1. Find the limit

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\ln (n)}
$$

There were two ways to approach this problem: (1) using the squeeze theorem and (2) using l'Hopitals rule on the associated function.
(1) The Squeeze Theorem:

Note that $\sqrt[n]{x} \geq 1$ for $x \geq 1$. So for $n>2, \sqrt[n]{\ln (n)} \geq 1$. Also, $\ln (n) \leq n$ for all positive integers and so $\sqrt[n]{\ln (n)} \leq \sqrt[n]{n}$. Summarizing, we have for $n>2$:

$$
1 \leq \sqrt[n]{\ln (n)} \leq \sqrt[n]{n}
$$

We know that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$ (this is computed as an example in the text.) Then by the squeeze theorem,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\ln (n)}=1
$$

(2) l'Hopital's Rule:

Consider the function $f(x)=\sqrt[x]{\ln (x)}$. Rewrite the function as $f(x)=\exp \left[\frac{1}{x} \ln (\ln x)\right]$. We want to compute $\lim _{x \rightarrow \infty} f(x)$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\exp \left[\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\ln x)\right] & & \text { (by continuity of exp}[]) \\
& =\exp \left[\lim _{x \rightarrow \infty} \frac{1}{x \ln x}\right] & & \text { (by l'Hopital) } \\
& =\exp [0] & & \\
& =1 & &
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\ln (n)}=1
$$

The most common mistakes were to argue in someway that $\lim _{n \rightarrow \infty} \sqrt[n]{\ln (n)}=\infty^{0}=1$ or to say that $\lim _{n \rightarrow \infty} \sqrt[n]{\ln (n)}=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$. The former is a nonsensical statement. The same argument would say that $n=\sqrt[n]{n^{n}} \rightarrow 1$ as $n \rightarrow \infty$, which is clearly false. The latter is a misunderstanding of the rules for logarithms: $\frac{\ln n}{n}=\ln (\sqrt[n]{n})$ not $\sqrt[n]{\ln n}$.
Because the method was an essential part of the problem, for the most part no points were given if neither (1) nor (2) were employed.

