Math 141 Midterm 1 Question 1 Solution

September 23, 2015

Question: Find the volume of the solid obtained by revolving about the y axis the region between the graphs of functions $f(x)=\sqrt{3+x}$ and $g(x)=\frac{\ln (x)}{x^{2}}$ on the interval [1,3].

Solution:

Since we revolve around the y axis and have our equations in terms of x we will use the shell method. We see that on $[1,3]$

$$
f(x)>g(x)
$$

3 pts
thus

$$
V=\int_{1}^{3} 2 \pi x\left(\sqrt{3+x}-\frac{\ln (x)}{x^{2}}\right) d x \quad 7 \mathrm{pts}
$$

Pull the 2π out and integrate as two separate integrals. For $\int_{1}^{3} x \sqrt{x+3} d x$ set $u=3+x$ so $d u=d x$ and $x=u-3$. For $\int_{1}^{3} \frac{\ln (x)}{x} d x$ set $w=\ln (x)$ so $d w=\frac{1}{x} d x$. Plug the substitutions into the bounds and we have

$$
2 \pi\left[\int_{4}^{6}(u-3) \sqrt{u} d u-\int_{0}^{\ln (3)} w d w\right]
$$

Integrating now gives

$$
2 \pi\left[\frac{2}{5} u^{\frac{5}{2}}-\left.2 u^{\frac{3}{2}}\right|_{4} ^{6}-\left.\frac{1}{2} w^{2}\right|_{0} ^{\ln (3)}\right]
$$

Finally plugging in our bounds gives

$$
V=2 \pi\left[\frac{2}{5} 6^{\frac{5}{2}}-2 * 6^{\frac{3}{2}}-\frac{2}{5} 4^{\frac{5}{2}}+2 * 4^{\frac{3}{2}}-\frac{1}{2}[\ln (3)]^{2}\right]
$$

3 pts
and we'll leave our answer as that.

