Exam 2 Problem 1:

$$
\frac{d y}{d x}=\frac{\log _{2} x}{x}-\frac{y}{x} \Leftrightarrow \frac{d y}{d x}+\frac{y}{x}=\frac{\log _{2} x}{x}
$$

is a first linear non-separable differential equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where $P(x)=\frac{1}{x}$ and $Q(x)=\frac{\log _{2} x}{x}$, so multiplying by the integrating factor

$$
e^{\int P(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln x}=x
$$

yields

$$
(x y)^{\prime}=x \cdot \frac{\log _{2} x}{x} \Rightarrow x y=\int \log _{2}(x) d x
$$

To evaluate $\int \log _{2} x d x$, we use integration by parts with the following substitutions $u=\log _{2} x, d v=d x, d u=\frac{1}{x \ln 2} d x$, $v=x$, so

$$
\int \log _{2} x d x=x \log _{2} x-\int x \frac{1}{x \ln 2} d x=x \log _{2} x-\frac{x}{\ln 2}+C .
$$

Thus

$$
x y=x \log _{2} x-\frac{x}{x \ln 2}+C \Rightarrow y=\log _{2} x-\frac{1}{\ln 2}+\frac{C}{x} .
$$

- Either 8 points for $y=\left(e^{\int \frac{1}{x} d x}\right) \int \frac{\log _{2} x}{x}\left(e^{\int \frac{1}{x} d x}\right) d x$

Or
-2 points for writing in normal form
-3 points for recognizing $e^{\int \frac{1}{x} d x}$ as integrating factor
-3 points for writing $\left(y \cdot e^{\int \frac{1}{x} d x}\right)^{\prime}=\left(e^{\int \frac{1}{x} d x}\right) \cdot \frac{\log _{2} x}{x}$

- 15 points for correct integration
- 2 points for simplifying to $\log _{2} x$
- 3 points for correctly choosing functions for integration by parts
-8 points for using the correct formula (4 points) and computing correctly (4 points)
- 2 points for constant of integration
- 2 points for simplifying and obtaining the correct solution

