MATH 141 Midterm 3

$$3.) \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\log_{10} n}}$$

Using the integral test we note that the sequence can be extended to a monotone decreasing non-negative continuous function, $\frac{1}{x\sqrt{\log_{10} x}}$, on the interval $[2, \infty)$. Thus the series converges if and only if the integral $\int_{2}^{\infty} \frac{dx}{x\sqrt{\log_{10} x}}$ converges. (5pts)

Using the u substitution $u = \log_{10} x$ and $du = \frac{dx}{x \ln 10}$ we now take the integral $\ln 10 \cdot \int_{\log_{10} 2}^{\infty} \frac{du}{\sqrt{u}} = \ln 10 \cdot [2\sqrt{u}]_{\log_{10} 2}^{\infty}$ (10pts)

Since the $\lim_{u\to\infty}\sqrt{u} = \infty$ the integral diverges and thus the series must also diverge. Thus by the integral test the series diverges. (5pts)