{-S(x)}$ with $e^{S(x)}$. One of ways to avoid this mistake is by switching to a different variable for the integral. However remember that at the end you must return to the x variable. Alternatively, to avoid the temptation of oversimplifying the integration by canceling the exponentials, we may solve the integral separately, as is shown below.

Let us solve first the integral component, by substituting S from (2):

$$
\int e^{S(x)} Q(x) d x=\int e^{x^{2}+3 x+C}(2 x+3) d x=e^{C} \int e^{x^{2}+3 x}(2 x+3) d x
$$

We use the substitution $t=x^{2}+3 x, d t=2 x+3$, to obtain

$$
\int e^{x^{2}+3 x}(2 x+3) d x=\int e^{t} d t=e^{t}+C^{\prime}=e^{x^{2}+3 x}+C^{\prime}
$$

Hence,

$$
y=e^{-x^{2}-3 x-C}\left(e^{C}\left(e^{x^{2}+3 x}+C^{\prime}\right)\right) .
$$

Please note that now e^{-C} and e^{C} multiply out to 1 , so that:

$$
y=e^{-x^{2}-3 x}\left(e^{x^{2}+3 x}+C^{\prime}\right) .
$$

Furthermore, we can simplify this to:

$$
\begin{gathered}
y=1+C^{\prime} e^{-x^{2}-3 x} \\
1
\end{gathered}
$$

Remark 0.2. One can always just use C to denote a generic constant at this point:

$$
y=1+C e^{-x^{2}-3 x}
$$

Finally, we can verify that this is indeed a solution of (1), by differentiating y :

$$
\frac{d y}{d x}=C e^{-x^{2}-3 x}(-2 x-3)
$$

and plugging it into equation (1):

$$
C e^{-x^{2}-3 x}(-2 x-3)+(2 x+3)\left(1+C e^{-x^{2}-3 x}\right)=2 x+3
$$

