Exam 3 Problem 1 Solution

$$
\int_{0}^{\infty} x 2^{-x} d x
$$

Grading scheme 1

Since $x 2^{-x}$ is bounded near 0 and continuous on $[0, \infty)$

$$
\begin{equation*}
\int_{0}^{\infty} x 2^{-x} d x=\lim _{c \rightarrow \infty} \int_{0}^{c} x 2^{-x} d x \tag{2points}
\end{equation*}
$$

Now we use integration by parts.

$$
\begin{array}{ll}
u=x & d v=2^{-x} d x=e^{-(\ln 2) x} d x \\
d u=d x & v=-\frac{1}{\ln 2} e^{-(\ln 2) x} \tag{4points}
\end{array}
$$

Hence

$$
\begin{align*}
\lim _{C \rightarrow \infty} \int_{0}^{C} x 2^{-x} d x & =\lim _{C \rightarrow \infty}-\left.\frac{x e^{-(\ln 2) x}}{\ln 2}\right|_{0} ^{C}-\int_{0}^{C}-\frac{1}{\ln 2} e^{-(\ln 2) x} d x \tag{3points}\\
& =\lim _{C \rightarrow \infty}-\left.\frac{x e^{-(\ln 2) x}}{\ln 2}\right|_{0} ^{C}-\left.\frac{1}{(\ln 2)^{2}} e^{-(\ln 2) x}\right|_{0} ^{C} \tag{3points}\\
& =\lim _{C \rightarrow \infty}-\left(\frac{C e^{-(\ln 2) C}}{\ln 2}-0\right)-\left(\frac{1}{(\ln 2)^{2}} e^{-(\ln 2) C}-\frac{1}{(\ln 2)^{2}}\right) \tag{2points}
\end{align*}
$$

We know that

$$
\begin{equation*}
\lim _{C \rightarrow \infty} \frac{1}{(\ln 2)^{2}} e^{-(\ln 2) C}=0 \tag{1point}
\end{equation*}
$$

But $C e^{-(\ln 2) C}$ has indeterminate form $\infty \cdot 0$. So by L'Hopital's Rule,

$$
\begin{equation*}
\lim _{C \rightarrow \infty} C e^{-(\ln 2) C}=\lim _{C \rightarrow \infty} \frac{C}{e^{(\ln 2) C}}=\lim _{C \rightarrow \infty} \frac{1}{\ln 2 \cdot e^{(\ln 2) C}}=0 \tag{2points}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{C \rightarrow \infty} \int_{0}^{C} x 2^{-x} d x=\frac{1}{(\ln 2)^{2}} \tag{1point}
\end{equation*}
$$

So the integral converges.

