1. The volume of the solid generated by revolving $f(x)=\frac{1}{\sqrt{1+x^{2}}}$ about the x -axis over the interval $\left[0, \frac{1}{\sqrt{2}}\right]$:

Using the disk method:

$$
\begin{array}{rlr}
V & =\pi \int_{0}^{\frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2} \mathrm{dx} & \\
& =\pi \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{1+x^{2}} \mathrm{dx} & 10 \mathrm{pts} \\
& =\pi \arctan (x)]_{0}^{\frac{1}{\sqrt{2}}} & 8 \mathrm{pts} \\
& =\pi\left(\arctan \left(\frac{1}{\sqrt{2}}\right)-\arctan (0)\right) & \\
& =\pi \arctan \left(\frac{1}{\sqrt{2}}\right) & 2 \mathrm{pts}
\end{array}
$$

