
141 Exam 2 Fall 08 Dr. Czaja   answer key number 1 
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This is a linear first-order differential equation. Two paths to the integrating factor are shown below. 
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There are also two ways to approach the integration. On the left the multiplication has been distributed and 
two integrals evaluated. On the right, one integration by parts has been performed. 
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for the 2nd integral, using integration by parts: 
u = x, du = 1 dx; dv = cos (x), v = sin (x) 
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Note “+ C” also must be “over (1 – x)”. 
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for the 1st integral, using integration by parts: 
u = x – 1, du = 1 dx; dv = cos (x), v = sin (x) 
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Note “+ C” also must be “over (x – 1)”. 
 

1st note: The two answers are equal. These solutions check out when y′  is found and inserted into the DE. 
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