1. The volume of the solid generated by revolving $f(x) = \frac{1}{\sqrt{1+x^2}}$ about the x-axis over the interval $[0, \frac{1}{\sqrt{2}}]$:

Using the disk method:

$$V = \pi \int_{0}^{\frac{1}{\sqrt{2}}} (\frac{1}{\sqrt{1+x^2}})^2 \, dx$$

= $\pi \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{1+x^2} \, dx$ 10 pts
= $\pi \arctan(x) \Big]_{0}^{\frac{1}{\sqrt{2}}}$ 8 pts
= $\pi (\arctan(\frac{1}{\sqrt{2}}) - \arctan(0))$
= $\pi \arctan(\frac{1}{\sqrt{2}})$ 2 pts