
Calculus 141, sections 9.8-9.9 Radius of Convergence Examples 
notes by Tim Pilachowski, Fall 2008 
 

Be sure to check out Theorem 9.24 in the text for information about radius of convergence and interval of 
convergence. See table 9.1 for examples. 
 
Theory: We know about convergence for a geometric series. For c ≠ 0 and m ≥ 0, the geometric series 
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 1) Rewrite this power series as a geometric series: 
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 An advantage to a geometric series is that, within the radius of convergence, we can find the sum. 

  For this series, 
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Theory: We can also apply the other tests for convergence to create an equation to solve for x. 
 

Example B: Find the interval of convergence of ∑
∞

= +0 1
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Example C: Find the interval of convergence of ∑
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 Do this one for practice. Use the Ratio Test to show that radius of convergence =  and the interval of 
convergence is (–∞, ∞). 
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Example D: Find the radius of convergence of ∑
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Theory: The Lagrange Remainder Formula gives us another approach. 
Example E: Show that the Taylor series generated by f(x) = ex about x = 0 converges to ex for all x. In other 
words, show that the interval of convergence is (–∞, ∞). 
 For all orders of derivatives, ( )( ) ( )( ) 10 0 ==⇒= efexf nxn , so the Taylor series for f(x) is 
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We have three cases to consider: 
 I. When x is negative, so is tx,  and . 10 << xte
 II. When x = 0, e0 = 1 and rn(x) = 0. 
 III. When x is positive, so is , and xt xt ee x < . 
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