1) Evaluate the limit

$$
\lim _{n \rightarrow \infty}(n-1)^{1 / n}
$$

2) Verify whether the series is convergent or divergent:

$$
\sum_{n=1}^{\infty} \frac{2^{n} n!}{(2 n)!}
$$

3) Find the sum of the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)
$$

4) Write the repeating decimal $2.12121212 \ldots$ as a fraction of integer numbers.
5) Find the Taylor series of $f(x)=\log _{2}(x)$ about $x=2$ (i.e., the series with powers of $x-2)$. What is the radius of convergence of this power series?
6) Write

$$
\frac{-6-i 2 \sqrt{3}}{-3+i \sqrt{3}}
$$

in the polar form $r e^{i \theta}$ (i.e., compute r and θ).

