SOLUTION TO PROBLEM 5 ON MIDTERM 1

You can start like this:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{x^{2}}=(2 \text { points }) \lim _{x \rightarrow \infty} e^{x^{2} \ln \left(1+1 / x^{2}\right)}=(2 \text { points }) e^{\lim _{x \rightarrow \infty} x^{2} \ln \left(1+1 / x^{2}\right)}
$$

We now consider $\lim _{x \rightarrow \infty}\left(x^{2} \ln \left(1+1 / x^{2}\right)\right)$:

$$
\lim _{x \rightarrow \infty} x^{2} \ln \left(1+\frac{1}{x^{2}}\right)=(2 \text { points }) \lim _{x \rightarrow \infty} \frac{\ln \left(1+1 / x^{2}\right)}{\frac{1}{x^{2}}}
$$

Next observe that de l'Hopital's rule applies to the limit above on the right. Thus, by applying it we have:

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(1+1 / x^{2}\right)}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{1+1 / x^{2}} \cdot \frac{(-2)}{x^{3}}}{\frac{(-2)}{x^{3}}}
$$

Each correctly computed derivative is worth 4 points (for the total of 8 points). I take away 2 points for each incorrect constant in the computation of either of the derivatives. Further, we notice that

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{1+1 / x^{2}} \cdot \frac{(-2)}{x^{3}}}{\frac{(-2)}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{1}{1+1 / x^{2}}=1
$$

which is also worth 4 points.
Last, we plug this observation into the original problem to obtain:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{x^{2}}=e^{\lim _{x \rightarrow \infty} x^{2} \ln \left(1+1 / x^{2}\right)}=e^{1}=e .(2 \text { points })
$$

