MATH 141 Midterm 3
3.) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\log _{10} n}}$

Using the integral test we note that the sequence can be extended to a monotone decreasing non-negative continuous function, $\frac{1}{x \sqrt{\log _{10} x}}$, on the interval $[2, \infty)$. Thus the series converges if and only if the integral $\int_{2}^{\infty} \frac{d x}{x \sqrt{\log _{10} x}}$ converges. (5pts)

Using the u substitution $u=\log _{10} x$ and $d u=\frac{d x}{x \ln 10}$ we now take the integral $\ln 10 \cdot \int_{\log _{10} 2}^{\infty} \frac{d u}{\sqrt{u}}=\ln 10 \cdot[2 \sqrt{u}]_{\log _{10} 2}^{\infty}(10 \mathrm{pts})$

Since the $\lim _{u \rightarrow \infty} \sqrt{u}=\infty$ the integral diverges and thus the series must also diverge. Thus by the integral test the series diverges. (5pts)

