1) Calculate the one-sided Laplace transform of the function:

$$
f(x)= \begin{cases}x, & x \in[0,1) \\ 2-x, & x \in[1,2) \\ 0, & x \geq 2\end{cases}
$$

2) Find the one-sided inverse Laplace transforms of functions:

$$
\frac{4 s+4}{s^{2}(s-2)} .
$$

3) Solve the problems:

$$
y^{\prime \prime}(t)+a^{2} y(t)=0, \quad y(0)=0, \quad y^{\prime}(0)=a .
$$

4) Given function $f(t)$ such that its one-sided Laplace transform exists, explicitely compute the one-sided Laplace transform of function $g(t)=\int_{0}^{t} f(s) d s$ in terms of $\mathcal{L}(f)$.
5) Given function $f(t)$ such that its one-sided Laplace transform exists, find the one-sided Laplace transform of function $g(t)=t^{n} f(t)$ in terms of $\mathcal{L}(f)$.
