MATH 141, FALL 2015
COMPOSITIONS OF TRIGONOMETRIC FUNCTIONS
WITH INVERSE TRIGONOMETRIC FUNCTIONS

We shall compute a series of compositions of a trigonometric function with an inverse trigonometric function. Our examples that we shall deal with are:
$\sin \left(\cos ^{-1}(x)\right), \cos \left(\cos ^{-1}(x)\right), \tan \left(\cos ^{-1}(x)\right), \cot \left(\cos ^{-1}(x)\right), \sec \left(\cos ^{-1}(x)\right), \csc \left(\cos ^{-1}(x)\right)$.
As we can see, all of the above examples share a common inverse trigonometric function $\cos ^{-1}(x)$. This implies that, if we let $y=\cos ^{-1}(x)$, then $x=\cos (y)$. We can thus set a right triangle with one of the acute angles y, its adjacent (denoted by A) equal to x, and hypothenuse (denoted by H) equal to 1 . By Pythagorean theorem, we thus have that the side opposite (denoted by O) to angle y must necessarily be $\sqrt{1-x^{2}}$.

By the definitions of trigonometric functions we thus have:

$$
\begin{aligned}
\sin \left(\cos ^{-1}(x)\right) & =\frac{O}{H}=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}, \\
\cos \left(\cos ^{-1}(x)\right) & =\frac{A}{H}=\frac{x}{1}=x, \\
\tan \left(\cos ^{-1}(x)\right) & =\frac{O}{A}=\frac{\sqrt{1-x^{2}}}{x}, \\
\cot \left(\cos ^{-1}(x)\right) & =\frac{A}{O}=\frac{x}{\sqrt{1-x^{2}}}, \\
\sec \left(\cos ^{-1}(x)\right) & =\frac{H}{A}=\frac{1}{x}, \\
\csc \left(\cos ^{-1}(x)\right) & =\frac{H}{O}=\frac{1}{\sqrt{1-x^{2}}} .
\end{aligned}
$$

