
Solution for Problem 4

4) Find the interval of convergence of the series
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Solution 1:

Use the formula for the radius of convergence r = limn→∞
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The series converges absolutely over R.

Solution 2:

Use the formula for the radius of convergence r = limn→∞
n
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The series converges absolutely over R.

Scoring Key:

• 5 points for correctly writing the terms in the radius of convergence for-
mulae, the ratio or the root test.

• 5 points for computing either limn→∞
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)
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• 5 points for computing either limn→∞
2|x|
n

= 0 or limn→∞
2|x|
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= 0.

• 5 points for correctly interpreting that the series converges absolutely ev-
erywhere.
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