Solution for Problem 4

4) Find the interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n+1}}{n^{n}} x^{n}
$$

Solution 1:
Use the formula for the radius of convergence $r=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}$.

$$
\begin{gathered}
r=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{n^{n}} \cdot \frac{(n+1)^{n+1}}{2^{n+2}}=\lim _{n \rightarrow \infty} \frac{(n+1) \cdot(n+1)^{n+1}}{2 \cdot n^{n}} \\
=\left(\lim _{n \rightarrow \infty} \frac{n+1}{2}\right) \cdot \underbrace{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}_{=e}=\infty .
\end{gathered}
$$

The series converges absolutely over \mathbb{R}.

Solution 2:
Use the formula for the radius of convergence $r=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$.

$$
\begin{gathered}
\frac{1}{r}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{2^{n+1}}{n^{n}}}=\underbrace{\lim _{n \rightarrow \infty} \sqrt[n]{2}}_{=1} \cdot \lim _{n \rightarrow \infty} \frac{2}{n} \\
r=\lim _{n \rightarrow \infty} \frac{n}{2}=\infty
\end{gathered}
$$

The series converges absolutely over \mathbb{R}.

Scoring Key:

- 5 points for correctly writing the terms in the radius of convergence formulae, the ratio or the root test.
- 5 points for computing either $\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=e^{-1}$ or $\lim _{n \rightarrow \infty} \sqrt[n]{2}=1$.
- 5 points for computing either $\lim _{n \rightarrow \infty} \frac{2|x|}{n}=0$ or $\lim _{n \rightarrow \infty} \frac{2|x|}{n+1}=0$.
- 5 points for correctly interpreting that the series converges absolutely everywhere.

